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Lemma 2.3.3. If- > — then for any natural k the set Qk n Cs (Jn)
s s' '

is nowhere dense in Cs Çfn).

By lemma 2.3.1 and the theorem 2.2.1 for any natural k He(Qk)

/lYh'
< C(-j where C does not depend on s. Hence, it follows from the

inequality - > —7 and lemma 2.3.2 that the set Qk n Cs (</") is nowhere
s s

dense in Cs (>/").
Now to prove the theorem we have to notice only that the set of fu'nc-

GO

tions from Cs («/") representable by superpositions coincides with u (Qk
k= 1

n Cs (>"))• By lemma 2.3.3 the sets { Qk n Cs (Jn) } are nowhere dense and

consequently the set of not representable functions is a set of second

category.

Chapter 3. — Superpositions of continuous functions

In this chapter we present the proof of the theorem of Kolmogorov
given by Kahane [36]. This proof which is based on Baire's theory contains a

minimum of concrete constructions and shows that there exists a wide
choice of inner functions for Kolmogorov's formula.

§ 1. Certain improvements ofKolmogorov's theorem

By the theorem of Kolmogorov any function defined and continuous
on the cube </" can be represented as

2n + i n

f(xu...,xn)y gq( y ))>
q- 1 p- 1

where {cpPA} are specially chosen continuous and monotonie functions
which do not depend onf and where { gq } are continuous functions.

Lorentz [12] has noticed that in the theorem of Kolmogorov the functions

{gq } can be chosen independently of q. In fact, by adding constants
n

to the functions tq £ cpp q (xp) (q= 1, 2n + 1) one can make the ranges
p~1
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of the functions pairwise disjoint and consequently the functions { tq}
can be considered as the restrictions of a single function { gq }.

Sprecher [40] has shown that the functions { cppq } can be chosen in the
form (pPfq(xp) Xp cpq (xp) where { Xp} are constants and {<^}-are
continuous monotonie functions.

Thus any continuous function can be represented as

2n + 1 n

/(xj y g(y4 1 p l
where the constants { Xp } and the continuous monotone functions { cpq }
do not depend on /, and where g is a continuous function.

Kahane [36] has shown that such a representation is possible with
almost every collection of constants {Xp} and "quasi every" collection
of continuous functions { cpq }. The precise statement of this theorem
will be given below. Here we consider some further results concerning the

formula of Kolmogorov.
Doss [38] has shown that for any continuous monotonie functions

(pp q (/; 1, 2; #=1,2,3,4) there exists a continuous function /(xt, x2)
4

of two variables not representable as a superposition of the form £ gq
2 q=l

Yj (pp,q (xp))> where { gq } are continuous functions.
p= l

Bassalygo [39] succeeded in showing that for any continuous functions

cpi(xi, x2) (i 1, 2, 3) there exists a continuous function/(xl9 x2) that is not
3 ~

equal to any superposition of the form £ gi(<Pi (xt, x2)), where {gt }
i i

are continuous functions.
Tihomirov showed that Kolmogorov's theorem can be generalized as

follows: for any compact K of dimension n there exists a homeomorphic
embedding1?7 (x) { (x), xF2n + i (x) }> into (2« + l)-dimensional
euclidean space such that any continuous function / (x) on K can be repre-

2n + l
sented in the form /(x) J] 9/ (x))> where { gt } are continuous func-

/= l

tions of one variable.

In the same paper [36] Kahane has shown that there exist complex
numbers Xp (/?= 1, and complex valued functions <pq{q= 1, 2n+ 1)

possessing the following properties.

1. The function (pq is a monotonie continuous transformation of the

real axis onto the circle | 11 1 (cj= 1, 2n+ 1).
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2. The function tq £ Xpcpq(xp) maps the cube into the circle
P= l

hi-1-
3. The transformation W given by the equalities tq £/lp cpq (xp)

p= l
(^ — 1, 2/7 + 1) is one-to-one on </".

4. For any function / continuous on Jn there exists a function g (z)

continuous on the disk | z | <1, holomorphic inside that disk, and such

that / (**))•
t i p i

The transformation W gives an embedding of the cube into the torus
I t \ 1 (q= 1, 2/7+1) such that any function continuous on the cube

2«+l
jn _ p js represented in the form f(tlt t2n+i) — Z ^ where

^ is a function holomorphic in the unit disk. This means in particular that

any function continuous on J>n has an analytic extension to the polydisk
I tq I < 1 (q= 1, 2/7+1).

§ 2. The theorem ofKahane

Let M be a complete metric space. We recall that a set is called a set of
second category if it is the intersection of a countable family of open sets

which are everywhere dense in M. By the theorem of Baire in a complete
metric space no set of second category is empty. The massivity of such sets

is characterized by the fact that the intersection of a countable family
of sets of second category is again a set of second category and consequently
is not empty.

We will say that a statement is true for quasi every element of M if it
is true for a set of elements of second category.

Let us consider an example. Let <P be the space with uniform norm
consisting of all functions continuous and non-decreasing on the segment

(0 < t < 1). It can be shown easily that quasi every element of <P is a

strictly increasing function.
In fact, any strictly increasing function belongs to any set defined as

cp (/*') < (p (/'), where r' < r" are fixed rational numbers. Any set defined
by an inequality of that type is open and everywhere dense in 0, and the set

of all such sets is countable.
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Let /" be the cube { 0 < x{ < 1, i *=* 1, n }; C («/")-the space of all
functions continuous on Jn with the uniform norm; <£-the space of functions
continuous and non-decreasing on the segment«/1 (with the uniform norm);
(pk cp x x <p the k-th power of the space <P.

Theorem 3.2.1. Let Xp (p= 1, ...,n) be a collection of rationally
independent constants. Then for quasi every collection { cpu cp2n +1 } G <P2n + 1

it is true that any function fe C (<fn) can be represented on Jn in the form

/w i .</' iKv*w) -

q=1 p=1

where g is a continuous function.

§ 3. The main lemma

We fix a function /e C (/"), positive numbers Xp (p—l>...,n) and a

positive s. We will denote by Qf the set of all collections { cpu (p2n +1 }

g <P2n + 1 for each of which there exists a continuous function h such that

I!h II < II/IIand ll/w - E h(Z xp<Pt(xp))II < c1 _£) II/II- The latter
q= 1 p=1

inequality is strict and consequently the set Qf is open.
The idea of the construction is contained in the following statement.

Lemma 3.3.1. If || / || / 0, the numbers {Xp} are rationally

independent, and 0 < e < than the corresponding set Qf is everywhere
dense in <P2n+1. 2n+2

Proof. Let us fix an open set Q c= <p2n + 1 and prove that Q n Qf is

not empty. This will imply that Qf is everywhere dense in <P2n+1.

We choose a number <5 > 0 and denote by Jq (/') the segment defined

by the inequality

q • ö + (2n + l)j • ö < I < q • ö + {In + 1) jS + 2nd

(q=T, 2n+ l,j is an integer)

The value <5 will be determined below. Now we notice, firstly, that for any q

the segments Jq{j) (J 0, +1, ±2) are pairwise desjoint and every two
consecutive segments are separated by an interval of length <5 and, secondly,

that, every point of the real axis belongs to at least 2n of the sets £ (j),
{q=l9 2«+l). j
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We denote by Pq (j\, the cube

qö + (2n + 1) jkô < * <5 + (2n + 1) jkô + 2nd (k — 1, n)

We emphasise that every point x e «/" belongs to at least n + 1 of the sets

Z ^ O'i» —?7n) ((I= h •** 2/? + !)• We also remark that for any q the
J1 J n
cubes {Pg (/1? ...,yj } are pairwise disjoint.

We denote by Q* the subset of $2n+1 consisting of the collections

<Pu •••? 2n +1 such that for every q the function cpq is constant on every one
of the segments { Jq (/')}. We will assume that ô is so small that Q* n ß
is not empty.

We choose a collection { cpl9 ^2« + i } G n We will show that
n

this collection belongs to Qf. We put tq Z <Pq (xp)• Since the numbers
p=i

{ kp } are rationally independent we can change the constants { cpq {Jq (/'))}
slightly, so that the new values of tq (pq(jl9 are pairwise different and
the collection cpu cp2n + i remains in Q* n Q.

We denote by fq(jl9 ...9j„) the value of the function / at the center
of Pq (ju ...,jn) and by h the function defined in the following way:

h (tq(ju t-2—/5 (Ju-,j„) outside the set u tq u J„)
the function h is defined in such a way that it is continuous on the whole real

axis and || h || < —-
2n +1

Now we estimate the function \f — h (tq) |

For any xeJn9 q, ju ...,jn

ÏT, "4 <
1

In +1

q= 1

+ II A I

z f
=i 2n +1

1

2n +1
+

1

2n 4-1

-STT'J
If xeP (j\, then

/

< max
qj u •••> J n

max

2n +1
/(*)

- h (0

mm
fix)

P •

xepqUl• •Jn)2ll+l2« + 1

We recall that every xe/" belongs to at least + 1 of the cubes
{Pq Hi,-,j„)}• Hence

L'Enseignement mathém., t. XXIII, fasc. 3-4. in
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2/1+1 ry\f-Z h (tq) I < (n+1) p+ n —II/|| •

q 1 Z7? + 1

But lim p 0, consequently for sufficiently small ô and s < —-—
ô-*o 2,n -f- 2

2/1 + 1

|/- Z A (01 < (1 -0 |/i
4 1

The lemma is proved.

§ 4. The proof of the theorem

We denote by F a countable set, everywhere dense in C («/"). We choose e

satisfying the condition of lemma 3.3.1 and consider Qfk(fke F)
corresponding to this 8 and the collection Xp mentioned in the theorem. The sets

{ Qfk } are open and by lemma 3.3.1 they are everywhere dense in $2n+1.

Consequently, according to the definition, almost every element of <P2n+i

belongs to n Qfk.
fkeF

We fix a collection { cpu (p2n + i } e and a function fe C (Jn)
and show that the desired representation of/ takes place. If/= 0 then as

the function g we can take g 0. We will assume below that/ # 0. According

to the definition of Qfk there exists for any fk e F a function hk such that
2/1 + 1/1

I fk - Z hk(Z Xp<Pq(+>))I < 0 ~£) II fk!•The set F is everywhere dense
q=1 p=l

in C (</"). Consequently for any fe C (J>n) (/# 0) there exists h y(f)
such that :

I/ - Z A z IpViiXp)) < (1 ~ f) 11/11 •

« i p=i \ V ;•

We define the sequence of functions Xo> Xi> /C2> ••• by the recurrent jj

equalities
2/1 + 1 it Ij

Xo=/ Zfc+1 Xk - Z Z ^,0+))' j

oo ^ 1^ 1 |:

where gk y (Xk)- The series g/{ converges uniformly and consequently
oo k 0

the function g ^ is continuous and
fc=0

2/1+1 n

f - Z »( Z V30+)) o.
4 1 // 1

The theorem is proved.
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