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ON ERMAKOF'S CONVERGENCE CRITERIA
AND ABEL'S FUNCTIONAL EQUATION. *)

A.M. Ostrowski

I. Introduction

1. We owe to V. Ermakof ([1], [2]) very remarkable
criteria for the convergence or divergence of infinite series I f(v)
(f(x) > 0) which uses the quotient

/(y(x)) y (x)

fix)

for continuously differentiate function W (x) with the properties

W (x) > x, W (x) - oo (x-> oo)

As a matter of fact, the first discussion given by Ermakof [1]
only established directly the connection with the convergence
or the divergence of the integral

J / (x) dx (2)

so that in order to obtain the results concerning the infinite
series we have to assume that f (x) is monotonically decreasing
or to make some analogous assumptions to permit the transition
from the integral to the infinite series. We discuss some
conditions of this kind in the sections 33-38.

2. In his second paper [2] Ermakof developped however
a new and very ingenious method of proof using Abel's functional
equation

cpiT(x)) cp(x)1.

*) This investigation was carried out under the contract DA-91-591-EUC-2824 of
the Institute of Mathematics, University of Basle, with the US Department of the Army.
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This method allows, under suitable regularity conditions on
W (#), to connect directly the behavior of (1) with the convergence

or divergence of the infinite series I /(c), without any
monotony condition for f(x).1)

But Ermakof only sketched his discussion and indicated as

the sufficient additional condition to impose on W (x) th?t, in
our notations, W' (#0) *s 1, for a suitable x0.2)

It appears however that this additional condition is not
sufficient to carry the discussion through. In a paper [5],
published 1955, I showed that if beyond Ermakof s condition
W (x) is supposed monotonically increasing, the method can be
carried through, indeed. If on the other hand W (x) is supposed
monotonically decreasing the method worked but Ermakof s

additional condition was not necessary.

3. In this communication 1 develop a new method of proof
which allows to avoid AbeFs functional equation and to obtain
the essential results for not necessarily monotonie f (x). This
gives a direct and very elementary way of proof as well for
monotonically increasing as, (in the case of convergence), for
monotonically decreasing W (x). Beyond that, this method
allows also to prove the convergence criteria in the case that
lim W (x) exists and is finite (Theorems 4-6).
*->•00

4. As to the divergence criterion, here too, a new result in
the case of monotonically decreasing W' (x) can be obtained
(Theorem 7), however, with a different method which has more
points of contact with Ermakof s second proof — here we have
to form a minorant of / (x), which can be interpreted as the
derivative of a solution of AbeFs functional equation —.

5. In the first sections of this paper we give 3 Theorems

concerning the convergence and divergence of the integral (2)

generalizing some results given in our first paper [5]. Finally,
in the last part of the paper we discuss Pringsheinf s treatment

i Curiously enough, Abel's functional equation was also treated by Korkine in the
note [4] where he gave another and direct proof of Ermakof's criteria for monotonie
f(x), without using, however, this functional equation.

2) Ermakof says in his paper [2] in a footnote on p. 142: " C'est la seule condition
pour que notre démonstration soit juste."
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of the problem and prove generalized versions of Pringsheim's
results.

This note brings therefore an improvement and simplification

of the sections I-Y and XI of [5], while I have nothing to
add to the sections VI-X of [5].

II. Ermakof's direct Method

6. The form of the expression (1) makes it plausible that
we will have to use the integral transformation formula

b T(b)

\f{x¥{x))x¥\x)dx=^ j f(x)dx. (3)
a W(a)

In order to be able to use (3) we have in any case to assume
that / (x) is integrable in the integration interval and W (x)

totally continuous between a and b. However, additional
conditions are necessary and two such conditions are known either
of which ensures the relation (3) :

J\ ' \f (x) is uniformly bounded in the integration interval;
J2 : W (x) is monotonically increasing or monotonically de¬

creasing.

7. Theorem 1. Assume that \jj (x) and W (x) are totally
continuous for x ^ x0 and that we have for a sequence by ^ x0
(v 1,2,

(&v) ^ Y (K), V (K) - 00 (v-* CX)>. (4)

Let f (x) be ^ 0 on no half-line x ^ £ almost everywhere — 0, and
measurable in an interval J containing all values of if/ (x) and W (x)
for x 3| x0. Assume further that for any finite subinterval of J
the transformation formula (3) holds as well for if (x) as for T (x).
Then, if we have for almost all x with x ^ x0 and for an a with
0 < a < 1 :

/(y fx))¥" (x)^ afty(x))$\x)(^4 o < a < 1, (5)

the integral (2) isconvergent and we have for all ig

W(x)>\ f/(x)(x|x0). (6)
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8. Proof. For an arbitrary x ^ x0 integrate (5) between
x and bv > x. Then we have, using (3) :

Y(bv) *(bv)
J / (x) dx ^ a J / (x) dx

¥(x) rj,(x)

and this remains true, by (4), if if/ (bv) is replaced by W (bv).

We can therefore write

yw
J / (x) dx ^ a J / (x) dx + a J / (x) dx

¥(x) W(x) »A (*)

or, bringing the first right hand term to the left :

y Cbv) y(*)
(1 — a) j / (x) dx ^ a J / (x) dx

*(*) >!> <*)

But here, if we take x it follows for &v -> oo the convergence

of (2) and also that the right hand expression is > 0 for

any x !H x0. (6) follows immediately and the Theorem 1 is

proved.

9. Theorem 2. Assume that xj/ (x), (x) arc totally continuous

for x ^ x0 and that f (x) is non-negative and measurable in an
interval J containing all values of \j/ (x) and (x). Assume that (3)
holds as well for xj/ (x) as for W (x). Assume further that there

exists an a ^ x0 sacA that:

y («)

J / (x) dx > 0 > (7)
\Jj (a)

and a sequence bv ^ x0 (c 1,2...) sacA that:

if/ (bv) -> go W (bD) oo (v-> oo) (8)

Then if we have for almost all x ^ x0 ;

f(W(x))¥'(x)^ / (|// (x)) IA' (x), (9)

the integral (2) is divergent and we have for all x ^ a :

¥(x)>\j/(x)(x^a). (10)
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10. Proof. For any x > a we obtain from (9), integrating
on both sides from a to x and using (3):

W(x) «p(x)

J f(x)dx^ J / (x) dx
V (a)

and therefore
¥ (x) Via)

j /(x)dx^ J f(x)dx (x^a). (11)
ij/(x) I{/(a)

This proves already (10).

Putting in (11) x bv it follows
W(bv) V(a)

j f(x)dx ^ j f (x) dx (12)

while, if (2) were convergent, the left side integral in (12) would
tend to 0.

Theorem 2 is proved.

11. Theorem 3. Assume that ij/(x) and ¥ (x) are totally
continuous for x fx x0l that (3) holds as well for if (x) as for
¥ (x) and f (x) is ^ 0 and measurable in an interval containing
all values of if {x) and ¥ (x) for x > x0 without being almost

everywhere 0 in (¥ (a), oo). Assume further that there exists

a constant y, 0 < y < 1, and a sequence bv ^ x0 (v — 1,2,...)
such that

yif (bv) S ¥ (bv) 0 < y < 1 if (bv) -> oo (v-+ oo) (13)

and further that for a constant c from a certain x xl ^ x0 on:

f{x)û~ (x^Xi) (14)
X

Assume finally that for a constant a, 0 < a < 1 ;

f (¥ (x)) ¥' (x) g a/(V> (x)) if' (x), 0 < a < 1 (15)

Then the integral (2) converges and we have ¥ (x) > if (x)
for all x > x0.

12. Proof. We have as in the proof of the Theorem 1:

J f (x)dx S a j / (x) dx
v(*a) <M*o)
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and therefore, using (13)

y<MM »MM y$(by) \i/(bv)

J / (x) dx ^ a J / (x) dx a J / (x) dx + a j / (x) dx
T(*o) <A(*o) *(*o) 7*(*v)

1

But the last right hand integral is, by (14), gg clog-, so
y

that we obtain:
y*(M Y(x0)

(1 — a) j f(x)dx:g J / (x) dx + c log -
•P(x0) *(*o> ^

The convergence of (2) follows now immediately from
^ {by) ^ 00.

13. Suppose that we have, on the other hand, for an a > x0 :

V (a) ^ if/ (a).

Proceeding then as in the proof of the Theorem 1 we have, as

from i// (by) -> oo and the total continuity of xj/ (x) follows
bv -> oo, for bv >: a:

J / (x) dx :g a J / (x) dx
y(a) *(«)

and, for v -» oo :

00 GO

J / (x) dx ^ a j / (x) dx
•P(a) <K«)

But here the left hand integral is > 0, the right hand integral
is majorized by it and the relation is impossible for a < 1. 3)

III. A NEW METHOD FOR NOT NECESSARILY MONOTONIC f(x)

14. Theorem 4. Assume that W (x) is for x ^ x0 a positive
and monotonically increasing differentiable function for which

3) Observe that in Ermakof's paper [1] the criteria are given in the following form:
00

S / (v) for a monotonie / (x) is convergent or divergent according as

lim f(*F(x))Y>(x)
fiMxWW

is < 1 or > 1. In the note [21 Ermakof takes ¥* (x) x which is no essential specialisation.

However, the conditions (5) for convergence and (9) for divergence (with the
specialisation VP (x) *) are already found in the textbooks, see e.g. [3],
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y' (x) is also monotonicallyincreasingand that we have :

y (x) > x

Suppose further that f(x) is>0 for x x() and integrable and

bounded from below by a positive number in any finite subinterval

of (x0, oo). If we have for all x

f(T(x))y'(x)^f(x),(17)
the sum

£/(v) (18)

is divergent.

15. Proof. Introduce the function

F (x)Inf /(m); (19)
Xq^U^X

then F (x) is monotonically decreasing and we have for each

x 2^ x0:
F (x) lim f(uK)

K-> 00

for a convenient sequence uK from the interval <x0, x}.
We can write therefore for a certain sequence vK from the

interval <x0, x) :

F(W(x)) 'F'(x) Ihn/('/'(>,)) y^¥ (fK)) ¥"
K-> 00 K -> 00

This is, however, by (17) ^ lim / (ttK) ^ F(x).
It follows

F (W (x)) W (x) ^ F (x)

00

so that the integral J F(x) dx is divergent. Since F (x) is mono-
OO

tonic, the same follows for the series 1 F(v) which has (18)

as a majorant. The Theorem 4 is proved.

16. Theorem 5. Assume that W (#) is for x ^ x0 a positive
and monotonically increasing differentiable function for which (16)
holds. Assume further that W (x) is either, from a certain x on,
monotonically increasing or, for x -> oo, convergent to a finite



— 110 —

limit co. Assume finally that f (x) is ^ 0 for x ^ x0, measurable
and bounded in each interval x0 < x g a and satisfies for all
x ^ x0 and for a certain constant ô < i the inequality :

/(f (x)) ¥" (x) g Sf(x) (x^x0) (20)

Then the series (18) is convergent.

17. Proof. Take a number ß with 1 > ß > ö. Observe that
¥' (x) certainly cannot have for x go a limit co < 1. For
otherwise we would have, with x -» oo,

(¥ (x) — x)' —> co — 1 < 0 ¥ (x) — x —> — co

contrary to (16).
We have therefore in any case, from a certain x on,

W (x) A d, and, by (20), f (¥ (x)) ^ / (x). We can therefore

assume, changing x0 if necessary, that we have:

/(f (x)) g f{x) (xlx0). (21)

Further, if we have ¥ (x) -> co ^ 1 and if co is finite there
certainly exists an x1 such that we have, if x ^ xl7 y ^ xtl

3 <^*±<ß
ß~ ¥f(y) ö'

We can therefore assume, increasing x0 if necessary, that we
have :

¥"(*)^t¥"O0 0), (22)
0

and this is obviously also true if ¥' (x) is monotonically
increasing, so that we can now assume (22) as being true under
the conditions of our Theorem.

18. Put

x0 a0 ¥ (a0) a1 ¥(af) av+J

The sequence av is monotonically increasing. If lim av % were
finite, we would have ¥ (t) t, contrary to (16). Therefore we
have av | co.
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We have therefore for any x ^ an index v such that

av g x < av+1.

Denoting by c an upper bound for / )in the interval oq)

it follows then from (21):

/(x) ^ c (x^x0).
19. Put

G (x) Sup/ (u). (23)
U^X

G (x) is finite and monotonically decreasing and we have:

/(x)<G(x) (x^o). (24)

By (23), there exists for any x ^ a sequence of numbers

uK, uK ^ x such that G (W (x))lim f (W (hk)) and by (22)
K~> 00

G (f (x)) ¥"(*) lim / (IV (uJ)¥"(x) ^ lim ("«)) r("K) •

K -> 00 K -> 00 0

But this is, by (20),

<; ^ <5 lim f(uK) ^ ß G(x).
O K ~^ CO

20. We have therefore

G (V (x)) ¥" (x) ^ ß (x),
Oo

so that J G (a;) da: is convergent. But then, since G (a;) is monoto-
00

nically decreasing, the series G (v) is convergent too, and,
by (24), the same holds for the series (18). The Theorem 5 is

proved.

21. Theorem 6.- Assume that W (x) is for x *£ x0 a positive
and monotonically increasing differentiahle junction for which
we have (16). Suppose further that f (x) is > 0 for x ^ a:0, is

integrable and bounded from below by a positive number in any
finite subinterval of <a:0, oo) and satisfies for a constant ß > 1

and for all x ^ x0 the condition

/(•F(x)) T'{x) ^ ]S/(x),'x £ x0. (25)
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Finally assume that there exists x0 such that we have

for all x,u with xux, :

w (x) i
(26)

Then the series (18) is divergent.

22. Observe that the condition (26) is certainly satisfied
from a certain x1 on, if W (x) has a finite limit co,

¥' (x) ->co < oo(x->oo). (27)

23. Proof of the Theorem 6. Since x0 can be replaced by any
greater number we can assume, without loss of generality,
that % — x0. Then we proceed as in the proof of the Theorem 4

defining F (x) by (19) and obtain, as in the section 15, using (26) :

F(f(x)) ¥"(*) lim /(VCO) '/'"(A) g 1 lï^/(f(*0)V(vK)
K~* 00 P k—> CO

^ ïim/(wK) ^
K -» 00

24. We see that F (x) satisfies the conditions of the
00

Theorem 2 ; therefore the integral J F(x) dx is divergent and
OO

the same holds for the series £ F (e), as F (x) is monotonieally
decreasing. But then the series (18) is also divergent since

/ (x) is a majorant of F (x). The Theorem 6 is proved.

IV. Another method in the case of divergence

25. Theorem 7. The assertion of the Theorem 4 remains
valid if the assumption that W (x) is monotonieally increasing
is replaced by the assumption that W (x) is monotonieally
decreasing.

26. Proof. Since in any case W (x) > 0 there exists a finite co

such that
W (x) I co (x—> oo

and, as in the sec. 17, we see that this limit is ^ 1,
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Define the av as in the sec. 18. Since we can multiply / (x)

by any fixed constant, we can assume that we have:

f(x) ^ 1 (ao =ai) •

27. Denote the inverse function of ¥ (x) by o (x) ox (x)

and its iterated o (a (x)), o {a (a (x))),... by o2 (x), u3 (x),...
and define a new function F (x) in such a way that we have:

r (-*..)• C2W
V [a (x))

For this purpose we put:

F(x) 1 (a0^x<ai), F(x)y ^
(29)

and (28) follows immediately.

28. From (29) we have for x an and x f u«+1:

FW fi 1

o«"W /=i¥"(flv)'
1

and, putting <r0 ^
Y {a0)

F (an)
Q

FK-0) ^>0)
0)

Since we have co ^ 1, ^ (x) 2g 1, we see that ¥ (x) —x
is non-decreasing, and therefore, the same holds for the length
of the n — th interval between the av, an+1 — an. The number
of the av lying in an interval of the length 1 in the half-line
x a0 has a finite upper bound which may be denoted by k.

29. From (29) it follows obviously that F (x) is continuous
and monotonically increasing in any half-open interval <an, an+1).
In the points av we have a discontinuity if cr0 ^ 1. We can
therefore write for any y ^ a0:

F (y) ^ (jk0 F(x)(y-l<Lx<Ly). (31)
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30. Take here as y an integer m ^ a0, multiply by dx and
integrate from m — 1 to m; we obtain

m

F (m) ^ 0o J F (x) dx
m - 1

and therefore, denoting by n0— 1 the first integer > a0 :

n n

X F(v) & (To J dx
v n0 n0-1

31. On the other hand, the relation (28) can be written as

F (F (x)) V (X) F (x), (32)
oo

and it follows therefore from the Theorem 2 that J F (x) dx
00

is divergent. We see that the series ^ F(v) diverges too.

32. In order to prove our Theorem it is therefore sufficient
to prove that we have

f(x)^F(x) (x^a0). (33)

But this relation is evident in the interval <u0, a J. Comparing
(17) and (32) this inequality follows also for the interval <al7 a2)

and from there on by induction for any x ^ a0. The Theorem 7

is proved.

V. New conditions for the Euler-Maclaurin Theorem

33. One of the ideas underlying the proof of the Theorem 6

was the introduction of the condition (26) which is a kind of
weakened monotony condition.

We give in what follows the corresponding generalisation of
the Euler-Maclaurin convergence criterion, in which we try to
weaken the monotony condition even more. Combining the
conditions of the Theorem 8 with the assumptions of the Theorems

1 and 2 we obtain then further criteria for the convergence
and divergence of the series (18).
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34. Theorem 8. Let y, e, K be fixed positive numbers, and

A a fixed real number. Assume f (x) non-negative and integrable

in any finite sub interval of the interval (x0, oo). If for any y ^
x0 — A\

Max Lr0, J we nave

f (y) ^ Kf (x) (yy +A ^yy A A +fi), (34)

then from the convergence of the integral (2) follows the convergence

of the series (18).
/ Xq "H y "dh

If for any x ^ Max lx0 — J we have

f (x) ^ Kf(y) (yx + A-y^y^yx+A), (35)

then from the divergence of the integral (2) follows the divergence

of the series (18).

35. Proof. If (34) holds we have, taking as y an integer v

and integrating with respect to x from y v + A to y v + A + e:

yv + A + £

f(v)<—J (x)
&

yv + A

and therefore, denoting by n0 a convenient integer, for any
n > n0:

n n yv + A + s

~ I f (y)ûEJ dx. (36)
^ v=h0 v -n{) yv + A

36. The limits of the integration in the right hand integrals
lie here between y n0 + A and y n + A + e.

If an x lies in one of the integration intervals in (36) we have

x — A s x — A
yv + A ^ x ^ yv + A + 8, ^ v ^

7 7 7

8
and we see that any such x can lie at the most in 6 1

7

such intervals. The right hand expression in (36) is therefore

/fi \yn + A + e

- ~ + 1 f
\7 / yn0 +A

and our assertion corresponding to the condition (34) is proved.
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37. Assuming that (35) is satisfied we take x as an integer v

and obtain, integrating with respect to y from y v -!- A — y

yv + A

to ye + A:yf (x) jg KJf {y) dy
yv + A — y

and therefore, for a convenient integer ra0,

v n n yv +A yn + A

-zf(v)è z 1 /O)dy J 00 dy
v n{) v n0 yv + A-y y n0 + A-y

From this inequality the assertion corresponding to the
condition (35) follows immediately. The Theorem 8 is proved.

38. Corollary. Assume f (x) non-negative, finite and inte-

grable in any finite sub in terval of <x0, oo). // there exists an
integer N such that xN f (x) is from a certain x on either monotoni-

cally increasing or monotonically decreasing, the series (18)
converges or diverges according as the integral (2) is convergent
or divergent.

VI. Comments on Pringsheim's discussion of the problem

39. Although Ermakof s convergence and divergence criteria
and in particular Ermakof s second proof, using Abel's functional
equation, are extremely interesting, they remained very little
known and it appears that the author's paper [5] was the first
in which the problem was taken up in a modern way. The reason
for this may lie partly in the very negligent way in which
Ermakof s notes were written and partly in some erroneous
and misleading statements about this problem which were formulated

by Pringsheim in [6], [7] and [8], Although the essential
merit of Ermakof s second paper consists just in the fact that
the function / (x) need not be assumed as monotonie — it is

true that Ermakof does not even mention this point in [2] —
Pringsheim says in [7], pp. 308-309: -"Es ist mir neuerdings
gelungen, dieselben [that is Ermakof s criteria] von einer ihnen
(auch in der von Herrn Ermakoff gegebenen Darstellung)
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anhaftenden, sehr wesentlichen Beschränkung, nämlich der
ausschliesslichen Anwendbarkeit auf Reihen mit niemals
zunehmenden Gliedern zu befreien, und zwar lassen sie sich auch in
dieser erweiterten Form mit Hilfe der oben charakterisierten,
in meiner Abhandlung durchgeführten Methode ableiten."

Further, on p. 327 of [7] Pringsheim says after having
discussed the case that f (x) is never increasing, in a footnote:
B Dies ist der von Herrn Ermakoff ausschliesslich betrachtete
Falk"

The same is implied in the statement about Ermakofs
criteria in [8] on p. 89: " Die letztere habe ich neuerdings in der
Weise verallgemeinert, dass / (x) nicht mehr als monoton vorausgesetzt

zu werden braucht."
It is obvious that the reader of the last statement cannot

help believing that while Ermakof did assume the monotony of
/ (#), Pringsheim in his paper [7] quoted proved that this assumption

can be dropped.
On the other hand, what Pringsheim did in [7] with Ermakofs

criteria can be reduced to the observation that the transition
from (2) to (18) in the Euler-Maclaurin theorem can be achieved
if we have

/(v + 0)
—— > 1 (V-><3D O^d^l)/ (v)

for natural e, uniformly in 6.

This is certainly a pretty unfair way to deal with the
ingenious proof of Ermakof and the beautiful result given in his
paper [2].

40. However, Pringsheim derived the above result which
is, of course, a very special case of our Theorem 8, from an
elegant u Corollary " to Ermakofs criteria. In this " Corollary "
the expression (1) is replaced by:

W (x)

/(H)
where, as usual, [x]denotesthe greatest integer contained in x.

This expression is of interest since only the values of / for
integer arguments enter into it, and in this discussion the

L'Enseignement, mat.hém t YT façc o_o
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assumption about the monotony of / (x) is not necessary. On
the other hand, it is pretty difficult to handle if / (x) is given
by an analytic expression.

Since Pringsheim's formulation of this " Corollary " is too
special we derive in the sections 44-45 a generalized form of it.

41. In the paper [6] Pringsheim gives a very general convergence

criterion which is also mentioned in [7] and [8]. This
criterion uses, in the notations of sec. 7-12 and assuming that
xj/ (x) < W (x) (x ^ aq), the expression

W(x + h) f
/ \ f f (x) dx / <au-+/i)nWA / J fix)dx O7)

*(x)

for a fixed h > 0. Pringsheim proves, that if lim cph (x) is > 1,
*->00

the integral (2) diverges, while this integral is convergent if
lim (ph (x) <1.
X~* CO

In quoting this result in [7] and [8] Pringsheim says that
Ermakof s result follows from his for h -> 0. This is, of course,
not correct since in this passage to the limit something like the
uniform differentiability of W (x) in the infinite interval (x, 00)

has to be used. As a matter of fact, Pringsheim mentiones this
restriction in his first publication [6], while in [7] and [8] any
reference to this restriction is omitted.

42. We give in what follows a proof of Pringsheinfs criterion
in a generalized form, avoiding the assumption that
lim (ph(x) exists. We prove:
x-*<x>

If for a positive s from an x xx on we have

cph (x) ^ 1 + 8 (38)

the integral (2) diverges, while this integral converges if we have

from an x ^ xx on:

cph (x) g 1 - s (x^Xi). (39)
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Proof. From (38) follows obviously for a natural n:

X I f(pc)dx
v— 1 \f/ (x1 + (v- l)h)

W(x1+nh)

^P(Xi)
j / (x) /

if/ (xj +nh)

if/(x i)
J f(x)dx.

If we replace in the numerator of the right hand quotient
W (aq) by \jj (aq) S (aq) Ibis quotient is not decreased and we
have

W(xt+nh) j

Therefore the integral (2) is divergent, because otherwise
the left hand quotient would tend to 1 with n -> oo.

43. Under the condition (39) we have again for a natural n:

Therefore the integral (2) must converge, since otherwise the
right hand quotient would tend to 1 with n -> oo. Combining
this result with the Theorem 8 we obtain again criteria for the
convergence and divergence of (18).

44. Pringsheim derived in his paper [7] the " Corollary " from
Ermakof s results, quoted above, in the following way.

If the function / (x) is defined for all integers v Ä e0, define
the function cp (x) by

J / (x) dx / tixi+nh)
<A(*i) / f/ ^(*i)

J f(x)dx^1 +£-

s/(w) (*^v0). (40)
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Then we have for an integer n which is 2; than an integer e0,

n +1 n

J cp(x)dx=£/(v), (41)
Vq V=V0

and conditions for the convergence or divergence of the series
00

(18) are obtained, applying to the integral J (p (x) dx Ermakof s

criteria. In this way we obtain corresponding criteria without
assuming anything about the monotony of / (x).

45. As a matter of fact Pringsheim formulates only the
condition

/([«F(x)]) ¥"(x)lim —Tp < 1

*-* /([>A (*)]) iA' (*)

for the convergence and

lim —^ > 1

/(O 00])^' (x)

for the divergence, where W (x) and \j/ (x) are assumed to tend
nionotonically to oo with x -> oo and to satisfy W (x) > \j/ (x).
However, it is obvious, e.g. from the corresponding specialisations

of our Theorems 1 and 2 that we can use

/([f (x)]) (x) ^ a/([iA (x)]) iA' a < 1 (42)

as convergence condition and

/([> (x)]) y(x)^ /([> (x)]) r (x) (43)

as that for divergence.
Incidently, it is clear that we have in these cases the same

degree of generality if we take ij/ (x) x.

46. Applying the same idea directly to the Theorems 1—3

we have the following three Theorems in which we assume that
\jj (x) and W (x) are totally continuous for x ^ e0 and that
/ (v) is defined and ^ 0 for all integers e Ä e0.
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Theorem 1. Assume that we have (4) for a sequence bv ^ c0

(v — 1,2,...). Then, if we have (42) for almost all x ^ v0 and

for a positive a < 1 the series (18) is convergent.

Further, assuming that f (v) is not 0 for all sufficiently

great integers e, we have for all x 2: v0:

Theorem 2. Assume that there exists an a ^ v0 and an

integer v1 2 e0 such that:

W (a) > v1 2 i) (a) f(vx) > 0 (44)

and a sequence bv 2 v0 (v 1,2,...) such that we have (8). Then,

if (43) holds for almost all x 2 e0, the series (18) is divergent

and we have (10) for all x A a.

Theorem 3. Assume that there exists a constant y, 0 < y < 1,

and a sequence bv 2 e0 such that (13) holds and further that

for a constant c and for all integers v >- m we have:

v/(v)gc (V^Vi).

If then (42) holds for a certain a < i the series (18) is

convergent,, and the relation W (a) < xjj (a) is for an a 2 v0 only
possible, if f (v) — 0 for all v 2 [ xlJ (a)].

Observe that in applying the Theorems 1', 2' and 3' to cp the
transformation formula can be certainly applied since | cp (x) | is

uniformly bounded.
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