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Triangles in squares

Richard P. Jerrard and John E. Wetzel

After army service and work in engineering, Richard Jerrard received his Ph.D. from
the University of Michigan in 1957. He worked first in applied mathematics, then

shifted to topology and geometry. At the University of Illinois since 1958, he spent
several years at the University of Warwick and Cambridge University. He retired in
1995.

John Wetzel received his Ph.D. in mathematics from Stanford University in 1962,

a student of Halsey Royden. He retired in 1999 from the University of Illinois in
Urbana, after 38 years of service. Always interested in classical geometry, he has

most recently been studying the ways in which one shape fits in another - questions
he regards as "fitting problems for retirement."

Introduction. In this note we determine precisely when a triangle fits in a square by
finding necessary and sufficient conditions on the sides a, b, c, s for the triangle with
sides a, b, c to fit into the square of side s. Our strategy is to find the side sm;n(T) of
the smallest square Sm;n that contains the given triangle T; then T fits into a square S

of side s precisely when s > sm;n(T). Scaling solves the equivalent dual problem: Find
the largest triangle similar to a given triangle that fits in a given square.

Minimal squares about a triangle. By a square we sometimes mean the union of four
line segments and sometimes the region they surround - the precise meaning will always
be clear from the context. A triangle has vertices while a square has corners, and unless

Die Frage nach den Bedingungen, unter denen eine geometrische Figur in eine andere

einbeschrieben werden kann, ist auch heute noch aktuell. Dies belegt zum Beispiel
der Artikel von K.A. Post aus den neunziger Jahren, in dem eine Lösung zu einer
alten Fragestellung von Steinhaus gegeben wird, notwendige und hinreichende
Bedingungen für die sechs Seiten zweier Dreiecke zu finden, so dass das eine Dreieck in
das andere einbeschrieben werden kann. In dem vorliegenden Artikel untersuchen die

Autoren, wann ein Dreieck in ein Quadrat einbeschrieben werden kann. Dazu geben
sie nolwendige und hinreichende Bedingungen an, die die drei Dreiecksseiten und die

Quadratseite zu erfüllen haben. Die duale, klassische Problemstellung, wann nämlich
ein Quadrat in ein Dreieck einbeschrieben werden kann, hat einer der Autoren im
siumpfwinlcligcii Fall vor kurzem studiert.
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the contrary is explicitly stated, a side of either includes its ends. It is a consequence of
compactness that among all squares that contain a given triangle T there is at least one
whose side is as small as possible. We begin by considering how such a minimal square
fits about the given triangle.

(a) Vertex square (b) Diagonal square (c) Side square

Fig. 1 Minimal squares

The possibilities are pictured in Fig. 1. A vertex square of T is a square containing T
with exactly one vertex of T at a corner of the square and the other two vertices on

the two (open) non-adjacent sides of the square (Fig. l(a)). A diagonal square of T is a

square containing T whose diagonal is a side of T (Fig. l(b)). A side square of T is a

non-diagonal square that contains T with two vertices on one side and the third vertex
on the opposite side (Fig. l(c)). We call all such squares minimal.

Lemma 1 The smallest square Smin that contains a given triangle T is a vertex, a

diagonal, or a side square of T.

Proof. Suppose Sm;n is not a diagonal square of T. Then all three vertices of T must lie
on Smin (otherwise a suitable rigid motion would move T entirely into the interior of
Sm;n, and it would lie in a square strictly smaller than S^J. We examine the possibilities
for the three vertices on the four sides of Sm;n. If two vertices are on one side and the

third is on an adjacent side, then T could be moved into the interior of Sm;n by a suitable

rigid motion, a contradiction. If two vertices are on one side and the third is on the

opposite side, then the square is a side square. If no two vertices of T are on the same
side of Smin and no vertex lies at a corner of Smin, then T could be moved into the

interior of Smin by a suitable rigid motion, again a contradiction. The only remaining
possibility is that Smin is a vertex square. D

We will find that if two angles of T are less than or equal to 45°, then the smallest square
Smin is the diagonal square on the longest side, and in every other situation with just one

exception, Smin is a vertex square. The exception, in which Smin is the side square on

the shortest side of T, occurs when T is acute, the altitude to the shortest side is longer
than that side, and the smallest angle is greater than 45°.

The principal results. In this section we determine precisely when squares of each kind
exist and which is smallest when there is more than one.

Let T ABC, and write a, ß, 7 for ZA, ZB, ZC, respectively. For {X, Y, Z}
{A,B,C} we write Sx, Sxy, and Sx for the vertex square at the vertex X, the diagonal

square on the side XY, and the side square on the side x opposite the vertex X,
respectively, when they exist. We denote by hx the altitude of T to the side x.
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Vertex squares. A vertex square can exist only at a vertex of T where the angle is acute.

We begin by determining precisely when there is a vertex square at such a vertex.

Lemma 2 Suppose that T ABC with 7 < 90°. Then there is a vertex square at C if
and only if both

ha < a and hb <b. (1)

The square is unique when it exists, and its side s is given by the formula

ab cos 7
s

\/a2 - lab sin 7 + b2
(2)

Proof. Suppose such a square CPQR exists (Fig. 2), and let L be the foot of the

perpendicular from B to CP. Suppose the altitude ray BE meets CP at Y. Then
ZPCA ZLBY, the right triangles CPA and BLY are congruent, and BY CA b.

Since E lies between B and Y (because A lies between P and Q), hb BE < BY b.

A similar argument on the altitude ray AD shows that ha < a, so that conditions (1) are

necessary. When the vertex square Sc CPQR exists,

/nn. EY BY-BE b-asin-f
tan ZPCA — ——:—

'-

CE CE HC0S7
(3)

which establishes the uniqueness. Formula (2) for the side s follows from substituting
(3) into s fr cos ZPCA.

R

X

B

K

C

s AT-
a /

Q

A

L Y

Fig. 2 Vertex square

To show the converse, take Y on the altitude ray BE so that BY b, and let P be the
foot of the perpendicular from A to the ray CY. Let L be the foot of the perpendicular
from B to CY. Then ZPCA ZLBY, triangles CPA and BLY are congruent, and

BL CP. Take points Q, R so that the figure CPQR is a square. According to the

hypothesis hb <b, Y and B are on opposite sides of CA and A lies between P and Q.
It remains only to show that B lies between Q and R. Suppose the altitude ray AD from
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A to BC meets CR at the point X, and let K be the foot of the perpendicular from A
to CR. Then ZXAK Z.BCR, and it follows that right triangles RCB and KAX are

congruent and AX CB a. From the hypothesis ha < a we see that D lies between
A and X, and consequently B lies between R and Q. D

The argument of the proof gives an elegant ruler and compass construction for the vertex

square CPQR when it exists.

If T has two vertex squares, say one at B and one at C, which is smaller? We show next
that the smaller square is at the vertex whose angle is larger.

Lemma 3 Suppose that T has vertex squares Sb at B and Sc at C. Then Sb is larger
than, equal to, or smaller than Sc according as ß < 7, ß 7, or ß > 7.

Proof. Write s, t for the sides of Sb Sc, respectively, and let ip ZPBC and rip Z.BCZ
(Fig. 3). Then s a cos <p and t a cos ip, so that s < t, s t, or s > t according as <p >
ip, ip ip, or ip < ip. But tan <p (a - c sin ß) je cos ß and tan ip {a - b sin 7) /b cos 7
(by (3)). Both parenthetical factors below being 1 by the law of sines, we see that

fa - csin/3\ &COS7 tan/3 /frsin7\ tan/3

J ccos/3 tan7 \csin/3y

and the conclusion follows. D

R A

Fig. 3 Two vertex squares

Diagonal squares. The situation in which the smallest square is a diagonal square
(Fig. l(b)) is easy to characterize.

Lemma 4 Suppose T ABC and ß, 7 < 45°. Then the smallest square Sm;n that
contains T is the diagonal square Sbc with side a/VZ
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Proof. Triangle T fits in Sbc as pictured in Fig. l(b), and since diam(T) =a= diam(Sn

no smaller square will do. D

Side squares. When T has a side square (Fig. l(c)) on a side x, plainly hx > x. It is

convenient to introduce a term for this situation: We call a triangle T tall if it has a side

x for which hx > x. So a triangle has a side square only when it is tall.

Lemma 5 If x, y are sides of a non-right triangle and x < y, then hy < y. A right
triangle is tall on its shorter leg, and tall on both legs only if it is isosceles.

Proof. If 9 is the angle between sides x and y and 9 ^ 90°, then hy x sin 9 < x < y.
For the legs x, y of a right triangle we have hx y and hy x, and the result follows.

D

So the inequality hx > x is possible for a triangle that is not isosceles-right only when
that triangle has a strictly shortest side, and x is that side.

It is convenient to employ notation that identifies the shortest side of T. We agree to label
the vertices of T so that T is positively oriented (i.e., the sequence A —> B —> C —> A
is counterclockwise) and a > ß > 7, by replacing T by its mirror image if necessary.
Then T can be realized in the coordinate plane with BC horizontal and A above the line
BC; and because of the notational normalization, A lies in the circular triangle MDB
bounded by the mediator MD of BC and the arc DB of the circle of radius a centered
at C (Fig. 4).

X

BMCFig. 4 The tall region

Suppose the semicircle with diameter BC meets the mediator MD at the point I. Let
BMIX be the square on BM, and suppose the circle with radius a/2 centered at X meets
the arc BD at / and the ray BX at Y (Fig. 4). We call the lens BJ between the two
circular arcs, shaded in Fig. 4, the tall region for T.

Lemma 6 A triangle T ABC with a > ß > 7 is tall if and only if A lies in the tall
region BJ; and then hc > c, with equality precisely when A lies on the circular arc BIJ.
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Proof. Let A lie in the tall region B], and suppose the ray BA meets the semicircle
CIB at P and the semicircle BIY at Q (Fig. 4). Then right triangles BCP and YBQ are

congruent (indeed, a clockwise quarter-turn about I carries the first to the second), and

it follows that BQ CP hc. Consequently, hc > c, hc c, or hc < c according as A
lies on the (open) segment BQ, at Q, or beyond Q on the ray BP. D

Consequently a triangle (not isosceles right) has a side square if and only if it is tall.
That side square is unique when it exists, it rests on the strictly shortest side of T, and

its side is the longest altitude of T.

Although a tall obtuse triangle T has a side square Sc, that square can never be Smn

because T can be moved into its interior by a suitable small motion. When T is tall
and not obtuse, then in addition to a side square it also has a vertex square. We need to
determine which of these two minimal squares is smaller.

Lemma 7 Let T ABC be an acute or right triangle (but not isosceles right) with
hc > c. Then T has exactly two minimal squares, a side square Sc on c and a vertex

square Sc at C, and Sc is smaller than, equal to, or larger than Sc precisely when

7 < 45°, 7 45°, or 7 > 45°.

Proof. Since hc > c, we conclude from Lemma 5 that ha < a and hb < b, so T has a

side square Sc on c (whose side is hc) and no other side squares. From Lemma 2 we see

that T has a vertex square Sc at the vertex C and at no other vertex. So T has exactly
two minimal squares, Sc and Se-

V U A V
(b)

Fig. 5 Comparison of side and vertex squares

Let CUVW be a square with side hc positioned so that A lies on UV (Fig. 5). Let D
be the foot of the altitude from C to AB, and let X be the point where the ray AB
meets the side VW. Then since Z.UCA ZACD and ZDCX ZXCW, ZACX
\ (2ZACD + 2ZDCX) i(90°) 45°. Consequently 7 < 45°, 7 45°, or 7 > 45°

according as A-B-X, B X, or A-X-B. If 7 < 45° so that A-B-X (Fig. 5(a)), then Sc

is not the smallest square that contains T because a small motion would move T inside
Sc; and consequently Sc must be smaller than Sc in this case. If a 45°, then B X
(Fig. 5(b)), and Sc Sc by the uniqueness assertion of Lemma 2. And if a > 45° so

that A-X-B (Fig. 5(c)) and if Sc were smaller than Sc, then T would fit in the larger

square Sc with the vertex C at a corner, which it evidently does not do. D
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The smallest square. Now it is easy to determine the smallest square that contains the

given triangle. We continue to assume that the given triangle T ABC is positively
oriented and a > ß > 7. In Fig. 6 (as in Fig. 4), MD is the mediator of the longest
side BC of T, the circular arc DB has center C, the segment IK makes a 45° angle with
BC, and the circular arc IJ has center at the point X for which BMIX is a square.

D

M

Fig. 6 The significant regions

The previous lemmas require four significant regions (Fig. 6). Recalling the normalization
a > b > c, let

Qi {A : ß, 7 > 45°, and AX > a/2}
Q2 {A : ß > 45°, 7 > 45°, and AX < a/2}

ih {A^I : ß> 45°, and 7 < 45°}
Q4 {A: ß<45°},

(4)

so that Qi is the closed circular triangular region D/I minus the point I, Q2 is the closed

circular triangular region KIJ minus the point I, Q3 is the closed circular triangular
region BIJC minus the point I, and Q4 is the closed triangular region BMI (including
I). The point I, which represents the anomalous isosceles right triangle, is included in

Ü4 but excluded from fl\, Ü2> änd Ü3.

Theorem 8 Let T ABC be a given positively oriented triangle labeled in such a way
that a > ß > 7, and let the four regions Q& be defined by (4). Then the smallest square
Sm;n that contains T is

if Ae Qi,

if Ae Q2,

if Ae Ü3,Sc

Sbc

(5)

if A g Q4,
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and T fits into a square S of side s if and only if s > sm;n, where the side sm;n of Smn

is given by
be cos a „ ^if A G flu

V b2 — Ibc sin a + c2

a sin /3 ff A G Q.2,

ab cos 7 .„ ^ (6)
—, _ if A G SZ3,

V a2 — 2ab sin 7 + b2

a
—^ zf A G S24.
V2

See Fig. 6. If A G Qi, then T is not tall by Lemma 6; it has just three minimal

squares, a vertex square at each vertex by Lemma 2; and the smallest of these is Sa by
Lemma 3. The side of Sa is given by (2). If A G ih or Q3, then T is tall by Lemma 6.

According to Lemma 7, it has just two minimal squares, a side square Sc and a vertex

square Sc, and the smaller is Sc in Q2 and Sc in Q3. The side of Sc is /zc «sin/3, and

the side of Sc is given by (2). Finally, if A G Q4 the diagonal square Sbc is the only
minimal square, and its side is a/VÏ. D

We have finally arrived at an answer to our original question: The triangle with sides

a, b, c fits in the square of side s if and only if s > sm;n, where smm is given by (6).
Theorem 8 also provides a solution for the dual problem: Given a square S and a triangle
To, find the largest triangle T similar to To that fits in S. Indeed, if S has side s and To

has sides a0, b0, and c0, then s0 s^n is the side of the smallest square that contains To,

and the largest triangle T similar to To that fits in S evidently has sides s«o/so, sbo/so,
and
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