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A SIMPLE PROOF OF THE MAIN THEOREM
OF ELIMINATION THEORY IN ALGEBRAIC GEOMETRY

by P. Cartier and J. Tate

Summary

The purpose of this note is to provide a simple proof (which we believe

to be new) for the weak zero theorem in the case of homogeneous
polynomials. From this theorem and Nakayama's lemma, we deduce easily
the main theorem of elimination theory. Our version of elimination theory
is given in very general terms allowing a straightforward translation into
the language of schemes. Our proofs are highly non constructive—the
price we pay for simplicity and elegance.

We thank N. Bourbaki for numerous lively discussions about the subject
matter of this note.

1. Hilbert's zero theorem: a particular case

We denote by k a field and K an algebraically closed extension of k.
The statement of Hilbert's zero theorem, in its weak form for homogeneous
polynomials, reads as follows:

Theorem A. Let n be a nonnegative integer and J an ideal in the

polynomial ring k [Y0, Xl9 Xn] generated by homogeneous polynomials.
One has the following dichotomy :

a) Either there exists a nonnegative integer d0 such that J contains every
homogeneous polynomial of degree d > d0;

b) or there exists a nonzero vector £ (£0, £1? fn) with coordinates
from K such that P (£) 0 holds for any polynomial P in J.

We begin by reformulating the previous theorem. It is immediate that
properties a) and b) are mutually exclusive. For any nonnegative integer d,
let Sd be the vector space (over k) consisting of the polynomials in the ring
S k [X0, Xl9 X„] which are homogeneous of degree d. Then
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S © Sd, and for the multiplication one gets Sd. Se c= Sd+e. Otherwise
d>iO

stated, S is a graded algebra over the field k. Since J is generated by
homogeneous polynomials, it is a graded ideal, namely J= © (J n Sd).

d^O
The factor algebra R S/J is therefore graded with Rd Sd/(JnSd)
for any nonnegative integer d. It enjoys the following properties:

(i) As a ring, R is generated by R0 u R±.

(ii) For any nonnegative integer d, the vector space Rd is finite-dimensional
over k.

(iii) k.

Denote by x0, xu xn respectively the cosets of X0, Xu Xn
modulo J. Let cp be any /^-linear ring homomorphism from R into K, and put
<S;0 9 (x0), <p (xn). It is clear that the vector £ - (£0, Q
is a common zero of the polynomials in J. Conversely, for any such common
zero, there exists a unique k-linear ring homomorphism cp : R K such

that £0 (p (x0), (x„). The vector Ç is equal to zero if and only
if <p maps Rx kx0 + + kxn onto 0, that is if and only if the kernel of cp

is equal to the ideal R+ © Rd in R.
d^O

Theorem A is therefore equivalent to the following.

Theorem B. Let R be a graded commutative algebra over k, satisfying
hypotheses (i), (ii) and (iii) above. One has the following dichotomy :

a) Either there exists a non-negative integer d0 such that Rd 0 for
d > d0\

b) or for every nonnegative integer d, one has Rd # 0 and there exists

a k-linear ring homomorphism (p : R -> K whose kernel is different from
R+ © Rd.

d^l
Notice that R is a finite-dimensional vector space in case a), infinite-

dimensional in case b).

2. Proof of Hilbert's zero theorem

We proceed to the proof of theorem B.

By property (i) above, one gets Rx Rd Rd+i hence Rd 0 implies

Rd+l 0. Hence either Rd is 0 for all sufficiently large d's, or Rd ^ 0
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for every d. From now on, assume we are in the second case. Since R is

generated over the field k by a finite number of elements, the maximum

condition holds for the ideals in R. We can therefore select a maximal

element in the set 3 of graded ideals I in R such that Rd ^ I n Rd for

every nonnegative integer d (notice (0) belongs to 3, hence 3 is nonempty).

Replacing R by R/f we may assume that R enjoys the following property:

(M) For every nonnegative integer d, one has Rd A 0. Every graded ideal

I ^ (0) in R contains Rd for all sufficiently large d's.

We claim that R1 contains a non-nilpotent element. Assume the converse
and let au ar be a linear basis of R1 over k. There would then exist an

integer N > 1 such that a\ a1} — 0, any monomial of degree > Nr
in au ar would be equal to zero, and we would have Rd 0 for any
integer d > Nr, contrary to assumption (M).

Pick a non-nilpotent element x in Rx. The element 1 — x has no inverse

in R. Indeed xd belongs to Rd for any d > 0, and the inverse to 1 - x would
be congruent to 1 + x + x2 + + xd modulo the ideal I Rt for every

i>d
d > 1, contrary to the assumption that R is the direct sumof the Rds. By
Krull's theorem, we may select a maximal ideal M in R containing 1 — x.
Then L R/M is a field extension of k, and the element x of Rx satisfies

x 1 mod M. Since K is an algebraically closed extension of k, it remains

to show that L is of finite degree over k, hence isomorphic to a subextension
of K.

Since x. R © x Rd is a graded ideal in R, one gets from (M)

the existence of an integer d0 > 0 such that x Rd Rd + 1 for d > d0.

Hence, as a module over its subring k [x], R is generated by R0 +
+ + RdQ hence by a (finite) basis bu bN of this vector space over k.
That is, any element u in R is of the form

(1) « bJXx)+ +

where fu ,/narepolynomials in one indeterminate with coefficients in k.
From (1) one gets

u bifffil) + + bNfN(l) mod M,
hence [L : k\ < N is finite.

Q.E.D.

For the reader who doesn't want to appeal to Hilbert's basis theorem,
here is a direct construction of a maximal element in 3. Let r0 0,
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A) (0) and 30 3 and define inductively rd, Jd and 3rf as follows. For
> 0, let rd+1 be equal to the maximum of the dimensions of In Rd+1

for / running over 3d, let Id+1 be any ideal in 3d such that dim (.Id+1nRd+1)

rd+1 and let 3d+1 be the set of ideals / in 3d such that / n Pd+1
7d+1 n Rd+1. Then the ideal © (IdnRd) is a maximal element in 3,
as it is easily checked. 1

3. Elimination theory

The main theorem of elimination theory may be formulated as follows.
Let Pl9 ...,Pr be polynomials in k [X09 Xl9 Xn\ Yi9 TJ with P,-

homogeneous of degree dj in the variables X0, Xl9 Xn alone, i.e. of the

form
Pjy XS-ZÏ1... X"nfxj (YU...,YJ

a 0 +... + xn-dj

where the/a?/s are polynomials in k[Y1, 7m].

Denote by J the ideal in k [X0, Xl9 Xn\ Y±, Fm] generated by
Pl5 ...,Pr and by 21 the ideal of polynomials / in k [Yx,..., TJ with the

following property (the so-called Hurwitz' Trägheitsformen):

(E) There exists an integer N > 1 such that fXN0,f f XNn all
belong to J.

As usual we denote by Pn (ZT) the «-dimensional projective space over K.

Theorem C. Let V be the subset of P" (.K) x Km consisting of the

pairs (x,y) with x (x0 : x± : : xn) and y (yl9 ...9ym) such that

Pj (x0, xl9 yl9 ym) 0 for 1 < y < r. Let W be the subset of
Km consisting of the vectors y such that Q (y) 0 for every Q in 21.

Then the projection of FcP" (K) x Km onto the second factor Km is

equal to W.

To reformulate theorem C, let us consider the ring

B k [X09 Xl9 Xn; Yl9..., Ym\

together with its subring B0 k [Yl9..., Ym]. Denote by Bd the P0-module
generated in B by the monomials of degree d in X09 Xl9..., Xn. Then B

© Bd is a graded ring with J a graded ideal. Define the graded ring

A BjJ with Ad Bdj{BdnJ). We have the following properties:
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(i) As a ring, A is generated by A0 u A1.

(ii) For any nonnegative integer d, Ad is afinitely generated module over A0.

Furthermore, let © be the ideal in A0 consisting of all a's such that aAd

0 for all sufficiently large d's, i.e. the union of the annihilators of the

^40-modules A0, Al9 A2,

Theorem D. Let A © Ad be a graded commutative ring obeying
d^O

hypotheses (i) and (ii) above. Let K be an algebraically closed field and

cp : A0 -> K be a ring homomorphism. In order that cp extend to a ring
homomorphism W : A -» K which does not annihilate the ideal A+ © Ad

1

in A, it is necessary and sufficient that cp annihilate the ideal S defined
above.

We leave to the reader the simple proof of the necessity in theorem D
as well as the derivation of theorem C from theorem D.

4. Proof of theorem D

Let ^3 be the kernel of q>, a prime ideal in A0. Assume 6 c ^3. We

subject the ring A to a number of transformations. At each step, the
properties (i) and (ii) enunciated before the statement of theorem D will be

preserved, as well as property Ad A 0 for every d > 0. We shall mention
what has been achieved after each step.

a) Factor A through the following graded ideal J: an element a in
A belongs to J if and only if there exists an element s in A0 such s ^3

and sa 0. For every d > 0, the annihilator ©d of the ^0-module Ad is

contained in © hence in ^ and this implies J n Ad ^ Ad. Put A' A/J,
(^3+ J)/J and L Äff ^3'. Then any element in L is regular in A'.

b) Enlarge A' by replacing it by the subring A" of the total quotient ring
of A' consisting of the fractions with denominators in L. Let Ad be the set
of fractions with numerator in Ad and denominator in L; then A"

© A d. Then A"0 is a local ring with maximal ideal ^3" Aq.
d ' o

c) Factor A" through the graded ideal A'. Since Ad is a finitely
generated module over the local ring Aq, one gets Ad ^ ^3"Ad by Naka-
yama's lemma. Put k and R A"lty"A".
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At this point, k is a field (the quotient field of A0/^) and R is a graded
algebra over the field k, so all assumptions of theorem B are fulfilled.
Moreover let s the composition of the natural maps

A -> A' -> A" -> R

In degree 0, s0 is nothing else than the natural map from A0 into k with
kernel Since cp has the same kernel *J3, it factors through s0, making K
an algebraically closed extension of k.

We quote now theorem B. There exists a k-linear ring homomorphism

/ : R -» K such that f(R+) # 0. The composite map W f s has all the

required properties.

5. Application to schemes

We keep the notation of theorem D. Recall that the spectrum S

Spec (A0) of A0 is the set of all prime ideals in A0 ; the projective spectrum
X Proj (A) of A is the set of all graded prime ideals in A, which do not
contain the ideal A+ © Ad. We have a natural map n : X -» S

d;^_i

associating to every graded prime ideal in A the prime ideal ^3 n A0
in A0.

Moreover S and X are endowed with their respective Zariski topologies.
A set F in S (resp. X) is closed if and only if there exists an ideal 31 in A0
(resp. A) such that F is the set of ideals ^3 of S (resp. X) containing 31.

It is obvious that n is continuous.
The following theorem is Grothendieck's version of the elimination

theorem. Using his language, it is the main step in the proof that X Proj (A)
is a proper scheme over S Spec (A0).

Theorem E. The map n : X -» S is closed, that is the image of a closed

set is closed.

Let F a X be closed and let 31 be an ideal in A such that F consists

of the graded prime ideals ^3 of X containing 31. Replacing if necessary
31 by the ideal generated by the homogeneous components of its elements,

we may and shall assume that 31 is a graded ideal. Let 23 be the set of
elements a in A0 such that a. Ad a 31 for large d, and let G be the set of
prime ideals in A0 containing 23. It is obvious that n maps i^into G.

Let ^30 be a prime ideal in G, hence =3 3I0 (where 3I0 31 n A0).
Denote by k the quotient field of A0/S$0 and by K an algebraically closed
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overfield of k. Let cp be the natural composite map A0/^{0 -> ^o/s^o k
-» K. We are now in a position to apply theorem D to the graded ring A/Si(,

and we get a ring homomorphism W : A/$1 -> K extending (p and such that
W ((/1++ / 0. Let S$d (for d > 1) be the set of elements a in Ad

such that lF (a A- $1) 0. Then ^ © <\sd is a graded prime ideal in A

containing 91 with ^ A+ and ^ n A0 s.po. That is, s]3 belongs to F
and 7i maps onto ^0.

Reçu le 18 mars 1978)

P. Cartier

Institut des Hautes Etudes Scientifiques
F-91440 — Bures-sur-Yvette

J. Täte

Harvard University
Cambridge, Mass. 02138


	SIMPLE PROOF OF THE MAIN THEOREM OF ELIMINATION THEORY IN ALGEBRAIC GEOMETRY
	SUMMARY
	1. Hilbert's zero theorem: a particular case
	2. Proof of Hilbert's zero theorem
	3. Elimination theory
	4. Proof of theorem D
	5. Application to schemes


