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After applying Fubini's Theorem we see that the last expression is equal to

qilbf(y)~]qy-r"dyy
r o

The proof of the second inequality is the same except that r is replaced

by —r.

m(E)

(1.9) j \f(x)g(x)\dm(x)^JE 0

Proof. We may assume/ and g are non-negative simple functions. We

then write / I f} and g I gk as in (1.5). (1.9) is clearly true for the

functions /,- gk and the result follows.

Finally, let us note

ly 1 *
(1.10) -J g{t)dt g- f g(t)dt for 0 < x fg y

: y o * a

; where g (t) is non-negative and non-increasing on t > 0.

j (1.10) is geometrically obvious.
j

I

Section 2. Topological properties

(1.6) implies that/+ g e L (/?, q) iff g eL (p, q). Since ||. \\*pq is positive
homogeneous we see that L (p, q) is a linear space. \\.\\*pq leads to a topology
on L (p, q) such that L (p, q) is a topological vector space. fn -> /e L (p, q)
in this topology if and only if ||/—fn \\*pq 0. We shall see that this space
is metrizable.

For p, q fixed we define two analogues of /*. Choose r such that
0 < r ^ 1, r ^ q and r < p. Let

/#*(/) =y**(f>r)

s,uFf> (-tir i|/(x) |r dm (x)y,r >f=m (m)
m(E) E

(f \f(x)\" dm(x))llr, (M).
^ M

Consider (/*)** (/). Since any g** is non-negative and non-increasing we
can use (1.9) and (1.10) to see that
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(/*)**(?) (l'ttf
t 0

/** leads easily to a metric on L (/?, <?), avoiding technical difficulties which
might occur when the measure m is atomic. /** is also useful because for
some purposes it is more closely related tof than is/*.(/*)** is especially
suited for applications of Hardy's inequality.

(2.1) /* ^/**(,) ^ (/*)**(*).
The first inequality in (2.1) follows from the fact that ifE { x e M : | /(x) |

1:/* (0} then m (if) ä t. The second inequality follows from (1.9) and

(1.10).
Let ll/IU II/** Hm-

/*,/** and (/*)** are further related by

(2.2) ||/||;? ^ |/j]M <£ \\f* \\M(Pl(p-r))1 1/1«.
(2.2) follows immediately from (2.1) and Hardy's inequality.

It is clear that

[(/+#)**(o]r ^ [/**(0]r +

so that p (f g) 11 y— g\\rPq is a metric onL (p, q). (2.2) implies the topology
of L (p, q) given by 11.11 *pq is equivalent to the metric topology given by 11. j|^r

(2.3) L (p, q) is complete with respect to the metric p (f, g) || f— g H^.

Proof. Suppose p fm,fn) 0 as m,n -> oo, where fn e L (/;, q), n ^ 1.

We have ||/I)*«, ^ ||/||p, ^ ||/||pr It followsfrom(1.7) that the sequence

{/, j is fundamental in measure and, hence, the exists a subsequence {f„k}
which converges almost uniformly to a function /. (See [7, p. 93].)

Fix L such that p(fn,fL) < £ for n ^ TV (e). Let (pk ^ f„k—fL and

(p f—fL. Then cpk converges almost uniformly to <p and by Fatoffis

lemma, <p** (0 ^ liminf (p*k* (/), and || cp \\rpq ^ lim inf || cpk jj^. That is,
k -* oo

P fJù < z- Hence, /e L (p, q) and p (f,fL) -> 0 as L -> oo.

(2.4) Simple functions are dense in L (p, q), q =£ oo.

Proof Suppose feL(p, <7), p ^ co. We may assume that / ^ 0. We

show that given any e, <5 > 0 there exists a simple function fn such that

OSL^fand (f—fn)* (0 ^ e f°r Note that/* (t) 0 as t oc.

It follows that m (if£ [/]) < 00. Hence, we can find a simple function fn ^ 0
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such that fn (y) 0 for y Ee [/] and 0 ^ f(x) — fn (x) < e for all

y g Ee [/] except for a set of measure less than <5. Then m({x e M : | f{x)
— fn M I > £}) < so (f—fn)* (0 8 f°r t ^ <5. We obtain a sequence of
simple functions fn such that (/—/„)* (0 -> 0 as « -> oo and /* (t) ^ /* (7),

for each t > 0. We have (/-/„)* (0 ^ / * (t/2) + /* (f/2) £ 2/* (7/2) and

Lebesgue's Theorem on dominated convergence implies || f—fn \\*pq -> 0 as

n -> a for q ^ oo.

It is well known that a linear mapping of one Frechet space into another
is continuous if and only if it maps bounded sets into bounded sets. (See

[6, p. 54].) Since ||/||pq is positive homogeneous, a linear operator T which

maps L (/?, q) into L (p\ q) is continuous if and only if there exists a positive
number c such that || Tf\\*p,q, ^ c||/||pg> where c is independent of
feL(p, q).

Let us note the following interesting and useful result:

(2.5) Suppose T is a linear operator which maps characteristic functions
XE, m (E) < oo, into a Banach space B and || TyE || ^ c || yE ||*i,
where c is independent of yE. Then there exists a unique linear extension

ofT to a continuous mapping of h (p, 1) into B.

Proof Suppose/ ^ 0 is a simple function. According to (1.5) we write

f= Zfm where fn cn yFn and/* £/*. Then

I Tf || Il T(If„) I ^ I I Tf„I^ c z II/„ Ii;, C ||/ ||;x.

Then || Tf\\ ^ c H/H^ for any complex-valued simple function/. Since
the simple functions are dense in L (/?, 1) we can then extend T uniquely
to a bounded operator of L (/?, 1) into B.

It is of interest to know which of the L (/?, q) spaces may be considered
to be Banach spaces.

(2.6) L (1, 1) and L (p, q), 1 < p S °°5 1 ^ q ^ oo, are Banach spaces
for any measure space (M, m). For any other p, q there are measure
spaces such that L (p, q) cannot be considered to be a Banach space
in such a way that the topology corresponding to the norm is comparable
to the metric topology.

Proof. It is immediate that ||.||p4, with 1 is a norm. This norm is

applicable to the spaces L (p, q),1 < p<;oo, 1 g ^ oo, ||. ||1, is already
a norm for L(l, 1). Also, note that ||.||n ||• iPfSb-

L'Enseignement mathém., t. XII, fasc. 4. 18
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Let M (0 oo) and m be real Lebesgue measure. Since L (p, q) is a

Frechet space, (2.6) follows from the fact that none of the remaining spaces
contain a bounded convex open set. (See [16].) This is easily seen from the

following constructions:
In case 0 < q < 1 let

m
2k 0 < t < 2~kp

0 t^2~kp, fc^l.
Then )k 1| pq

— 1, but
1 ^

X fk
k= 1

k || pq
' oo as n —> go.

In case 0 < p < 1 choose s such that 1 < e < - and let
P

fkif)
k-d/p) + s k < t ^ k + 1

0 otherwise, k ^ 1

1 "
Then \\fk||*9^ 1, but || - £ fk||*4co as n -» oo.

nk= 1

In the cases where p 1 divide (0, go) into pairs of intervals

Ik0, Ikl where 700 (0, 1] I01 (1,2]

ho— (2k_1 (3) + (k —1) 2k~i,2k(3)+(/c-l)2fc-1] and

Ikl (2k_1(3) + (k-l)2k~l, (3) + (fc — 1) 2k] fc^l. Let

k k~ 1

Jk0 U Ito) u U Tji and -4i hi-Note that | [ |

i=0 i= 0

If fk0 is zero on Jki define fkl by

f
0

Ai(0
'

t E JkO

fko I Jko I) ^Jkl
/k0 otherwise

In case <7 oo let

/oo

JkO

2k~1

0

t elk0

telkl, k^O,
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In case 1 < q < oo choose- < a < 1 and let
<1

/oo (0 —

2~k-k-* te Ik0

0 tehi, k^O.

The result is then seen by considering sums of the form (fkoffkùlf
k — 0, 1,....

For the remainder of this section let us consider continuous linear

functional I on L (p, q). We have | I (/) | ^ B ||/||p3 for all /eL(p, q).

Consider L (p, 1), 1 ^ p < oo. Define (E) I (xE)> A* iß) is a measure
and \ fi(E) \ ^ B \ \ Xe\\*pi B [m (E)]1/p. Hence, \x is absolutely continuous
with respect to m. The Radon-Nikadyn Theorem (see [7, p. 138]) then gives

a function g (x) such that ji (E) I (xE) =J Xe (*) S (x) dm (x). This
M

leads to I (/) J /(x) g (x) dm (x) and hence | J /(x) g (x) dm (x) |

M M

ß l|/||pi for a\\feL(p,1). Setting/(x) [exp argg(*))].yE(x)we
obtain j j g (x) | dm (x) / B [m (E)]1,p.Therefore,

E

—h-j I g(x)Idm(x) ^ B[m (£)]"1/p' ^
m (E)E

for t ^ m(E), where l/p + 1 \p' 1. It follows thatg** (t) ^ Bt~1Ip\ so

geL(p, co) and || g \\*pfo0 ^ B. (It is interesting to note how naturally g**
appeared in the above discussion.) Conversely, for any g e L (p\ oo),

1(f) j g (x) / (x) dm (x) defines a continuous linear functional on
M

L (/?, 1). Since

I J 9 (x)f(x) dm(x) I ^ j g * (t)f* (t) ^ || I*,«, J t dtMO 0

P\\d\\p<oo \\J [j pi •

This proves that L (p\ oo) is the conjugate space of L (p, 1). For the same
reasons that L1 is not the conjugate space of L°° we cannot expect L (/?, 1)

to be the conjugate space of L (//, oo).
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Suppose now that I is a continuous linear functional on L (/?, q), 1 </? < oo,
1 < q < oo. Since ||/||^ ^ ||/||pi> '*s also a continuous linear function
on L(p, 1). Hence, there exists a function geL(p', oo) such that

(*) 1(f) jf(x)g(x)dm(x) for all feL(p, 1).
M

In particular, (*) holds for all simple functions. Using (*) and | / (/) |

^ ^ can be shown that g gI (//, #'), - + — 1, ~ -f ~ 1,

p p' q q'
and (*) holds for allfeL (p, #). Conversely, for any g e L (p\ q'), (*) defines

a continuous linear functional on L (p, #). We have obtained

(2.7) The conjugate space of L (p, 1) is L (p\ oo), where
*

H— 1.
P p'

The conjugate space ofL (p, q), 1 < p < oo, 1 < q < oo, w L (p', q'),

11 11where —| 1, —| — 1, and hence, these spaces are reflexive.
P p qq

According to (2.5) any continuous linear functional on L (p, q), 1 ^p < oo,

q < 1, can be extended to a continuous linear functional on L(p, 1).

Suppose I is a continuous linear functional on L (p, 1), 0 < p < 1. Let

us assume that m (M) < oo. Since (M, m) is <r-finite this will result in no
loss of generality in the following argument. We have

I 1(Xe)I^ BIZjE i;, B[m(JE)]1'" ^ (M)](1/",_1 || ||],

Hence, by (2.5), I can be extended to a continuous linear functional on

L(l, 1) L1. Then there exists a function g e V° such that 1(f)
J fW)g{x)dm(x) for all /eL1. Also, | J g(x)f(x) dm (x) | / ||/||*,.
M M

As before, we have

—1—
J I g(x)I dm(x) ^ B[m(E)](1/")_1

m (E) E

In case (M, m) is non-atomic this implies that g (x) 0 a.e. and, hence j

1=0 on L(p, 1). It follows that the trivial functional I 0 is the only

continuous linear functional on the spaces L (/?, q), 0 < p < 1, 0 < q < oo.

If / is a continuous linear functional on L (1, q), I < q, then I is a continuous

linear functional on L (1, 1) L\ so there exists a function g e Lf
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such that /(/) j f(x)g(x)dm(x) for all fe L(l,l) and 11 f(x) dm(x) \

M M

<; B ||/||ig. If (M, m) is non-atomic we can use this to show that g 0 a.e.

and, hence the trivial functional I 0 is the only continuous linear functional
on L (1, q), 1 < q < oo.

Section 3. Interpolation theorems

Suppose T is an operator which maps L(ph qt) boundedly intoL(p'h q'i),
i 0, 1. An interpolation theorem for L (p, q) spaces can then be described

as a method which leads to inequalities of the form|| T/"||^'«' B ||/||p«>
B independent offe L (p, q). The intermediate spaces L (/?, q) and L (p\ q')
and the corresponding constant B are determined by the method of
interpolation.

Interpolation theorems can generally be classified as either weak type
or strong type. The two types of theorems are easily characterized. The
weak type theorems are proved by real variable methods which utilize
only minimal hypotheses. Since the weak hypotheses are characteristic of
the real method of proof, the conclusions are limited. In the case of Lorentz

spaces the essential part of the weak type hypothesis is that the range spaces
of the given end point conditions are weak Lp spaces. We can then conclude

only that an intermediate space L (p, q) is mapped boundedly into an appropriate

space L (pf, q where q ^ q. In order to utilize a stronger hypothesis
to arrive at a stronger conclusion, we must go to the complex methods of
proof which are characteristic of the strong type theorems. The two methods
also differ in the intermediate spaces obtained and in the behavior of the

corresponding constants B. In general, we obtain more intermediate spaces
by the weak type methods. However, the constants corresponding to the
weak type methods are, in some sense, not as satisfactory. This is seen in
the prototypes of the weak and strong type theorems, the interpolation
theorem of Marcinkiewicz and the Riesz-Thorin convexity theorem.

An operator T mapping functions on a measure space into functions
on another measure space is called quasi-linear if T{f+g) is defined whenever

Tf and Tg are defined and if | T(f+g) \ K (\ Tf\ + \ Tg \) a.e.,
where K is independent of/ and g. An argument similar to that which led
to (1.6) gives

(3.1) (T(f+g))*(t) Û K((Tf)*(tl
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