Abstract = Zusammenfassung

Objekttyp: Chapter

Zeitschrift: Eclogae Geologicae Helvetiae

Band (Jahr): **75 (1982)**

Heft 2

PDF erstellt am: 26.04.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Diagenese und schwache Metamorphose in den sedimentären Abfolgen der Zentralschweizer Alpen (Vierwaldstätter See, Urirotstock)

Von Alfred Breitschmid¹)

ABSTRACT

Very low-grade regional Alpine metamorphism of sediments from the Helvetic zone and the Pennine Klippen-nappe has been studied in a cross section through the external part of the Swiss Alps, along the Basel-Chiasso geotraverse.

The following methods were used:

- 1. X-ray diffraction and optical analyses (380 samples ranging in age from Triassic to Eocene).
- 2. Determination of illite crystallinity (IC) (364 samples).
- 3. Coal rank determination (Rm) (41 samples).
- 4. Fluid inclusion analyses in fissure quartz (14 samples).

Chlorite, illite, mixed-layer illite/montmorillonite, mixed-layer paragonite/muscovite are ubiquitous and occur in all stratigraphic units. Kaolinite is a typical clay mineral of the "Berrias-Valanginien-Mergel", of the "Orbitolinaschichten" and of the Ultrahelvetic Flysch, whereas pyrophyllite occurs only in the "Aalénien-Schiefer". In the Cretaceous limestones glauconite, stilpnomelane and alkaliamphibole (riebeckite) were found.

In the diagenetic zone and at the beginning of the anchizone the IC varies depending on the lithology. However, based on IC it is possible to distinguish a lower-grade ($IC \approx 7.5-5.5$) and a higher-grade anchizone (IC = 5.5-4.0).

At the beginning of the anchizone the coal rank determination is a more reliable indicator of very low-grade metamorphism than IC. The diagenesis/anchizone limit is indicated by $Rm \approx 3.4\%$ and the end of the anchizone is at around 5.5%.

Mixed-layer illite/montmorillonite and glauconite disappear at the border field of the lower- to higher-grade anchizone, whereas stilpnomelane appears at the transition of the diagenesis/anchizone. Unfavourable lithology does not permit to locate the kaolinite-pyrophyllite reaction isograde.

Fluid inclusion analyses show a fluid field of higher hydrocarbons in the zone of diagenesis, while the transition to the methane-fluid field takes place in the border area of diagenesis/anchizone at about 200 °C. Finally, the transition to the waterfluid field occurs at the beginning of the higher anchizone at around 270 °C.

In the cross section under study the degree of diagenesis and very low-grade metamorphism generally increases progressively from the northern Alpine border towards the autochthonous sedimentary cover of the Aar massiv in the south. However four inversions were found where higher-grade metamorphic units were thrusted onto lower-grade ones.

The areal distribution of the diagenetic and very low-grade metamorphic zones has been illustrated on a metamorphic map and in a cross section. The latter shows that the isolines of the metamorphic zones cut through the folds of the nappes. This observation together with the existence of inverted metamorphism suggest that the metamorphism took place after folding during a certain stage of the nappe emplacement. Therefore, it is possible to distinguish between pre-metamorphic, syn-metamorphic and post-metamorphic nappe movements.

¹⁾ Geologisches Institut der Universität, Baltzerstrasse 1, CH-3012 Bern.

A. Breitschmid

Finally, an attempt has been made to construct a model in order to demonstrate the geological history of the Helvetic zone including flysch sedimentation, nappe movements, metamorphism and molasse sedimentation.

ZUSAMMENFASSUNG

Die schwache alpine Regionalmetamorphose von Sedimenten des Helvetikums und der penninischen Klippen-Decke wurde in einem Querschnitt durch den Alpennordrand entlang der Geotraverse Basel-Chiasso untersucht.

Folgende Methoden wurden eingesetzt:

- 1. Röntgendiffraktometrische und optische Untersuchungen (380 Proben von der Trias bis ins Eozän).
- 2. Messung der Illit-Kristallinität (IK) (364 Proben).
- 3. Bestimmung des Inkohlungsgrades (Rm) (41 Proben).
- 4. Analyse von Gas- und Flüssigkeitseinschlüssen in Kluftquarzen (14 Proben).

Der Chlorit, der Illit, die unregelmässige Wechsellagerung Illit/Montmorillonit und die Wechsellagerung Paragonit/Muskowit sind Durchläufer und erscheinen in allen stratigraphischen Einheiten. Der Kaolinit ist ein typisches Tonmineral der «Berrias-Valanginien»-Mergel, der Orbitolinaschichten und des Ultrahelvetischen Flysches, während der Pyrophyllit nur in den «Aalénien-Schiefern» angetroffen wurde. In Kreidekalken wurden Glaukonit, Stilpnomelan und Alkaliamphibol (Riebeckit) nachgewiesen.

In der Diagenese und am Beginn der Anchizone schwanken die IK-Werte in Abhängigkeit von der Lithologie. Immerhin scheint es mit Hilfe der IK möglich, eine schwache (IK $\approx 7,5-5,5$) und eine starke Anchizone (IK = 5,5-4.0) auszuscheiden.

Zu Beginn der Anchizone ist der Inkohlungsgrad ein zuverlässigerer Parameter für die schwache Metamorphose als die IK. Am Anfang beträgt Rm≈3,4%, am Ende der Anchizone hingegen zirka 5,5%.

Die unregelmässige Wechsellagerung Illit/Montmorillonit und der Glaukonit verschwinden im Grenzbereich schwache-starke Anchizone, während der Stilpnomelan im Grenzbereich Diagenese-Anchizone erscheint. Ungünstige lithologische Verhältnisse gestatten es nicht, die Reaktionsisograde Kaolinit/Pyrophyllit zu lokalisieren.

In unserem Querprofil nimmt die Diagenese und schwache Metamorphose generell vom nördlichen Alpenrand gegen das Autochthon des Aarmassivs im Süden zu. Mit allen Untersuchungsmethoden können jedoch vier Inversionen festgestellt werden, wo Gesteine mit höhergradiger Metamorphose auf niedriggradigere Einheiten geschoben wurden.

Auf einer Metamorphosekarte und im Querprofil werden die ausgeschiedenen Zonen der Diagenese und schwachen Metamorphose räumlich dargestellt. Daraus geht hervor, dass die Isolinien der metamorphen Zonen die Faltenstrukturen der Decken schneiden. Diese Beobachtung lässt zusammen mit der Existenz der transportierten Metamorphose den Schluss zu, dass die Metamorphose nach der Faltung während einer bestimmten Situation der Deckenbewegungen erfolgte. Dadurch können prämetamorphe, synmetamorphe und postmetamorphe Bewegungen unterschieden werden.

Schliesslich wird versucht, die Metamorphose des Helvetikums in einem orogenen Entwicklungsmodell mit Beziehungen zwischen Flyschsedimentation, Deckenbewegungen und Molassesedimentation darzustellen.

INHALTSVERZEICHNIS

Vorwort	
1. Einleitung	334
1.1 Problemstellung	334
1.2 Bisherige Arbeiten	334
no occionom i i i i i i i i i i i i i i i i i i i	337
1.4 Untersuchungsmethoden	338
	339
2.1 Allgemeines	339
2.2 Tonminerale	339
2.5 Strate Graphicon Control of C	341
2.4 Geologische Interpretation	352