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SUPERDIAGONALIZATION AND REAL NORMAL OPERATORS

by Ladnor Geissinger

We shall give short direct proofs of all the usual simultaneous super-

diagonalization and diagonalization theorems found in linear algebra
textbooks, as well as determine the structure of real normal operators. The

proofs are all variations on the technique of superdiagonalization, a method

well-known to be very useful not just for elementary linear algebra but
also in the theory of finite dimensional Lie (and also associative) algebras

[Flanders].
Henceforth E will be a finite dimensional vector space over a field

K and S will be a set of commuting operators on E. A subspace W of E
is S-stable if AW ^ JT for all A in S. Our main tool is the following strong
commutative version of Schur's lemma.

Proposition 1. If dimKE > 1, then either there is a proper S-stable

subspace or the subalgebra S' generated by S over the scalars KI is a

field and dimxS" dimKE.

Proof Suppose first that some operator A in S (or S') has a minimal
polynomial which is not irreducible over K\ so mA pq where p and q
are not constants. Since p (^4) ^ 0 there is a vector v such that w p (^4) v

7^ 0. Then q (A) w 0 but q (A) #0 so the kernel W of q (A) is a proper
subspace. Moreover, W is S-stable since if B is in S then q(A)B(W)

Bq{A)(W) 0. Of course if all the operators in S are scalars (i.e.
S ^ KI) every X-subspace is S-stable. Thus the only remaining case is when
for each non-scalar A in S, mA is irreducible over K of degree bigger than 1.

Then the subalgebra K' generated by one such A over KI is a field and E
is a vector space over K' of dimension less than dimKE (in fact, (dimK, E)
(dimkK') dimKE). Moreover, the operators in S which are not in K'
are iG-linear since they commute with A. Thus the proof can be completed
by induction on the dimension of E.

We really only need the following special cases of Proposition 1 which
result from successive restriction of S to S-stable subspaces.
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Corollary. If each of the operators in S has all of its characteristic
roots in K, then a minimal S-stable subspace has dimension 1 over K.

If K R, then a minimal S-stable subspace has dimension I or 2 over R.

Note that the first statement uses only the first half of the proof of
Proposition 1. Also, when K R, the second half of the proof may be

more transparent if E is considered to be a vector space over C by the

A~al _
isomorphism s + ti -> si + t where mA (X) (X - a) + b and

b

then the proof is completed by appeal to the result already proved for
C in the first statement.

A chain of subspaces 0 W0 < W1 < W2 < < Wr =» E will be

called a flag, or a fan if dim Wk\Wk_x 1 for all k, and a basis xu xn

will be called a flag (fan) basis if x1,x2,..., xd(k) is a basis for Wk for
each k, where d (k) dim Wk. A flag is S-stable if each Wk is S-stable.

Proposition 2. If each operator in S has all of its characteristic roots
in K, then there is an S-stable fan. If K R there is an S-stable flag
0 W0 < W1 < < Wr E in which dim WkIWk^i is 1 or 2 for each k.

Proof Apply Proposition 1 or its Corollary to get an S-stable subspace

W; then apply it again to S restricted to W and/or to the operators induced

by S on the quotient space Ej W.

Note that in the first case, if xl5 xn is a fan basis, then the matrix of
each A in S relative to this basis is superdiagonal (upper triangular). In
the second case, if xu xn is a flag basis then the matrix of each A in S

relative to this basis is nearly superdiagonal, that is, there are lxl and 2x2
blocks down the diagonal and zeros below. Translating these statements

entirely into the laguage of matrices gives the following result.

Corollary. Let S be a commuting set ofmatrices over K. Ifeach matrix
in S has all its characteristic roots in K, there is an invertible matrix P
with entries in K such that P~XAP is superdiagonal for all A in S. If
K R, there is an invertible real matrix P such that P_1AP is nearly
superdiagonal for all A in S.

Recall that a polynomial with coefficients in K is separable if it factors
into a product of distinct irreducible factors over K (and over every field
extension of K if characteristic (.K) > 0), that is, has no multiple roots in
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any field extension of K. Call an operator separable if its minimal polynomial
is separable. If the minimal polynomial of a separable operator A in S

factors as mA qp over K, there are polynomials r and s such that rp

+ sq 1. Then / r (A) p (A) + s (A) q (A) so E is the direct sum of
W Ker q (A) and V Ker p (A).

As in the proof of Proposition 1 it follows that W and V are both S-

stable. This gives a strengthened form of Proposition 1.

Proposition 3. If dimKE > 1 and ifall the operators in S are separable,

then either there are proper supplementary S-stable subspaces or the sub-

algebra S' generated by S over the scalars KI is a field (separable over

K) and dimxS' dimKE.

Corollary. If each operator in S is separable and has all of its characteristic

roots in K, then E is the direct sum of 1 dimensional S-stable sub-

spaces. If K R, then E is the direct sum of I or 2 dimensional S-stable

subspaces, provided every operator in S is separable.

In the first case, if E W1 © W2 © © Wn with the Wt being
S-stable and if xt spans Wh then each xt is a common eigenvector for all
A in S (or S') and the matrix of each A relative to this basis is diagonal.
In the second case, E © © Wk © V1 © © Vr where dim Wt

1 and dim Vt 2 and the Wt and Vj are minimal S-stable subspaces.

If xt spans W{ and yj9 z} span Vj, then the matrix of each A relative to the
basis xl5 xk, yl9 zu y2, jv, ^ is block diagonal with k eigenvalues
followed by /* 2 x 2-blocks down the diagonal. This gives the usual
simultaneous diagonalization theorem for commuting (diagonalizable) matrices,
as well as the criterion for diagonalizability of a single operator.

Next suppose K is C or R and E has an inner product <, >, and S is a

commuting set of normal operators on E. Recall that A is normal if it
commutes with its adjoint A*. Now for a normal A, if mA pq and if
W Ker q (A) then W is ^-stable and so the orthogonal complement
W1 is .^-stable since < W, AW1 > <A*W, W1> 0. But p (A) (IP1)
^ Ker q (A) W so W1 ç Ker p (A) and hence l.c.m. (p, q) mA,
from which we conclude that p and q are relatively prime and W1 Ker
p (A). Thus W and W1 are S-stable, and every normal operator is separable.
A root space for S is a maximal proper S-stable subspace W such that
each A in S acts as a scalar on W, that is, W is the intersection of a collection
of eigenspaces, one for each A in S.
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Proposition 4. If each operator in S is normal and has all of its characteristic

roots in K, then E is the orthogonal direct sum of root spacesfor S.

If K — R and each operator in S is normal, then E is the orthogonal direct
sum of root spaces for S and S-stable subspaces V on which each A in
S acts as a scalar or has irreducible (quadratic) minimal polynomial.

Upon choosing an orthonormal basis for each root space, the first
statement of Proposition 4 yields the simultaneous unitary diagonalization
of commuting normal operators (or matrices) when K C. To see that it
also yields the simultaneous real orthogonal diagonalization of commuting
real symmetric operators (or matrices), it is only necessary to note that
in this case all the characteristic roots are real.

Lemma. All characteristic roots of a real symmetric operator are real.

Proof. If A is symmetric and p (X) (X— a)2 + b is a factor of the

minimal polynomial of A there is a vector v ^ 0 such that p (A) (v) 0.

Then 0 < < (A — al) (v), (.A~al) (v) > < (.A — al)2 (v), v > (~b)
< v, v > so b < 0 and p has real roots.

For real normal operators we need only consider a subspace V of the

kind in the second statement of Proposition 4. If A is normal with minimal
polynomal (X—a)2 + b2 p (X) on F, there is by the Corollary of
Proposition 1 a minimal 2-dimensional subspace W of V stable under the

A + A* A — T*
commuting operators — (symmetric) and —-—- (skewsymmetric).

A + A*
Relative to an orthonormal basis yu y2 of W, the matrix of must

fa' 0 \ A — A* /0 — b'\
be the matrix of — must be and so the matrix of A

\0 a'J 2 \b' 0 /
must be V Then p (X) X2 — 2a'X + (a')2 + (b')2 so that

\b' a' J

a a' and + b b'. Since W1 is also stable under the symmetric operator
A _j_ A* ^4 _ ^4*
—— and the skew-symmetric operator ——-, both W and W1 are

^-stable. It follows that V is the orthogonal sum of such subspaces W, that

^ al on F, that ^ ^ on anc* ^ (ß2 + b2) ~ *A

is orthogonal on F. Since P* P"1 is a polynomial in P, A* is a
polynomial in A and hence for every ^4-stable subspace IF of F, IF is ^4*-stable

and W1 is ^4-stable. In particular, the Corollary of Proposition 1 gives a
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2-dimensional S-stable subspace W1 of V, and by the preceding argument
Wi1 is also S-stable. Thus Fis the orthogonal sum of 2-dimensional S-stable

subspaces Wl9 Wr. Let yi9 zt be an orthonormal basis for Wi9 then

relative to the basis yl9 zl9 yr, zr the matrix of each A in S is block

diagonal and the blocks are positive multiples of 2 x 2 rotation matrices.

Thus we have determined the structure of real normal operators.
Finally, return to Proposition 2 and suppose that yl9 yn is a fan (flag)

basis for an S-stable fan (flag) and that E has an inner product. The Gram-
Schmidt process applied to this basis yields an orthonormal fan (flag)
basis zl9 zn for the same 5-stable fan (flag). Thus the matrix P in the

Corollary can be taken to be unitary or real orthogonal. Moreover, if S

contains A and A* for some A (hence A is normal) we get directly that the
matrices of A and A* relative to the basis zi9 zn are both (nearly) super-
diagonal, and since one is the adjoint of the other, they are both diagonal
(block diagonal with blocks at most 2 x 2 in size). This observation could
be used to give another proof for Proposition 4 and the structure of real
normal operators. In either case, the argument can be simplified a bit if S
is assumed to be *-closed.
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