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1 Introduction

The familiar formulas

N

n=1

n
N(N + 1)

2
and

N

n=1

n2
N(N + 1)(2N + 1)

6

are special cases of a general formula discovered by Jakob Bernoulli 1654–1705) and

published posthumously in Ars conjectandi 1713). To describe Bernoulli’s formula, let a
and N be positive integers, then the sum of the ath powers of the first N positive integers

Jakob Bernoulli 1654–1705)verdanken wir eine geschlossene Formel für die Summe
der a-ten Potenzen a N) der ersten N natürlichen Zahlen unter Verwendung der
nach ihm benannten Bernoullischen Zahlen. Offenbar hat Johann Faulhaber 1580–
1635) bereits vorher für kleine Werte von a entsprechende Formeln gekannt. In der
vorliegenden Arbeit verallgemeinern die beiden Autoren die Bernoullische Formel auf
den Fall beliebiger reeller Exponenten a > -1. Die von ihnen verwendeten Methoden

sind elementar und benutzen als wesentliches Werkzeug die Taylorentwicklung
der Potenzfunktion. Die resultierende Summe wird durch die klassische Bernoullische
Formel und einen speziellenWert der Riemannschen Zetafunktion s) angenähert. Ist
a eine gerade natürliche Zahl, so liegt eine triviale Nullstelle von s) vor, und die
Annäherung wird zur Gleichheit.
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is given by

a + 1)
N

n=1

na
a

k=0
(-1)k

a + 1

k
Bk Na-k+1 1)

The constants Bk in 1) are the Bernoulli numbers. Here the Bernoulli numbers will be

defined by the recurrence

B0 1,
k

i=0

k + 1

i
Bi 0, k > 0 2)

or equivalently, by the power series

x

ex - 1
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k=0

Bk

k!
xk 3)

A different convention regarding the Bernoulli numbers is used in [9].) The first five
Bernoulli numbers are

B0 1, B1 - 12 B2 16 B3 0, B4 - 1
30

Also we have

B2k+1 0 for k 1,2, 4)

as is seen by verifying that x/(ex -1)+ x/2 is an even function and using 3). One reference

for 1) from among many possible references) is [2]. Bernoulli’s original derivation
of 1) can be found on pages 214–216 of [1], the modern translation of Ars conjectandi.
See [4] for a proof of the equivalence of 2) and 3).

Some authors e.g. [2], [6]) refer to 1) as Faulhaber’s formula in honor of Johann
Faulhaber 1580–1635) who studied power sums extensively, publishing his results in his
Academia Algebrae 1631). The cases of a 1, 23 of this formula were known
to Faulhaber, but he did not recognize the pattern in the coefficients that eventually gave

rise to the Bernoulli numbers see [3], [5], [8]). Although the general formula 1) is due
to Bernoulli, we will nonetheless denote the polynomial on the right-hand side of 1) by
Fa(N) in Faulhaber’s honor.

Because of its antiquity, it is believed that no original volume of Academia Algebrae has

ever existed in the Americas. Indeed, the book is rare in Europe as well. Fortunately,
A.W.F. Edwards provided Donald Knuth with a photocopy of the volume once owned by
Jacobi) that is in the Cambridge University Library. Knuth has deposited the annotated
photocopy in the Mathematical Sciences Library at Stanford University.

While the title of Academia Algebrae is in Latin, the text is in German. The style is

alien, and the notation, terminology, and typography are unfamiliar. Remarkably, Knuth
managed to penetrate these difficulties and to describe Faulhaber’s work in [5]. Also in
[5], Knuth described the cryptogram in Academia Algebrae that was solved to demonstrate
that Faulhaber knew the correct formulas for a 22 and a 23. Additionally, this work
of Knuth showed that Faulhaber’s calculations beyond a 23 were not reliable.
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It is natural to ask whether a formula similar to Bernoulli’s formula 1) is valid for
nonintegral powers of a. While instances of approximating formulas for summing non-integral
powers of integers have certainly been published for example, see [5] and [7]), it is
perhaps surprising that only recently has it been realized that, with but modest adjustment,
Bernoulli’s formula 1) generalizes to complex powers with real part greater than -1.

In [6] we proved the following result:

Theorem 1 Suppose a s + it with s -1. If

m s + 1 min{k Z : s < k}

-(m - a)

Fa(N)
m

k=0
(-1)k a + 1

k
Bk Nm-k+1

then

lim
N.8

a + 1)
N

n=1

na - N Fa(N) a + 1).(-a) 5)

where · is the Riemann zeta function. Moreover, if a is a non-negative integer, then the
sequence on the left-hand side of 5) is constant.

A few words of explanation are needed for the case a -1 which is special: Since the
summation on the left-hand side of 5) is multiplied by a + 1 0, the left-hand side of 5)
equals -N-1N -1. The only meaningful interpretation of the right-hand side of 5)
is lima.-1(a + 1) .(-a) and that limit equals -1, because of the fact s) has a simple
pole with residue 1 at s 1.

Notice that if a is a non-negative integer, then the theorem says

a + 1)
N

n=1

na N-1Fa(N) + a + 1).(-a)

which is the classical result since a + 1).(-a) (-1)a
Ba+1, for all integers a 0, and

hence

N-1Fa(N) + a + 1).(-a)
a

k=0
(-1)k a + 1

k
Bk Na-k+1

On the other hand, when a is non-integral, the polynomial Fa(N) has the same formal
appearance as the polynomial on the right-hand side of Bernoulli’s formula 1), but it is
not equal to any of those polynomials because the binomial coefficients, defined by

a + 1

k

a + 1)a a + 2- k)

k!

are non-integral.
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Also, when a is non-integral, a further refinement of line 5) is possible; namely,

a + 1)
N

n=1

na - N Fa(N) a + 1).(-a) + O(N-ß 6)

where ß m- s.
In [6], Theorem 1, and the refinement 6), were proved using Euler-Maclaurin summation
and an identity for the Riemann zeta function. For the case in which a is real, one might
hope that complex analysis could be avoided and an elementary proof be given. In this
paper, we give such a proof.

To facilitate the elementary proof for real a it is convenient to make a slight change of
notation and state the result in the following form.

Theorem 2 Suppose a > -1 is real and a m + with m Z, -1 < 0. In terms
of the ceiling function, · we have m a If

Fa(N)
m

k=0
(-1)k

a + 1

k
Bk Nm-k+1

then there exists a real number Ca so that

lim
N.8

a + 1)
N

n=1

na - N. Fa(N) Ca 7)

Moreover, if a is a non-negative integer, then the sequence on the left-hand side of 7) is

identically zero.

When a > -1 is non-integral, the value from Theorem 2 equals the value used in
Theorem 1; but, when a is a non-negative integer, we have - 1. While it would
be nice to avoid the differing notations in the two theorems, we feel that Theorem 1 has a

cleaner statement using and Theorem 2 yields a cleaner statement using

Notice that, when a is a non-negative integer, the polynomial Fa(N) in Theorem 2 is

identical to the polynomial on the right-hand side of Bernoulli’s formula 1) and the factor
N. appearing in 7) is identically equal to 1; in this case Theorem 2 gives the classical
result of Bernoulli.

In the final section of this paper, we give an application to summing the pth roots of the

first N positive integers with an example computation.

2 Proof of the theorem

Our aim here is to give an elementary proof of Theorem 2. The idea is simple and is as

follows: When a is a positive integer, one can prove Bernoulli’s formula inductively. In
fact, doing so for small integral a is often used to illustrate proof by induction. We will do
almost the same inductive process even when a is non-integral. Of course, the inductive
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process cannot work for non-integral a exactly as it does for integral a. Instead, when a
is non-integral there is an “error” made at each step of the induction. We keep track of
the accumulated errors, and their sum equals the constant Ca. Carrying out this process

requires calculation and estimation, but it is nonetheless elementary.

The following lemma expresses N. Fa(N) in terms of N + 1) Fa(N + 1) and will be the
crucial part of our argument.

Lemma 3 If a >-1 is real and m, and Fa(N) are as above, then

a + 1)(N + 1)a - N + 1) Fa(N + 1) + N. Fa(N)

O(N.-1) if a is not an integer,

0 if a is an integer.

In order to further motivate the lemma, we will first demonstrate how Theorem 2 easily
follows.

Proof of Theorem 2. Suppose a > -1 is real. First consider the case in which a is not an

integer. Define the sequence

AN a + 1)
N

n=1

na -N. Fa(N)

and observe that

AN+1 - AN a + 1)(N + 1)a - N + 1) Fa(N + 1) + N. Fa(N) 8)

By Lemma 3, the right-hand side of 8) is O(N.-1) and therefore the series

8

N=1
AN+1- AN 9)

is convergent. Since the series 9) telescopes, we see that the sequence AN is convergent
as well. This proves the theorem when a is non-integral.

In case a is an integer, the argument proceeds as above except that now the right-hand side
of 8) equals 0. Thus we have

AM - A1
M-1

N=1

AN+1 - AN 0

so

a + 1)
M

n=1

na - Fa(M) AM A1
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12

To complete the proof, we must verify that A1 0. This equation is trivial when a 0.

Otherwise, it follows readily from 4) i.e., the fact that Bk 0, whenever k 3 is odd)
as follows: Using m a, 2), and B1 - we have

A1 a + 1)- Fa(1)
m

a + 1)- (-1)k

k=0

a + 1

k
Bk

a + 1)-
m

k=0

a + 1

k
Bk - 2(a + 1)B1

0

Proof of Lemma 3. First we apply Taylor’s theorem to f t) t p. The values of p that we
need will be specified later; they are all positive.

Since the hth derivative of f is given by

f h)(t) p p- 1) p- h + 1)t p-h

we have

f x0 + y)

q

h=0

p

h
xp-h

0
yh +

p

q + 1
x0 + p-q-1 yq+1

where is between 0 and y. In particular, if we set x0 N + 1 and y -1, we obtain

Np
q

h=0
(-1)h p

h
N + 1)p-h

+ (-1)q+1 p

q + 1
N + .N,p,q p-q-1 10)

where .N,p,q is between 0 and 1. For convenience, we will simplify 10) by writing

Rp,q N) (-1)q+1 p

q + 1
N + .N,p,q p-q-1

so that

N p
q

h=0
(-1)h

p

h
N + 1)p-h

+ Rp,q N) 11)

Note that

Rp,q N)
0, if p is a non-negative integer and p q,

O N p-q-1 otherwise.
12)



74 K.J. McGown and H.R. Parks

Next we use the Taylor expansion 11) with q m - k + 1, p a - k + 1, for k
0, 1, m, to express N. Fa(N) in terms of N + 1:

N. Fa(N)
m

k=0
(-1)k

a + 1

k
Bk Na-k+1

m

k=0

m-k+1

h=0
(-1)k+h a + 1

k
Bk

a - k + 1

h
N + 1)a-k+1-h

+
m

k=0
(-1)k

a + 1

k
Bk Ra-k+1,m-k+1(N)

m

k=0
(-1)k

a + 1

k
Bk N + 1)a-k+1 13)

+
m

k=0

m-k+1

h=1
(-1)k+h a+1

k
Bk a-k+1

h N+1)a-k+1-h 14)

+
m

k=0
(-1)k

a + 1

k
Bk Ra-k+1,m-k+1(N) 15)

Note that line 13) equals N + 1) Fa(N + 1).

In case a is an integer, we see that line 15) equals 0. In case a is not an integer, we have

Rp,q N) O(N p-q-1) so that

Ra-k+1,m-k+1(N) O(Na-m-1 O(N.-1

holds, for k 0, 1, 2, m, and hence line 15) is O(N.-1).

To complete the proof, it suffices to show that line 14) equals

-(a + 1)(N + 1)a

By direct calculation we observe that

a + 1

k

a- k + 1

h

a + 1

k + h

k + h

k

By setting k + h, we may rewrite the summation
m

k=0

m-k+1

h=1
which appears below, in

the form
m

k=0

m+1

k+1
and then, by reversing the order of summation, we reorganize it into

the form
m+1

1

-1

k=0



An elementary proof of a generalization of Bernoulli’s formula 75

This yields:

m
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(-1)k+h a + 1

k
Bk

a - k + 1

h
N + 1)a-k+1-h
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k=0

m-k+1

h=1
(-1)k+h a + 1

k + h

k + h

k
Bk N + 1)a-k+1-h

m+1

1

-1

k=0
(-1)

k

a + 1
Bk N + 1)a- +1

m+1

1
(-1)

a + 1
N + 1)a- +1 -1

k=0
k

Bk 16)

Directly from definition 2) we have

-1

k=0
k

Bk
1, 1

0, > 1

and hence line 16) collapses to -(a + 1)(N + 1)a, as desired.

3 An application

Let p 2 be an integer. As an application of Theorem 1, we consider the problem of
summing the pth roots of the first N positive integers. Substituting a 1/p in 6) and

simplifying, we obtain the identity

N

n=1

n1/p N1/p pN
p + 1 +

1

2 + .(-1/p) + O(N(1-p)/ p

which we write informally as

N

n=1

n1/p ˜ N1/ p pN
p + 1 +

1

2 + .(-1/p) 17)

Using Euler-Maclaurin summation to approximate and one can verify that x)

[-1/2, 0] holds for x [-1/2,0] alternatively, one might reasonably believe the graph
that any mathematics software produces). Thus, we are justified in writing

N

n=1

n1/ p ˜ N1/p pN

p + 1 +
1

2 -
1

2
18)

Indeed, since 0) -1/2, the difference between the approximations given by 17)
and 18) tends to zero as p 8. Using p 7 and N 106, we perform some
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example computations using the mathematics software SAGE http://www.sagemath.org).
We compute the sum directly using 100 bits of precision about 30 decimal places), as

well as the approximations given by 17) and 18).

N

n=1

n1/p ˜ 6 297 252 8505457990916984049647

348 seconds error < 10-23

N1/p pN

p + 1 +
1

2 + .(-1/p)˜ 6 297 252 8505457134148325714971

0.61 seconds error < 8.5676· 10-8

N1/p pN
p + 1 +

1

2 -
1

2 ˜ 6 297 252 7371884451801369808624

0.00 seconds error < 0.11336.

The direct computation of the sum takes almost 6 minutes, while the computation of 18)
is instantaneous and comes within 0.1134 of the true value; the computation of 17) takes

0.61 seconds and comes within 8.5676 · 10-8 of the true value!

As a second demonstration of the power of this method, we use the approximation 17) to

perform a computation that is infeasible using the sum directly; namely, we set p 7 and

N 10100. Using 500 bits of precision, we find:

N

n=1

n1/p ˜ N1/p pN
p + 1 +

1

2 + .(-1/p)

˜ 1.689360512772843896131190449860165405821334946973730

8154372640299936006500361980618669600742989582681748

3957153077976238315890719780919249375218697683 · 10114

19)

The whole computation takes 0.71 seconds! The error is O(N-6/7), so we expect the
error in this approximation to be about 8.5676 · 10-8

· 10100-6)-6/7 ˜ 2.2984 · 10-88.

As a result, it is very likely that the approximation 19) is correct to all displayed decimal
places! All computations were done on aMacBook with a 2GHz Intel Core Duo processor
and 2 GB of memory, running Mac OS 10.5.
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