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4) Let Px and P2 be any two distinct points on E, Q1 and

q2 /(P2). Let P1 P2 denote the closed interval determined by-Pi and P2

and Q± Q2 the closed interval determined by Q1 and Q2. Let the curve

C /(Pi P2). Then there exists a point R on C such that the tangent line

to C at R is parallel to Qt Q2.

5) With the notation as in 4), let the deviation D (P1 P2) denote the

L.U.B, of the acute angles cp between the surface chord Q1 Q2 and any

tangent line to C. Then for every e > 0 there exists ö > 0 such that if
0 < p (P1? P2) < ô then D (Pt P2) < e.

6) For every e > 0 there exists <5 > 0 such that if Pt and P2 are any
two distinct points of E such that p (Pl5 P2) < ô then if/ < e, where \]/ is the

acute angle between the surface normals at /(P^ and at /(P2).
We need to give some preliminary definitions.

Definitions

We shall call a surface S — f (E) simple when the boundary of £ is a

simple closed polygon. We shall first be concerned only with simple
surfaces.

A polyhedron 77 is said to be inscribed on S when all the vertices of 77

are in S and the orthogonal projection, Proj 77, on the xy plane is E. By
the norm of a polyhedron we shall mean the greatest of the diameters of
the faces (triangles) of 77.

Let 77 be inscribed on S and let A be a face of 77. By the deviation D (A)
of A we shall mean the L.U.B, of the acute angles between the normal
to A. and the surface normal at a point of the surface subtended by A. By
the deviation norm of 77 we shall mean the greatest of the deviations of its
faces.

We shall consider sequences of polyhedra which are inscribed on S.

A sequence {771,772, ...} of such polyhedra is said to be a proper sequence
of polyhedra inscribed on S when the corresponding sequence of norms
{ Nu N2, } converges to zero and the corresponding sequence {<;p1, <fi2,...}
of deviation norms also converges to zero.

We now give our basic definition of surface area:
Let E be a bounded set on the xy plane whose boundary is a simple

closed polygon. Let / (x, y) be defined and continuously difierentiable on
E. If to every proper sequence of polyhedra inscribed on S / (£) the
corresponding sequence of polyhedral areas {Au A2, ...} converges, then
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then we say that S is quadrable anf that the necessarily unique limit of
{Ai9 A2, ...} is the area of the surface S.

Theorem 1.

Let E be a bounded set on the xy plane whose boundary is a simple
closed polygon. Let/ (x, y) be defined and continuously dilferentiable on E.

Then there exist a proper sequence {/Z1,772, ...} of polyhedra inscribed
on S.

Proof:
For every positive number r there exists a decomposition of Ë as the

union of closed right triangles whose diameters are all less than r. The
vertices of these right triangles determine a finite set of points in S whose

projection is precisely the set of these vertices. This set of points in S
determines a triangular polyhedron which is inscribed on S. We shall show
that by making the norm of the decomposition of E sufficiently small we

can make the acute angle between the normal to each polyhedral face and
the surface normal at any point of the portion of S which is subtended by
the particular face to be arbitrarily small. Let s > 0 be given.

By property 3) there exist positive real numbers k < 1 and ô1 such that
if PPxP2 is a right triangle on E (P being the right angled vertex) with
diameter < öl9 then | cos (QQl9 ßß2) | < k. Let the decomposition of E
by right triangles be of norm less than

By property 1) there exists a positive real number 6 such that if
I sin (QQu QQf) | < 9 and | sin (QQ2, QQf) | < 9, then the acute angle

between QQi X QQ2 and QQf X QQf is less than s / 3.

By properties 4) and 5) there exists a positive real number ô2 such that
if PPiP2 is a right triangle on E with diameter less than ô2, then the angle

—>•

between the chord QQX and the tangent line at Q to the curve on S sub-

tented by QQi is less than 0. Similarly, the angle between the chord QQ2

and the tangent line at Q to the curve on S subtended by QQ2 is less than 6.

It follows that the angle between the normal to the polyhedral face QQi Q2

and the surface normal at Q is less than s / 3.

By property 6) there exists a positive real number <53 such that if the
diameter of the triangle PPX P2 is less than <53, then the angle between the
surface normals at any two points of the portion of S which is subtended

by the polyhedral face QQi Q2 is less than s / 3.

Let ö be the least of öl9 b2, and <53. If D is any decomposition of E int
closed right triangles of norm less than ö, then if QQt Q2 is any of the
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polyhedral faces, the L.U.B, of the angles between the normal to QQ^ Q2

and the surface normals at any point of the portion of the surface subtended

by QQi Q2 is less than s.

Thus corresponding to a sequence {el5 e2f...} converging to zero, there

exists a sequence of polyhedra with corresponding sequence of norms

converging to zero and also with corresponding sequence of deviation

norms converging to zero.

Theorem 2.

Let E be an open set on the xy plane whose boundary is a simple closed

polygon. Letf (x, y) be defined and continuously differentiable on E. Then

for every proper sequence of polyhedra inscribed on S the corresponding

sequence {A1,A2,—} of polyhedral areas converges and moreover it
converges to the double integral

For each n, the projection of the faces of IJn constitute a decomposition
Dn of E as the union of a finite set of closed triangles. Let the triangle
Amn QQi Qi be the face of i7„ and let Amn Proj QQ1 Q% PP1 P2.
Let ßmn be the acute angle between the normals to Amn and to Amn. Let Amn

and Amn denote the areas of Amn arld Amw respectively. Then Amn Amn

sec ßmn and the area An of IIn is ZAmn sec ßmn.

Let Pmn be any point in Amn and let Qmn be the point of S whose projection

is Pmn. Let 6mn denote the acute angle between the surface normal at
Qmn and the z-axis.

Let {ni, n2, n3, ..} be any proper sequence of polyhedra inscribed
on S. We shall associate to {771? fl2, fl3, ...} certain related sequences.

E

Proof:

m

The sequence {4>i, <j>2, $3, —} is the corresponding sequence of deviation

norms. The sequence {ZUE2,Z3,is the corresponding sequence



of polyhedral areas. In ZAmn sec ßmn. In the fourth sequence In ZAmn

I 7dz\2 (dz\2
sec 9mn. Here sec 0mn is the value of 1 + \zj~J + \d~) ât some P°*nt

of Amn. Thus the sequence {l\, Z2, Z3f ...} is a sequence of Riemann sums

I (dz\2 fdz\2
of the function /1 + — + — on £ with corresponding sequence of

V \dxj V^JV
I fdz\2 fdz\2

norms converging to zero. Since /1 + — + — is continuous on E,
v \dxj \dy

this converges to the double integral O
(dz\2 (dz\2

i+w +y
E

We will now consider the sequence Z2,Z3, ...}.
Let 6 denote the acute angle between the surface normal at a point

I (dz\2 fdz\2
of S and the z-axis. Sec 9 /1 + — + — is bounded on E.

V \dxj \dyj
Thus there exists an acute angle 0* > 0 such that 6 < 6* for all points
of E (i.e. for all points of S). Since sec 0 is uniformly continuous on the
closed interval [0, 0*], for every rj > 0 there exists t > 0 such that if
0 < 6X < 0*, 0 < 02 < 0*, and | 0t — 02 | < t, then | sec 0X — sec 02 | < 77.

We now compare the corresponding sequences

{ E1 Z2, Z3, }

{ ^1? e2, T3, }

s
Let 8 > 0 be given. Take —, where A area of E. There exists t > 0

2A
I 1

8 çsuch that if I 0± — 02 | < t, then | sec 91 — sec 02 | < —. Since |</>l5
2A

<j>2, </>3, ...} converges to zero, there exists a positive integer Nl such that
if n > Nt then (j)n < t. Thus if n > Nl9 then

S 8
I En Z n

I \ Z Amn (sec ßmn sec 9mn) | <c Z ztmn —

24 m
2

Since {X, T2, T3, ...} converges to [J, there exists a positive integer N2.

:h that if n

If « > IV then

1 - 1
£

such that if n > N2,then| X„ —[J [ < Let N be the larger of and N2.
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Thus 3,...} converges to (J.

Thus far we have defined the concept of area only for surfaces which are

not only continuously dilferentiable but are also simple. We now remove
this latter restriction.

Let E be any quadrable (i.e. Jordan measurable) open set on the xy
plane having for boundary a simple closed curve. Let / be defined and

continuously dilferentiable on E. Let P be any subset of E whose boundary
is a simple closed polygon. The surface Sp / (P) is quadrable. Denote its

area by Ap. Consider now the set of all such areas Ap. Since sec 9 is bounded

on E, for every polygonal subset P of E, Ap ^ AM, where A is the area of E
and M is an upper bound of | sec 9 | on E. We now define the area of
S f(E) as the L.U.B, of the set [all Ap].

Theorem 3.

Let E be a quadrable open set on the xy plane having for boundary a
simple closed curve. Let / be defined and continuously dilferentiable on E.

Then the area of S f (E) is given by

E

Proof:
Let B denote the L.U.B, of the set [all Ap]. For each P, Ap < [J and hence

B < [p. Suppose now that cp — B 2s > 0.

Let [Du D2, D3, ...} be any sequence of triangular " decompositions "
of E with corresponding sequence of norms converging to zero. Here we
permit the triangles to abut beyond the boundary of E. On each Dn form

a Riemann sum ofF (>c,y) Jl + {^j in the following manner :

If a triangle does not abut beyond the boundary of E, then take for the
point P any point of the triangle. However, if a triangle does abut beyond
the boundary of E, let its contribution to the Riemann sum be zero.
Now every sequence {iSl5 S2,S3,...j of such Riemann sums converges and
moreover, it converges to Since {SS3,...} converges to $, there

exists a positive integer N such that if nthen I rf| - I < -2 '

On £>„, the set of the triangles which do not abut beyond the boundaries
of £ constitutes a polygonal subset of E. Call it Pn. There exists a triangular



decomposition Dn of Pn such that if Sn is a Riemann sum of/ (x, y) on Dn,
g £

then I — Sn | < - and | [p — Sn | < - It follows that APn > B. This contradiction

shows that B ij.
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