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On the color partitions of a graph

Dedicated to Dorwin Cartwright on his 65 th birthday

An m-coloring of a graph G is a decomposition of its vertex (or point) set V(G)
into a union of m disjoint subsets Vx, V2,..., Vm such that no two points in any
one Vt are adjacent. Each of the subsets Vx is a color set, which means that all points
of Vt may be assigned the same color, whereas points in different color sets are
assigned different colors. In the resulting m-coloring of Cr, no two adjacent points
have the same color. The chromatic number x (G) is the smallest m for which an
m-coloring of G exists. We always write #(G) «; hereafter we consider only
«-colorings of G, i.e., colorings of G with the smallest possible number of colors.
Here we are following the notation and terminology of [2].
Let G be a graph with p points and #(G\)=«, and let Vxu V2u • • • vj Vn be an
«-coloring of G. Let | Vt\ =pv so that YjUiPi^P- Without loss of generality, we
also assume that px^p2^ ••• ^pn. Then the sequence (px,p2, ...,pn)is called a color
partition of G. We also define the following invariants: M=max{px}, M0=min{px],
m max {pn}, m0=min{pn} where the maxima and minima are taken over all
«-color partitions of G.

Our first result will serve to clarify the meaning of the invariant px. Recall that an
induced subgraph of G consists of a subset of the vertex set V(G) and all lines of
G joining points of this subset. If an induced subgraph of G contains no lines, no two
points of the subgraph are adjacent in G, so all points of the subgraph may be

placed in one color set. It might be suspected that M would be the order of the

largest totally disconnected induced subgraph of G. In fact, this is not the case.

Theorem 1. There are graphs G for which M is not the order of the largest induced

subgraph ofG with no lines.

Proof: The tree shown in figure 1 gives an example. The largest induced
subgraph containing no lines has vertex set {v1,v2,v3,v4}, so it is of order 4. A coloring

Figure 1



50 W. Bouwsma, F. Harary: On the color partitions of a graph

using {v!,v2,v3,v4} as a color set requires three colors. However, there is a unique
2-coloring with color sets {vl5 v2, v6}, and {v3, v4, v5}, so that / (G) 2 and M= 3. D
Since Yj"=\Pi *s a fixed number/? for all color partitions of a graph G, one might
suspect that every graph G has a color partition which includes both M=max{px}
and m0= min {/?„}. Again we show that this is not true.

Theorem 2. There are graphs having no colorpartition in which both M and m0 occur.

Proof: An example is shown in figure 2, where the Symbols #, O and ¦ represent
three colors. Since the graph contains a triangle, /(<7)>2. The 3-coloring in
figure 2a verifies that /(G)=3. Since v, and vJ+1, /= 1 to 8, cannot have the same
color, M<,S. The (5,2,2) partition in figure 2a shows that Af=5. The (4,4,1)

v5

(a) Figure 2

v5

(b)

partition in figure 2b shows that m0=l. The only possible color set with five
elements is {v1,v3,v5,v7,v9}. It is clear that the coloring in figure 2a is the only
3-coloring having a color set with five elements. For this graph, a partition containing

M cannot contain m0. D
No graph with fewer than nine points could serve to illustrate theorem 2. To see

this, note that if a graph illustrates theorem 2, it must have two different partitions
(PbP2>-->Pn) anc* (ri>r2> • ••>rw) mca ^at all the following conditions hold:

i=i i*i
ri<P\> rn<PwP\^-P2^ ' • * ^Pw r\^r2^ -^rn

It is an elementary number theoretic Observation that the smallest p for which all
these conditions hold is jp 9; and in this case, n 3, px 5, p2=p3=l, rx=r2=4
andr3= 1.
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These values gave rise to the (5,2,2) and (4,4,1) partitions used in figure 2.

Recall that the complement G of a graph G has the same vertex set as G, but a

line is in G if and only if it is not m G. The following lemma interprets a color
partition of G in terms of G.

Lemma 3a. A graph G has a (px,P2,...,p„) color partition if and only if
Kpi<uKp2Kj • • • uKPn is a subgraph ofG.

Proof: No two points in the same color set are adjacent in G. Thus each color set

with/?, points induces a complete subgraph Kp in G. D
The lemma is illustrated in figure 3. The points v2 and v4, which have the same
color in G, induce K2 in G. The next theorem is an instant corollary of lemma 3 a.

Figure 3

Theorem 3. The maximum number of lines in a graph with a (P\,P2,.-.,p„) color

partition is

©-£(.)•
_

Proof: By the lemma, G must have at least

lines.
A graph G is called uniquely colorable if there is only one decomposition of V(G)
into n /(G) color sets. Cartwright and Harary [1] showed that among all graphs G

with p points and a unique coloring into « color sets, the minimum number of
lines is (2p-n) (n- l)/2. To show that this minimum is attained, they used the

graph K(p-n + l,l,l,...,l), whose color partition is, of course,

(p-n+ 1,1,1,...,1). We show that for any partition (px,p2,...,/>„) with Ysl-xPi^P*
there is a uniquely colorable graph having the partition (px,p2,-,Pn)and containing

exactly (lp -n)(n- l)/2 lines.

Theorem 4. Let £f=i Pt=P with Px^Pi^'^Pn- Then the minimum number of
lines in a uniquely colorable graph with partition (p x,p2,... ,pJ is (2p -n)(n-1)/2.

We indicate the proof with an example. By the theorem of [1], it suffices to



52 W. Bouwsma, F. Harary: On the color partitions of a graph

construct a uniquely colorable graph G with partition 0?i,/>2>•••,/>«) having
(2p —n) (n— l)/2 lines. To illustrate the construction, consider the partition (5,4,3).
Label the points of the graph vx,v2,...,vX2, and take the color sets to be

C\={vx,v2,v3,v4,v5}, C2={v6,v7,v8,v9} and C3={v10,vn,v12}. The lines of G are con-
structed as follows. Choose a point (say, the first one listed) in each color set, and
join that point to every point not in its color set. Thus the point vx will be
adjacent to all points in C2uC3. As shown in figure 4, the point v6 is adjacent
to every point not in C2, and v10 is adjacent to every point not in C3.

v2< \Y^\^7 Vl2

v3t-^ Nvn

v.*r"

V / Vv8

Vv9

v10

v7

Figure 4

The graph obtained is uniquely 3-colorable, and it has (2 4- 3) (3 — 1 )jl 21 lines.
More generally, the selected point in C( is adjacent to p—pt points. However,
those lines that join the selected points of different color sets have been counted
twice. Thus the number of lines drawn (couting duplicates twice) is £-Li (/>-/>/)

np—p. Since there are 1 such lines that have been counted twice, the number

oflines in the graph is np—p—l =(2p—n)(n— l)/l. D

Lemma 3 a proves very useful when trying to construct graphs with specified color
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partitions. In fact, the graph used in the proof of theorem 2 was discovered by using
this lemma to construct one having both a (5,2,2) and a (4,4,1) color partition.
We shall show the details of the use of the lemma in the construction of the
graph used in the proofof the next result.
It is reasonable to suspect that if M>M0 for a given graph G, then for every r
with Af_>r^Mo, there would be some color partition of G for which px=*r. The
next construction will show that this interpolation conjeeture is not true.
We shall construct a graph with both an (8,2,2) partition and a (4,4,4) partition,
but having no partition with 4</?I<8. To do so, note that the complementary
graph G must contain a subgraph of the form K%v K2v K2. Label the points so
that the points of the induced üf8 are vbv2,..., v8, the points of the first induced K2
are v9 and v10, and the points of the second induced K2 are vu and vX2.

We want to construct the subgraph of the form K4uK4uK4 in such a way as

to prevent formation of 3-colorings in which a color set has five, six or seven

points. To do so, we distribute the points of each K4 among K% and the two K2s
as widely as possible. For example, take the points of the first K4 to be v,,v2,V9,vn;
let the points of the second K4 be v3,v4,v5,v10; and for the third K4 use v6,v7,v8
and v12. The union of the lines in all six of these complete subgraphs is the graph
G which with the corresponding graph G are shown in figure 5.

v.1212

1111

V. r, V10 3 10

v9 v4

Figure 5

Theorem 5. There is a graph G with x(G)=$ for which the only 3-color partitions
are (8,2,2) and (4,4,4).

Proof: Consider the graph G of figure 5. Since G has a triangle, #((/)> 2.

Figures 6a and 6b show two 3-colorings of G, yielding an (8,2,2) color partition
and a (4,4,4) color partition, respectively. It remains to show that there are no

other 3-color partitions. It is clear that no color set of G can contain more than

eight points and that {v,,v2,...,v8} is the only possible 8-point color set. Since

v9 und v12 must be in different color sets, and v10 and v„ must be in different

color sets, an (8,3,1) color partition is impossible.
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12 12

11 11

V10 V3 10

(a) b)Figure 6

The only points that could possibly be in the same color set with v9 are vb v2, v10 and

vu, since these are the only points not adjacent to v9 in G. However, v10 and vn are
adjacent in G, so they cannot be in the same color set. It follows that a color set

containing v9 has at most four points. In the same way, one can show that a color
set containing v10 or vu or vX2 has at most four points. Therefore in any color
partition in which px>4, the color set with px points must be a subset of
{vj,v2,...,v8}= Vx. If 4</?1<8, the subgraph induced by v9,v10,vn,v12 and those
points of Vx that are not in the color set with px points must be 2-colorable.
However, it is easily verified that the subgraph induced by v9,v10,vn,v12 and

any one or more points of Vx contains a triangle and is therefore not 2-colorable.
Then if /?i<8, it follows that px 4 and (4,4,4) is the only 3-color partition of
Gwith/?! 4. D

Remark: In view of this theorem there is no r with Af0=4<r<Af=8 for which
this graph has a 3-color partition with px r. It also follows that for no s with
m0=2<^<4=mis there a 3-color partition of G withpn=s.
Cartwright and Harary [1] have shown that in the «-coloring of a uniquely
«-colorable graph, the subgraph induced by the union of any two color classes is
connected. It is easy to obtain an analogous result for graphs with unique «-color
partitions.

Theorem 6. In any n-coloring of a graph with a unique n-color partition, the union
of any two color sets has at most one component in which there are more points
ofone color than ofthe other.

Proof: Suppose C, and Cj are two color sets of the graph G, and suppose Qu Cj
has at least two components in which more points have one color than the other.
Then a reversal of the colors of all points within exactly one of these components
produces a different n-color partition of G. D
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Corollary. In any n-coloring of a graph with a unique color partition, if two color
sets Ct and Cj have the same number ofpoints, then every component ofC^C has
the same number ofpoints ofeach color.

J

The converse of the theorem is not true. Figure 7 illustrates a 3-chromatic graph
having 3-color partitions (3,3,3) and (4,3,2). The color sets for the (3,3,3) partition

Figure 7

are {a,b,c}, {d,e,f\, and {g,h,i}; for the (4,3,2) partition, they are {a,b,d,g}, {c,e,h}
and {/;/}. These are the only 3-colorings of G. It is routme to verify that in either
coloring, the union of any two color sets is connected (thus having only one
component), yet the color partition of G is not unique.

Ward Bouwsma1) and Frank Harary, University of Michigan, Ann Arbor, USA
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