Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	24 (1978)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	ORIGINS OF THE COHOMOLOGY OF GROUPS
Autor:	Mac Lane, Saunders
Kapitel:	8. The Cohomology of Groups
DOI:	https://doi.org/10.5169/seals-49687

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 06.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

7. The Background in Homotopy

Group theory, in fact had been present in combinatorial topology from the beginning, in the study of the fundamental group (the Poincaré group) of a space or in particular of a manifold. The fundamental group Π_1 for a polyhedron P naturally comes with a presentation of the form $\Pi_1 = F/R$, where F is a suitable free group generated by circuits in the one-skeleton of P, while its subgroup R is described from the 2-cells of P. Hence *this* sort of presentation was ready at hand for Hopf's study of the influence of the fundamental group—and his paper does make reference to the work of Reidemeister, one of the German topologists concerned with the fundamental group.

The introduction of the higher homotopy group was more recent. At the 1932 International Congress of Mathematicians in Zurich, E. Čech had described our present two-dimensional homotopy group in a very brief note. He wrote no further on the subject. Folklore has it that other topologists at the conference discouraged him from further work, pointing out that his Π_2 was an abelian group, while all the experience with Π_1 indicated that what was wanted was a non-abelian group. Hence the real credit for the higher homotopy groups goes to W. Hurewicz, who introduced them in several brief notes in 1935-36, together with proofs of several of their properties—enough to show that these higher homotopy groups *did* have utility in topology. In particular, his 1936 theorem *that* the homology groups of an aspherical polyhedron are determined by the fundamental group of that polyhedron is the exact starting point of our subject.

Other developments at this time emphasized the importance of homotopy —Hopf's discovery [1931] of the essential maps of S^3 on S^2 , and the work of Whitehead on combinatorial homotopy. It was clearly the right time to investigate the relation between homotopy and homology.

8. The Cohomology of Groups

Once launched by topology, the higher dimensional cohomology groups of a group took on a life of their own. Eilenberg-Mac Lane and Mac Lane separately examined properties of the group $H^n(G, A)$ for a general Gmodule A. They found (from the study of Baer) the purely group-theoretical interpretation of $H^3(G, A)$ by obstructions—but an equally useful interpretation for higher n, long sought for, is still missing (and may even not be there!). Eckmann introduced G-finite cohomology groups (1947) and showed their connection with the Hopf-Freudenthal theory of the ends of a group. Eckmann's work, and the paper of Eilenberg-Mac Lane on complexes with operators, again emphasized the connection of cohomology groups of groups with covering spaces. There was a systematic presentation of the subject in the Cartan seminar of 1950/51, entitled "Cohomologie des groupes, suite spectrale, faisceaux". In this seminar Eilenberg first described the cohomology groups axiomatically, and then proved their existence. Subsequent exposés by Cartan emphasized the calculation of the cohomology by free resolutions complete with an abstract version of the comparison theorem. A decisive example of the effective use of such resolutions is the calculation of the cohomology of a cyclic group—carried out here in exposé 3. (I am sensitive to the advantage of using resolutions for this purpose, because in 1948 I had calculated the cohomology of cyclic groups directly from the bar resolution without the general comparison theoremthe direct method worked but was much more cumbersome.) Subsequent exposés made a number of applications-to the Brauer group, the Wedderburn theorem, the theorem of Maschke on complete reducibility of linear representations of a finite group, and P. A. Smith's theorem.

Further applications to pure group theory have been limited. One small but striking one is the homology proof by Gaschutz [1966]:

THEOREM. A finite non-abelian *p*-group has an automorphism of p^{th} power order which is not an inner automorphism.

This conference in Zurich has exhibited more examples of the use of homology in group theory.

9. Spectral Sequences

The results stimulated by group cohomology were not confined just to group theory. For example, the problem of computing the cohomology groups $H^n(G, A)$ for the case when G itself is a group extension (say, cyclic by cyclic) immediately leads to the study of a spectral sequence. Specifically, if

$$1 \to K \to G \to Q \to 1 \tag{1}$$

is a short exact sequence of (multiplicative) groups and A is a left G module there is a spectral sequence E_r^{pq} with