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SCHUBERT CALCULUS OF A COXETER GROUP

by Howard L. Hiller *)

Introduction

Let (W,S)be a finite Coxeter system, in the sense of Bourbaki [6]. It is

well-known that W can be realized as the Weyl group of a (possibly non-

crystallographic) root system Ain a real Euclidean space V of dimension

n — [ S |. This space possesses a basis T of simple roots such that the

reflections sa through the hyperplane perpendicular toaef precisely yield
the generating set S. In this fashion, W admits a natural representation

on V, so we can make it act on the polynomial algebra S on V by

w.f(x) =f(w~1x). The invariant subalgebra splits up into its homo-
oo

genous components S (V)w © Sj (V)w and the positive components
j=°

generate a graded homogenous ideal Iw. We can form the quotient algebra

Sw S(V)/IW which we refer to as the coinvariant algebra of W. Of
course, Chevalley's theorem [8] tells us that S (V)w has n algebraically
independent generators whose degrees du dn (the fundamental degrees)

are useful in describing the gross structure of Sw. In particular, one can

compute the Poincaré series of Sw ~ © SWjj
oo n

PS(SW9t) J] dim (Sw,j)tJ Yl (I + t +... + tdl 1)

j=0 R i—1

n

so that the real dimension is PS (*SV, 1) fl dt | ^ | an<^ SWJ 0,
i— 1

n

j > deg (PS (SW t)) Y, (di~\). Note that the last sum is also equal
i= 1

to the number N of reflections in W, for example, by a formula of Solomon
[19].

We are interested here in a finer analysis of the algebraic and PF-module
structure of Sw- Following Demazure [11], we describe a sort of algebraic

b Partially supported by an American Mathematical Society Post-Doctoral Research
Fellowship.



58 H. L. HILLER

Bruhat decomposition for SV relative to a root system for W (section 2).
By this we mean an algebra Hw is constructed with a basis {X^weW and a

map c : S (V) Hw, that induces an isomorphism Sw & The basis

depends on the relative lengths of the simple roots. In the case where W is

a Weyl group, and the lengths of the roots are chosen to make the Cartan
matrix integral, the element Xw corresponds to the cocyle dual to the
Ehresmann-Bruhat cell decomposition of a certain flag manifold GjB KjT.
Hence, for example, the Coxeter group In j Z2 admits the two different
Schubert calculi of type Bn and Cn. In addition, the map c above corresponds
to taking the first Chern class of the line bundle associated to a character
of T (where V is thought of as the character group X (T) on the maximal
torus). Our first task is to describe a section for the map c (section 3). We
think of this as a Giambelli formula for SV. This leads us to introduce a

notion of fundamental weights for a Coxeter system, which turns out to
yield the 1-dimensional generators Xs9 a e I. This allows us to view an
arbitrary Xw as a polynomial in the XsJs.

In section 4, we look closer at the multiplicative structure of Hw. By
our Giambelli formula, it suffices to understand multiplication of Xw by a
fundamental weight. Here we exploit a commutator computation of
Bernstein, Gelfand and Gelfand [2] to get such a Pieri formula.

It is possible to relativize the above results. In section 5 we recall the
basic facts about the lattice of parabolic subgroups {JVd}d as of the Coxeter

group W. Of course, (We, 6) is a Coxeter system itself. We consider the
invariant algebra H^9 und show that it is generated by {Xw} wS where We

is a familiar set of coset representatives for We in W.

Finally, using the results of section 5 and the parabolic T/c x c Zn+k

W (An+h_ V ge give an algebraic derivation of the classical Pieri formula
of the Schubert calculus of a complex grassmannian.

Section 1 is a brief review of facts about Coxeter groups we will require
in the sequel.

We note in passing that the sort of results described here have already
been analyzed from a variety of viewpoints—the Chow ring [12], Lie
algebra cohomology [17], and De Rham cohomology [22], to mention a

few. The advantage of our method, inspired by [2] and [11] is that once

one has identified the algebra in question as the coinvariant algebra *SV,

all of the Schubert machinery follows in a purely formal fashion.

It is hoped that an extension of this circle of ideas to affine Weyl groups
will shed some light on the Bott decomposition of the loop space of a Lie

group [15].
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1. COXETER GROUPS

We begin by reviewing some of the elementary theory of Coxeter groups.
Some detail is included to avoid any oblique use of the crystallographic
condition. Following Bourbaki [6, IV] we say (W, S) is a finite Coxeter

system if W is a finite group given by the presentation e S | Cvy)m ^ =1)
where mtj is the order of stSj. It is possible [6, V] to construct a real

Euclidean space V and a root system (A, I) in V that "geometrically
realizes" (W, S). By this we mean the following. If y e A then

sv(x) x -(x,yv)y ^co-root yv

is the reflection through the hyperplane perpendicular to the root y, and

we can form the subgroup W(A) of GL(V) generated by the Sy$9 y e A.

In fact, the sa's9 a e 1, generate W(A) and we call the pair (W (A), {sa :aeT})
the Weyl system of (A, I). Coxeter [9] proved that the Weyl system is always
a Coxeter system and if this pair is isomorphic (in the obvious sense) to
(W, S) we say (A, I) is a geometric realization of (W9 S). Of course, the

choice of such a (A, I) is not unique. But clearly up to a rigid motion of V,

the root system is determined by the lengths of the simple roots.

If the lengths can be chosen so that (a, ßv) e Z for all a, ß e I, we say W
is crystallographic (or a Weyl group). Geometrically, this means that the
Z-lattice generated by E is preserved by W. As mentioned in the
introduction, even this choice of relative lengths is not necessarily unique.

We can choose a vector teV, such that (t9 a) > 0 for all a e I (i.e. t is

in the fundamental chamber C). This vector decomposes the roots
A A+ [] A" where

A+ {ye A > 0}

and A"—A + Note that | A+| \||, where N is the number
of reflections in W as described in the introduction.

It is now customary to attach an edge labelled graph to (JV, S) called
the Coxeter graph. The nodes correspond to the elements of S and st is
attached to Sj by an edge if mtj > 3, and if also mtj > 3 the edge is labelled
with the number mi7. In 1934, Coxeter [9] classified the Coxeter groups
with connected graphs and showed that every Coxeter group is a product
of the "connected" components. The classification of the irreducible
Coxeter groups along with the fundamental degrees is
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Table

w Coxeter graph dl

Bn

h.

H,

him) m

2,3,.....n + 1

2, 4, In

2, 4,2 (#i — 2), 2 (« —1), if

2, 5, 6, 8, 9, 12

2, 6, 8, 10, 12, 14, 18

2, 8, 12, 14, 18, 20, 24, 30

2, 6, 8, 12

2,6

2, 6, 10

2, 12, 20, 30

2, m

We will assume throughout that W is irreducible.
The crystallographic Coxeter groups and their root systems are well-

known and correspond up to a choice of relative lengths of the simple roots
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to the Cartan classification of simple Lie algebras over the complex numbers.

The dihedral groups are the Weyl groups of I2 (tn), and are the symmetry

groups of a regular m-gon (from which it is easy to construct (A, T)). The

group H3 is isomorphic to a product of Z2 and an alternating group on

five letters and 1is the symmetry group of a certain 4-dimensional poly-

tope [9, 10].

The primary piece of structure available on a Coxeter group is the

length function I : W -> N, where / (w) is defined as the minimal length of

an expression of w in the generators S. If I (w) — k and w — s± sk,

st e S, we call this a reduced decomposition of W. There is an alternative

intrinsic description.

Lemma 1.1. Let Tw denote the set of y e A+ suchthat w (y) e A~, then

(i) I rwSx I I rw I ± 1 if and only if w (a) eA±,

(ii) / (w) I rw |,

(iii) /(wsa) I (w) ± 1 if and only if M^(a)e#.

Proof To see (i) one need only recall that TSa {a}. This first assertion

then implies | Tw | < / (w). The other inequality follows from an induction
on I rw I and then (ii) follows, (iii) is immediate from (i) and (ii).

The next piece of structure on the Coxeter group we require is the so-

called Bruhat ordering [13]. We define wf w (intuitively, w' is an
immediate predecessor of w if there exists a positive root y such that

<jy w w' and I (wr) / (w) + 1. (We will often adorn with the unique
such y.) Since W is transitive on the roots and wsa w~1 ^w(a) the first
condition is equivalent to w' w_1 being a conjugate of a fundamental
reflection s e S. The Bruhat order < on W is the transitive closure of the

ordering Note that / is forced to be strictly order-preserving so that the
two pieces of structure we have introduced are compatible. We can now
relate -» to any particular reduced decomposition of w.

Lemma 1.2. If w sx sk is a reduced decomposition, then w* -» w
A

only if w' w* where w* s± st... sk (and
A denotes deletion).

Proof See Theorem 1.1 (III) in [13].

Hence, in general, the Bruhat ordering corresponds to the subwords of
any reduced decomposition. So, for any i we can find a y e A + such that
sy wî — w. The next result describes these roots y both specifically and
abstractly.
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Lemma 1.3. If w s± sk is a reduced decomposition> define
61 s± st-1 (oq) where st — s^.^ocieI. Then the following sets are
equal

(i) rw_, A+ nw(A~),

(üi) {yeA +
:sywt w}

Proof, (i) £ (ii). Let y e A+ and w~x (y)eA~. Let j be the smallest
number such that Sj... s1(y)e A~. Then ocj Sj_ x sx (7). Hence y 6j.

(ii) Ç (iii). It suffices to compute
A A

Sei Wj Ssi s>._, (a;)(Si S;... sk)
A

Si-i Si St-i s1(s1 $i Sk)

sx sk w

But now I Tw~ i I liw'1) l(w) k, by (1.1) and certainly
\ {y e A+ : syw^ w} | < k, so all three sets must be equal.

Remark. Though the 0£'s are defined in terms of a reduced decomposition,

(1.3 i) shows that they are actually independent of the choice made.
We now recall that the Bruhat order on W possesses a unique top

element of greatest length.

Lemma 1.4. There exist a unique element w0eW suchthat l(w0) N.
In addition, w0 > w, for all w e W, Wq 1 and I (ww0) / (w0) — / (w).

Proof. One knows that W acts simply transitively on the chambers and

w0 is chosen to be the unique element satisfying w0 C —C. The rest is

standard, see [6, p. 43].

Finally, we make some remarks on the (anti) invariant theory of Coxeter

groups. The main result is

Proposition 1.5. If (W, S) is a Coxeter system, then the invariant
algebra S (V)w has | S | algebraically independent generators of degrees

2 dt d2 dn. Equivalently, S (V) is a free S {V)w-module.

Proof. This follows immediately from Chevalley's theorem [8].

Remark. It is often useful in this context to think of W as the Galois

group of the rational function field S (V) over the rational function field
S (V)w of the invariants. We exploit this point of view in the next section.
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There is also a theory of anti-invariants, i.e. polynomials u e S (V) such

that w • u (- 1)Z(W) w. The algebra of anti-invariants is written S (V)~w.

It is a free module of rank 1 over S (V)w generated by the element

d n Je sn (Y)- The corresponding "anti-averaging" operating is
yeA +

— j (u) y -1)z(w) w • u.
1^1

2. Demazure's basis theorem

Let e : S (V) -> S0 (V) & R denote the projection map. We begin by
defining certain operators on S (V), whose composition with s should be

thought of as algebraic models for Bruhat cells. To do this one must view
the homology as a real functional on the cohomology via the usual pairing.
The operators also admit an analytic interpretation [21]. As above, let
(W, S) be a Coxeter system and (A, I) a geometric realization of it.

Definition 2.1. If a e A, define Au a"1(l-,s,a) as an S (L)^-endo-
morphism of S (V). (Note the division is legitimate since is the identity
on the ker (a) a1; thinking of a as a linear form x i-> (x, a) in
V* Si (V), of course.)

The following result summarizes the relevant properties of these

operators and the proof is routine

Lemma 2.2. If w e W, oc e A, u, v e S (V) then

(i) wAa w'1 Aw(a),
(ii) A2a=0,
(üi) 1 - <x.Aa,

(iv) ker (AJ S(F)(s°° (where the superscript denotes invariants)

(v) Aaiuv) A x (u) v+ sx(u)Aa(v),

(vi) Aa(Iw)c Iw,
(vü) [Aa, co*~] Axm* - co* Aa (a", co) sa,

where m* denotes the operator multiplication by co.

We now define /f\wtobe the subalgebra of the algebra of endomorphisms
End (5(F)) generated by the da's (a eAandor\ m e S (F). Note Aa
decreases the grading by (-1) and Ws w by (2.2 iii).
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There is a map s* : End S (F) S (F)* obtained by composition with
i

s and we write i\w ^ S (F)*. Double duality over R gives a map
<5 I * _

c : 5(F) -» 5(F)** tw •

We will write Hw christened by Demazure, the cohomology ring of
(d,T) and c the characteristic homomorphism. Demazure [11, Prop. 2]

makes the basic observation that c induces a unique graded algebra and
JF-module structure on Hw compatible with S (V). (We should mention
here that Hw depends on the lengths of the simple roots though the notation
obscures this.) The first task is to extend the class of operators da AS(x

from S to the entire Coxeter group W. Naturally, we will define

Aw — Aal Aak where w sal sak is a reduced decomposition of w,

once we have proven that this definition is independent of the choice of the

decomposition. Our information on Coxeter groups is a possible route
but instead we follow Demazure's argument since it leads to worthwhile
dividends. We begin with a few lemmas.

Lemma 2.3: Let d denote (V). Ifw0sal sXN is
aeA +

the longest word then

4,o •••oAjv d~1{{-l)Nw0+ L <2ww)
w w o

where qw e S (V).

Proof. We compute

Aaj AajyCCi • • • CCN sajv)

(-l^ar1 ar1 % + E
W f WQ

where the index of summation in the last term is a consequence of (1.4).

It now suffices to watch in the first term what happens to inverted roots

aj1 as we pass the fundamental reflections st over to the right. Using
(2.2 i) we get

n

(~1)N( n («d)
i= 1

But by (1.3) this is (~l)N d'1 w0 since w^1 w0 converts all positive
roots into negative roots by (1.4). We now let qw daw and the proof is

complete.
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Lemma 2.4. If fe End (5(F)) reduces the grading by N then

d'f=XJ for some 2eR, where JE (—l)!<w)vf.
weW

Proof. See [11, Prop. 1 (b)].

Proposition 2.5: If w0 sXi sXNas above, then Ax{= d 1 J.

Proof. By (2.4), dAx....AXNU A(-l)ww0 + E Iw.
w^ wq

Also by (2.3) dAxl... AXN (~1)N w0 + E w- % Dedekind's
w^ wo

theorem (see, e.g., [1]) the w's are independent as automorphisms of

SfVj, so X 1 and the result follows.
We can now show

Proposition 2.6. Aw is well defined.

Proof. By [6, IV § 1, Prop. 5], it suffices to show

AaAßAa... =AßAaAß...

with maß terms on each side. But the dihedral root system I2 (maß) or
A1 x A± has sasßsa... sßsasß as its longest word and hence (2.5)

completes the argument.

Theorem 2.7. The {Aw]weW are an S (V)-basis for £\ w and hence the

{soAw}weW are an Pi-basis for £sw.

Proof. By (2.2 v), it is easy to check the dw'x generate £\ w as an S (V)-
module. The linear independence follows from Dedekind's theorem, and
the last statement is immediate.

We now define {Xw}weW to be the basis of Hw £\w dual to the basis

{£ * ^w}weW °f A W> i-e*

Xw(s-Aw0 ôww,

This immediately yields the following "coordinate-wise" description of c.

c(u) E zAw(u)Xw
weW

First, we show c has the correct kernel. We need the following Lemma that
follows from R. Steinberg [21].

Lemma 2.8. If I is a graded ideal of S (V) such that Iw — I and
Rd n I 0, then I Iw.

L'Enseignement mathém.. t. XXVII. fasc. 1-2. s
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This result rapidly yields our version of the "basis theorem" of the
Schubert calculus, namely

Theorem 2.9. Ker (c) Iw and c induces an isomorphism Sjy ~ Hw

Proof\ For the first assertion, by (2.8), it suffices to compute

c(M) *AW0(d)XW0

*\W\Xwo

Finally, c is clearly onto by construction.
In the next section we will work on producing an explicit section for c.

Remark. Demazure's proof, though restricted to Weyl groups, is done

integrally. In that situation, c is not onto, and Demazure computes the
order of the finite quotient. It corresponds to the usual notion of torsion in
Lie groups [3, 5]. Indeed, the point is that only when W preserves some

integral lattice can one hope to carry out an analysis in integral cohomology;
in the general case we must resort to real cohomology, as we do here. Of
course, the torsion problems then disappear.

3. Giambelli formula

We begin with an easy lemma.

Lemma 3.1. A is quasi-multiplicative, i.e.

Aww> if l(ww') l(w) + Z(w')
Aw •Aw

0 otherwise.

Proof. The first clause is immediate since the conditions implies that
reduced decompositions of w and w' can be juxtaposed to yield a reduced

decomposition of ww'. Now suppose w sa w' and I (sawf) — I (v/) — 1

(that this is the only possibility that follows from (1.1)). Then w' sa CsaM/)

and

Z(W') 1 +(/(w')-l + l(saw')

so by the first part Awr ASa ASaWBut

0 KA>.A»a* KÂ*
by (2.2 ii) and induction on / (w) completes the proof.
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Corollary 3.2. ß - Aw> Aw-iWq ôww> Awo on SN(V).

Proof. If vT wi then by (1.4) and (3.1)

^ w"~ 1
wo ^ wo

and the result follows.
We now need only consider w' ^ w, but with / (w) I (w')? (otherwise,

we are done for dimensional reasons). Thus

I (w7) + Z(w 1w0) Z(w') + (/ (w0) — I (w)) — /(w0)
and

l(w'w 1w0) Z(w0) — Z(w'w *) ^ /(w0)

So by (3.1), Aw, Aw-iWq 0, and the proof is complete.

It is now easy to dualize this to the following assertion:

-
à

Corollary 3.3 (Giambelli formula), c [ Aw-i

in particular, c

Proof.

W\

w
x„

A w ^
wo w\

s A w>
f 4 w _ ^

^
Note that the map a : Xwf->4V

w'eW

^ww'^wo
w'eW

l(w') I (w)

Jw. Hence

X„
pr I

IT I

by (2.5).

is a vector space section
"° VI w\j

for c. In the remainder of this section we will find other /^-equivalent
expressions for XWq and use these to put o in a more manageable form.
We will call Xwq the fundamental class of the cohomology ring Hw.

Example. Let IT W(An_1) Zn. As usual, the positive roots 4 +

are (et e7- : i < •} where {et} is the standard basis of Rn. Hence, the
fundamental class is c of a multiple of the Vandermonde determinant, namely

1

1

n

- 1

A

en_-i
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In this example we used the standard basis for V. The following result
indicates that a Coxeter generalization of the fundamental weight basis is

more appropriate in our situation. Recall the fundamental weights {coa} aer
are given by the requirement

(coa,ßv) 8aß

We now have

Lemma 3.4.

(i) Aß(ma) dxß,

(ii) c (mj XSx

(iii) c (a) £ (a,ßv)X
ßel P

Proof.

(i) Aß (ojJ /T1 (coa - sß (oiA)
1

(coa - (coa - (coa, ßv)ß))

(a>a,/F) ^
(ii) c(ooa) X! £^w(®a)^w E

weir )Sei: p

(iii) Since oc £ (a, ßv) co ß, the result follows immediately from (ii).
/?eX

This result tells us that if we can write Xw as c of some polynomial in
the {coa} aeZ or {a} aeZ we will have also written Xw as a polynomial in the

Xs's. We will often abbreviate the Cartan matrix entries by caj ß (a, ßv)

II a || / 71 \
— cos In practice, it is maximally efficient to write Xw as

11011 \*ßj
a polynomial in the simple roots, since then an easy substitution will yield
either a polynomial in the weights or a polynomial in the original
coordinate variables eu en.

It is possible to relate the fundamental class XWq, with the invariant
theory of W.

Proposition 3.5. Let fu ...,/n be fundamental invariants for W.

Then, if J det — is the Jacohian of these polynomials there is a real
\dXjJ

number X such that

c(XJ) XWQ

Proof This follows from the stronger, well-known assertion that d

divides J [20, p. 85]. (It also follows from the theory of complete
intersection rings.)
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In the interest of understanding the Giambelli formula (3.3) we deduce

some formulae for Aw (d). If {af} are distinct positive roots we denote
n

by dahtit%(Xn the product d • Yl aTX Yl It *s easY to see

Lemma 3.6.

Sß Wzj, aj

aezl

Isßia^ Sß(<xn), ß tf ß aj->

dsß (a1>,, s (an) otherwise.

Proof. Since s ß permutes the set d + - {/?}, it also permutes

zl+ - {/?, a1? a„, sß (a J, ^ (a,,)}

where ß ^ ai5 for all z. Hence

aj ~~ (dß} ai 5 an f (clx), (an)) ' sß iß) ' sß (al) O O Sß (C£„)

~~ ^0, «i an (ajL («n)
' —/0 ' al

~dSß (ai) sß (an)

Similarly in the other case.

Proposition 3.7.

i (-i)'-1 n
s 4> 4> 16 s

A..,"}
S|_1 J r

(dai—
ß ' {a : ies}, (ai), (ay), (a,,)

if ß - a,

dai,..,<xn,ß + dSß(ai)t^iSß(an)tß

otherwise

Proof The second case is easy so we look at the first

dß(dai>...iC(f) ß 1

(dal,..,ccn-dSß(a0f^^Sß(ajh f sß(an),ß)

— ß [dai, ,an, Sß(a±), Sß(aßt,.. sß(an)

• (Sßioc^ • • Sß(ccj) • •
Sß (a„) - oq • •

ocj •

— dccXi..,ccn,Sß (ccj),..,Sß(ccj),..,sßn(a)

ß'^u (*j-(Xj,ßv)ß)- n a0
i*j

and after writing the product as a sum the desired expression follows.

*»)]
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It is possible to use (3.7) to explicitly compute polynomial expressions
for Xw.

Example. Let W W (A2) where A2 is the root system in R3 with
simple roots I {a e1 — e2, ß e2 - e3} and the additional positive

root a + ß e1 - e3. Hence Xw - a ß (a + jS). As a check of this we

compute the Jacobian / of the fundamental invariant. Recall

*i - (^2 + ^3)^2 + ^3)+ e2e3
and

G2 ~ ~ iß2 "^^3) e2 e3

where we have eliminated e1 — (e2 + e3). Then:

J 3 (e2 e3 — e3 e2) + 2 (e2 — e3) d

1

so also, Xw - J. Now by (3.7) we can compute
0 6

^(7) L24) jß(*+ß)
and

^ /? A„ —a 3
(da} ß+dSß(a)}ß) — -(a+^ + a) — ^(2a + ^)

so that:
and Xs* 'si^+ß) *>«

as one easily checks.

/ 2 -1\
Now since the Cartan matrix is we have

V-i 2)

a 2œ
a — cop

ß -œa + 2^
so for example

i(-x:+2x0(x: + x;>

^-xi + x;x: + lx'i>
which will be confirmed further in the next section.

Remark. In the crystallographic case, it follows from the Weyl
denominator formula (see [6, p. 185], [2, p. 17]) that
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d PN
— (mod V)

I W\ Nl
where p is the sum of the fundamental weights. Hence one can attempt to

compute the operators Aw on pN.

It is possible to develop such formulae and we hope to treat them
elsewhere. In particular, one might want to conjecture in the general case that
pN $ Iw, maybe even for all p in the interior of the fundamental chamber.

4. PlERI FORMULA

Recall that the algebra of operators i\ w was generated by both the

da's and the multiplication operators co*. Using the basis constructed
in (2.9), if one composes such operators, say co* o Aw or Aw o co*, it
should be possible to express them linearly in terms of the operators Ag%

g e W. Of course, our eventual concern is with the algebra /\ w and

so œ* - Ay, 0

So, if we compute the commutator [Aw, co*] a quick application of s will
yield a formula for s • Aw o co*. Here we are following the strategy of
Bernstein-Gelfand-Gelfand [2]. Essentially, this result is our Pieri formula
disguised in its dual form.

In order for the techniques of section 1 and induction to be easily
applicable, we work with the slightly modified operator vr"1 Aw (recall
W cz i\w). The main result is

Theorem 4.1. If we W, co e V*, then in End S (V),

\_w-1Aw,co*~\ Yj (W'1 (yy,co)w~1 Aw.
y

w' —> w

We will now fix a reduced decomposition w s f..., sak and write
St for sa. and wt san sa.. First we have the following easy observation.

Lemma 4.2. Let 0t sk... si+1 (cq) wi+1 (<), 1 < z < k. Then

(i) w-1Aw=A01A02...A9k
and

(Ü) ^.(w?)"1 w-1

Proof.Note by (2.2 ii, iv) saAa Aa. Hence
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W Aw Sk A^^ As^ >#> (ai) Sk 52 ^<X2 "'
Adlw2Aa2...Aak

and induction completes the argument. The second remark follows precisely
as in (1.3).

Proof of (4.1). We compute

[Ae

— Adj^i^Agj, co*"] A0k

Let us call the j-th summand Pj. Firstly, observe that [A6j, co*] (Op co) s6j
by (2.2 vii). If we substitute this into Pj and drag the reflection s0. over to
the left we get

Pj Aei...Ae._1[Ae.,m*]Aej+1

(0°, co)A$l...Ae._1se.Ag.+l ...A„k

(Oi,co) s9jASg^9l) ...ASe^9j_l)A9j+1

(d), co)sg.(w^j)'1

To see this final identity we must argue, by (4.2), that s9j (6t) + Otj
A

where Ou f sk Sj si+ ± (af). (As in the above remark, Ou^ is the Ot for
A

w^ s1 Sj... sk.) But, we can assume i < j, in which case

Ü9j(0d sk...sJ+iSjSJ + 1...sk(sk...sJsj+1...si+1(cii))
A

sk... Sj...si+1(af)drf
And now, by (4.2 ii)

Pj (10VJ, CO)

wj(dj)
and sw*iej) (wy) w, so —» w. Finally, (1.2) allows us to reindex

by the immediate subwords of w

Z pjZ ((wT
j=i y

"W' > "W

and the proof is complete.
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Corollary 4.3.

Aw-a>* w m* w'1 Aw + £ (OV1 (r)l>
y

W —y w

Proof. Multiply (4.1) by w.

Corollary 4.4.

e Aw- a>*L ((w')-1(y")» (o)s Aw,
y

W —> w

Proof. The first term in the right-hand side of (4.3) is annihilated by e.

It is now easy to dualize the above and obtain

Theorem 4.5 (Pieri formula). If w e W, a e Z, then in Hw

Z (w-l(yy,Wc!)xw,
y

w —y W

Proof. Choose A such that a • Aw, (A) Sww>, for example o (Xw).
Then, by (3.4 ii)

*sa Xw ^ (^a

Z sAw.((0aA)Xw.
W s W

X s-Aw,col(A)XV.
w' eW

Z Z (d
y

w' eW g —> W

Z Z G

y
We W g —> w'

Z (w_1(r)". (oa)xw,.y
w —» W

Of course, it is also possible to rewrite this formula in the following
equivalent form.

Corollary 4.6.

X,x-Xw= L (ß'.ajx
ße A + P

I OSß) I (w) + 1

Proof. It suffices to note ayw w' if and only if w crw-1( } w'.
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Example. Recall that in Hl3 we computed

1j(-xl + x>,x;+2x2>,)

By (4.6), one can compute

X2s =XSnS
a sß sa

Xs Xs Xs s + Xs ssß sa sß sa s<x sy?

Y2 — Y

and this confirms our earlier computation.

5. Hw AS A W-MODULE AND PARABOLICS

If W, 5) is a Coxeter system and 6 ^ S then (IT#, 0) is also a Coxeter

system [6, p. 20] and We is called a parabolic subgroup of W. In addition,
it is easy to see that a geometric realization (A, I) of W, S) can be restricted

to a geometric realization of We, 0). The collection {Jr0}0c:S of parabolic
forms a lattice of 2|5' distinct subgroups where, for example, We n PfV

WQc\Q>. We will eventually be concerned with the set of left cosets of We

in W. We define W6 {w e W : l(ws) / (w) + 1 for all se 6}. The

following basic result is well-known [6, p. 37 and p. 45].

Theorem 5.1. Every element w of W can be uniquely expressed as
we - wd with wd e We, we e We and furthermore I (w) / (w0) + I (w0).

This immediately yields

Corollary 5.2. W6 is a complete set of left coset representations for
Wd in W and furthermoreprovides an element of the coset ofminimal length.

In this section we analyze the subalgebra H^9 of ^-invariants in Hw.
The most straightforward approach is to compute exactly the action of W

on Hw. This is easily done by exploiting the computation (4.1).

Theorem 5.3. The structure of Hw as a W-module is given by

\ Xw - if l(wsx) 1

s?* X M

xw - L (sxw 1(y)v,<x)Xw. if Z(w) - 1.
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Proof. As in (4.5), choose A such that s Ag (A) ôgw. Then, since c

is a W-map

Xw C (sa Al) Z £ A w> (sa A) Xw>

w' eW

X aAw,(l-a*Aa)(A)Xw,
w' eW

XW- L (eAw.<x*)Aa(Ä)Xw.
w' w

Xw - I by (4.1)
y

g —> w

S (ff-1 (y)*, a)-yw
y

g —»• w'
i igsa) Hg) + i

9sa w

*w- X (S.W-1 (?)",<*)*„,
y

WSa —» w'

Note, that the summation in the next to the last line is non-vacuous if and

only if / (w^a) / (w) — 1. This completes the proof.

Corollary 5.4. Xw e H^6 if we We.

Proof Immediate from (5.3) and the definition of W6.

The following elementary result shows that the Xw, w e W9, are actually
an R-basis for H^6-

Lemma. If a finite group G acts on a real vector space V via the regular
representation and H is a subgroup of G, then

dimR {Ve) IG:H]
Proof Let {eg}gG be a basis for V, so that

9' ' e9 eggt

Then if x Z igE yH> we claim ig igr> 9=9* (m°d H). Indeed,
geG

if g g' h, h e H, then

Çg> coefficient of eg. % in

coefficient of eg> in h'1 %•

coefficient of eg,h in %

«,•
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Hence, there are at most [G : H] free parameters in determining %eVH
and clearly each choice gives an invariant. This finishes the proof.

Corollary 5.6. dim {Hp} [W : We] | We | and the Xw,

w e W6, are an R-basis for Hp.
Proof. Chevalley [8] has shown that Sw, hence Hw, is abstractly

equivalent to the regular representation of W, as a W-module. Hence,
(5.5) applies and the result follows.

It is now possible to "restrict" the Pieri formula (4.5) for Hw to Hp.
We have

Theorem 5.7. If w,w' e W6 and in Hw

Xw-Xw. X c(w,w', w")Xw„
then in Hp wew

Xw-Xw,= X c(w, w', w")Xw„
W" 6 W6

Proof. One need only observe that the vector space map r : Hw -> Hp
given by

f if w e We
r (Xw) J w

0 otherwise

is a retraction. Then, applying r to both sides of the first equation yields
the second equation since the invariants form a subalgebra.

This result will be useful in the next section for computing inside the

algebra of ^-invariants. Notice that an appropriate Giambelli formula
for Hp is not as easily obtained. This is because the Giambelli formula
for Hw gives Xw as a polynomial in the Xsfs and not all of these are in the

algebra Hp, so this is not quite the right thing.

6. Application:
The combinatorics of the classical Pieri formula

In the last section we saw that given a pair (W, We) of a Coxeter group
and a parabolic subgroup, one could construct a formula to describe the

multiplication of Schubert generators in the invariant subalgebra Hp. In
this section, we examine the particular case (In+k, Ik x Zn) where Im denotes

the symmetric group on m letters. Indeed, Zn+k is the Weyl group of the

root system of type An+k-l9 which we recall briefly here. Let V'
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equipped with the usual inner product and let el9 en+k denote the

standard basis. Zn+k acts by permuting these basic elements. This action
is effective on the (n + k — l)-dimensional subspace

r n+k n+k

v=\ £ V,: E A( o
I= 1 i= 1

and it is easy to see A {et - e^ji:i can be chosen as the corresponding
root system. In addition, the simple roots 1 {et - ei+ 1^i^n+k-i and

the positive roots A+ {et - induce the usual transpositions of
the basis vectors.

The main result of this section is the identification of the Pieri formula
for Hlkn*+ln with the classical Pieri formula (see [7, 16]).

We begin with a rapid review of Chern's Schubert calculus for the co-
homology of a complex grassmannian [7]. Let Gk(Cn+k) denote the space
of ^-dimensional complex subspaces in Cn+k. This is a compact, smooth
manifold of dimension 2nk. Ehresmann [14] described a cell-decomposition
for Gk 0Cn+k) (along with other algebraic homogeneous spaces) whose cells

are identified by certain Schubert symbols (du <4), where

1 < dx < < dk < n + k

Each symbol yields a cohomology class <^d1 dk} of dimension

9 V ^ n V fc(fc+1>
2 X {d- 1) - X dt) ~

i 1 i 1 Z

Geometrically, dky is the cocycle dual to the cell

{XeG+Cn+k):dim(XnR

It is easy to see the d?s describe the "jump-points" in the sequence

0 < dim (.XnC1) < dim (In C2) < < dim (InC"+fc_1) < n + k

where 0 £ c1 <= C2 ç £ Qn+k js standard flag determined by the
coordinate axes.

On the other hand, Gk (Cn+k) can also be profitably thought of as the
homogeneous space G/P where G is the complex Lie group GLn+k (C) and
P is the maximal parabolic subgroup of the form

GLk(C)

0 GLn(C)
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If K denotes the maximal compact subgroup Un+k of G then we also have
the identification Gk (Cn+k) K/(Uk x Un).

More generally, one can consider a complex semisimple Lie group G

and a parabolic Pe in G corresponding to a subset 0 of the simple roots 1.
The homogeneous space G/Pd has been studied by various authors and

we will assume known that

H*(G/P„;R) s

This will be the basic topological input [2].

Now we fix G to be the Lie group of type An+k_ x and 6 1 — {a^}
(where we write ocj ej - ej+1 and Sj saj) so that Gk(Cn+k) G/Pe.

We begin with some easy length computations.

Lemma 6.1. If weW, then

l(wSij)-l(w)
where

_
r +1 w (o < w 0')P,JI- 1 w> (0 > w (j)

and

f j {i < z < j : w (z) is between w (i) and w j)}
In particular, I (wsiy) I (w) + 1 if and only if (/) w (i) < w (j) and

(ii) there are no intermediate w-values, i.e. Iuj <fi (we often abbreviate

this pair of conditions by w (i) < < w (j).
n— 1

Proof Recall the length function on is given by l(w) £ ej (w),
j 1

where ej | {z > j : w (i) < w (j)) |, the number of inversions of w. Hence

l(wSij) -/(w) (e^-e;) + (ej-ej) + £ (ez'~ez)
i <z < j

where (w) and et et (wstj). Certainly, right multiplication by
does not affect the values of et below i or above j. Also

et ej + \{i <z <j:w(z) <w(j)}| e,- + e

e- e; - 1 { i < z <; : w(z) < w(0 } I e, - c

so we get
(ei ~ed+ (?]' -ej)(ej + e~ed +

eê Pi.yd/j.jl +1)
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It is easy to see

Pi, j if zelui
0 otherwise

e* - ev

putting this all together we get the result. The second assertion follows

immediately.
We can now write down (4.6) for Hw, W Yn+k

+fcProposition 6.2. If w e £n+/c, 1 </<« + £- 1, then in HYjji

xH'Xw= Y
(M)

where (b, t) satisfies b < / < t and w (b) < < w (t).

Proof By (4.6), XWSbt appears with coefficient ((eb~et)v, cot) if and only
if I (wsbt) I (w) + 1. This is equivalent to the last condition by (6.1).

Finally (eb — et)v eb ~ et ocb + + af_l5 so that first condition is

also needed and the coefficient is correct.

Remark. The Poincaré dual of this formula appears in [18, p. 265].
We now identify the set of left coset representatives W6. If

1 < d± < < dk < n + k and df < < d„ is an ordered enumeration
of the complement then we define (dl9 dk) e Yn+k> by

(d1,..l,dk)(i){ dil <
{ dt_k fc + l<i<fe + n

(We also write X{d1,..., dk) when it is convenient.)

Lemma 6.3.

We {fdi, df) \ 1 d± < < dk ^ n + k|
and l(dt,dk)£ (dj-j).

j= 1

Proof. Clearly / ((dx,, dk) st) / (dt ...,dk) + 1, for all i # k by
+i
k

(6.1), for example. Since I WeII I / I I the first

assertion follows. For the second, we need only observe

ej(du...,dk)=di ~j if j <
0 otherwise.
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This lemma indicates how the Schubert notation arises from a group-
theoretic point of view. That this notation is consistent with the geometry
is a theorem of Demazure [12].

A Pieri formula should compute the product of Xw (a linear generator,
by (5.6)) and an algebraic generator. Since the map

S{V)Wd - {HW)W°

is onto we can find algebraic generators by computing the images of We-

invariants. In general, WQ is a (reducible) Coxeter group, so we have the

fundamental invariants [20]. In our case, we have simply

S(V)W° ZEt,,...,^,...,^]
where st{eu ...,ek), 1 < i < k, and as Sj(ek+1, ek+n), 1 <y <n
and Sj denotes the jth elementary symmetric function in an appropriate
number of variables. One knows c (oy) suffices to generate HSo we

compute

Lemma 6.4.

c(*y) (-l)jXSk+j_u...,Sk (-iyx(l,2,...,/c-l,k+j)
Proof. By section 2

c(aj) E
I (W) j

If we write At for Aat, then clearly At (cry) 0, if t # k and

v Sj (ßk + 1 • • * i ek + n) $j {ßk, k+ w)

Ak{Gj)
— ek+l

(ek+l ~~ek) Sj~l (efc + 2> •••) ek + n)

ek ek+ 1

~~ 1) sy-l (e/c + 2> •> e/c + n)

We can continue by induction and get Ak+j_ l ...Ak(Cj) (-1)J, while

any other sequence of simple roots yields zero.

We now proceed to a computation of

X(1, 2, k- 1, k+f) X(du dk).

The case y - 1 is easy.
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Proposition 6.5.

X (1, 2, ...,k-l9k + l)X(dl9

d( + 1 < d. + 1

Proof. Since (1, 2, 1, k+1) sk, we apply the case i k of
(6.2) and observe w (7) w(t) if and only if w (t) ^ w (b) + L

We now observe

Lemma 6.6.

C ~~ SJ (^sk -'r 1 ~~^sk ' -i-2 -f 1 ' * * *'

Proof. By the tables of [6], the z-th fundamental weight is

mi &! + + et - 7~r I <7! (e1?..., on+fc)
+/c

Hence cot- et + + o- (mod 7W) and we get

c(cjj) c(s;(efc+1,... ,e*+„))
C (s, ((!>£+x—CO*, —con + t_1))

Sj(^st + 1
— ••• >

since c kills Iw and (3.4 ii).
This suggests the following computation.

Lemma 6.7. For all z, k + 1 < i < k + n, w e W; in H}w

{xH-xSi+t)xw= E xwstt- E *WS6i
i < t k < b ci

w (i) << w (t) w (b) << w (i)

W (b) <<w (i)

Proof Computing with (6.2), we get

Xst Xw Y XWSbt + Y %
wsitb ^ I — 1 / < t

i <t w (Z) < < w (t)
w (fe) << w (0

L'Enseignement mathém., t. XXVII, fasc. 1-2.
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and

Z + Z Xwsbi
b ^ i — 1 b < i

i <t w (b) <<w (i)
w (b) << w (t)

Upon subtracting and breaking up the second term the desired expression
follows.

Theorem 6.8. In

Sj(XSk+1-XSk,...,-X,n+k_JX{du...,dJ (-1

where the summation ranges over (eu ek) satisfying dt < et < di+1
k k

and Y, ei J+ E di-
1=1 i= 1

Proof. Of course

E (x
fc+1 < < tj^k+n J J 11

where we set X, 0. It is not difficult to check that the third term ofsk + ri

(6.7) alone yields the right-hand side. Hence it remains to show that the
contributions arising whenever either of the first two terms of (2.7) are
involved cancel in the final summation. To do this it suffices to show that
the resulting subscripts in W do not lie in We. (Then they must have
coefficient zero since His a subalgebra of Hw.)

Now the first two terms of (6.7) always give a transposition above

k + 1 and it must be elementary one by (6.1), say su i > k. Such a

transposition will send an element of W9 out of We. We claim no further
transposition sbt9 with either b > i or t > z, will put the subscript back

in W9. Both cases are easy to check and the proof is complete. Finally, by
a substitution from (6.4) we get

Corollary 6.9. (Pieri formula). In Hlkn**n H*(Gk(Cn+k))

X (1, 2,..., k — 1, k +j) X {d±, dfc) T X (e1, efc)

where the summation is as in (6.8
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Remarks 1. The above formal arguments are equally valid for the Chow

ring of the grassmann variety over an arbitrary algebraically closed field.

2, One can hope to mimick the above strategy for the homogeneous

space S02n+1{Un. The group G is of type Bn and the maximal parabolic is

determined by the "right-end" root. It is not difficult to write out the Pieri

formula for the flag manifold of type Bn (see the author's "Pieri formulae

for classical groups", preprint). In addition, W°, for this case, can be

identified with the power set of {1,2,...,«} and one can compute
c (aß 2X{jy (The 2 occurs because c is not onto.) Still the problem is

complicated by multiplicities. We hope to return to this elsewhere.
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