Vierseitige Flächen in Geradenanordnungen

Autor(en): Mengersen, Ingrid

Objekttyp: Article

Zeitschrift: Elemente der Mathematik

Band (Jahr): 34 (1979)

Heft 3

PDF erstellt am: **26.09.2024**

Persistenter Link: https://doi.org/10.5169/seals-33802

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

P; if P is the circumcenter, then Z is the orthocenter. Also, P and Z are isogonal conjugates if they are the foci of any inscribed ellipse of the given triangle.

$$a_1 R_{11} R_{12} R_2 R_3 + a_2 R_{21} R_{22} R_3 R_1 + a_3 R_{31} R_{33} R_1 R_2 \ge |b_1| |b_2| a_1 a_2 a_3. \tag{16.1}$$

This is a variation of Hayashi's inequality (2.1) and reduces to it if b_1 and b_2 coincide with the circumcenter and P is on the circumcircle.

Our last inequality here is a simple proof of a result of Tweedie [10], i.e., if $A_1A_2A_3$ and $A'_1A'_2A'_3$ denote two directly similar triangles in the plane, then

$$(a_1 \overline{A_1 A_1}, a_2 \overline{A_2 A_2}, a_3 \overline{A_3 A_3})$$
 form a triangle. (17.1)

Using (17) with (u, v, w) and (u', v', w') as complex numbers representing the vertices of the two triangles, we have by similarity that $v - w = \lambda(v' - w')$, $w - u = \lambda(w' - u')$, $u - v = \lambda(u' - v')$. Whence, $\sum u'(v - w) = 0$ and then

$$(v'-v)(w-u)+(w'-w)(u-v)=-(u'-u)(v-w)$$
(17')

and the result follows by taking absolute values of both sides. A simple synthetic proof of (17.1) was also given by Pinkerton [10], p. 27.

M. S. Klamkin, University of Alberta, Edmonton, Canada

REFERENCES

- 1 O. Bottema, R.Z. Djordjević, R.R. Janić, D.S. Mitrinović and P.M. Vasić: Geometric Inequalities. Walters-Noordhoff, Groningen 1969.
- 2 S. Barnard and J.M. Childs: Higher Algebra, p. 78. MacMillan, London 1949.
- 3 M.S. Klamkin: Triangle Inequalities via Transformations [see notices of A.M.S., January 1972, p. A-103, 104].
- 4 J. Brill: On the application of the theory of complex quantities to plane geometry. Mess. Math. 16, 8-20 (1887).
- 5 T. Hayashi: Two theorems on complex numbers. Tôhoku Math. J. 4, 68-70 (1913/14).
- 6 M. Fujiwara: On the deduction of geometrical theorems from algebraic identities. Tôhoku Math. J. 4, 75-77 (1913/14).
- 7 K. Stolarsky: Cubic triangle inequalities. Am. Math. Monthly 78, 879-881 (1971).
- 8 M.S. Klamkin: Geometric inequalities via the polar moment of inertia. Math. Mag. 48, 44-46 (1975).
- 9 M.S. Klamkin: Problem 77-10. SIAM Rev. 20, 400-401 (1978).
- 10 C. Tweedie: Inequality theorem regarding the lines joining corresponding vertices of two equilateral, or directly similar, triangles. Proc. Edinborough Math. Soc. 22, 22-26 (1903/4).

Vierseitige Flächen in Geradenanordnungen

Durch Anordnungen A(n) von $n \ge 4$ Geraden werden die projektive Ebene P und die euklidische Ebene E in einfach zusammenhängende Gebiete (Flächen) zerlegt. In P treten dabei nach [1], S. 29, maximal

$$V_{P}(n) = \begin{cases} \binom{n-1}{2} & \text{für } n = 4\\ \binom{n-1}{2} - 1 & \text{für } n \ge 5 \end{cases}$$
 (1)

vierseitige (durch vier Geraden bestimmte) Flächen auf. In E gibt es für einfache A(n) (keine Parallelen und keine Mehrfachschnittpunkte) nach [2] maximal

$$\bar{V}_E(n) = \begin{cases} \binom{n-1}{2} + \frac{n}{2} - 3 & \text{für } n = 0 \pmod{4} \\ \binom{n-1}{2} + \left[\frac{n}{2}\right] - 2 & \text{sonst} \end{cases}$$
(2)

vierseitige Flächen.

In dieser Note soll das Maximum $V_E(n)$ von vierseitigen Flächen nun auch für beliebige Anordnungen A(n) in E bestimmt werden. Ausserdem werden einige Eigenschaften von Anordnungen $A_{V,E}(n)$ und $A_{V,P}(n)$ mit maximaler Anzahl vierseitiger Flächen in E und P angegeben. Damit wird auch die Vermutung aus [1] bewiesen, dass in P das Maximum (1) nur bei einfachen Anordnungen angenommen wird.

Satz 1. Alle maximalen Anordnungen $A_{V,E}(n)$ und $A_{V,P}(n)$ sind ohne Mehrfach-schnittpunkte. In $A_{V,E}(n)$ gibt es nur für $n \equiv 0 \pmod{4}$ höchstens zwei und sonst keine Parallelen.

Beweis: Zwischen den Anzahlen f, k und s der Flächen, Flächenseiten und Geradenschnittpunkte in A(n) gilt sowohl in E als auch in P, wie etwa durch vollständige Induktion über n bewiesen werden kann, die Beziehung

$$f = k - s + 1 \tag{3}$$

(Eulersche Formel). Mit f_i als der Anzahl der i-seitigen Flächen in A(n) erhält man

$$f = \sum_{i \ge 1} f_i, \tag{4}$$

$$2k = \sum_{i \ge 1} i f_i. \tag{5}$$

Aus (5) folgt mit (3) und (4)

$$f_4 = s - 1 - \frac{1}{2} \sum_{\substack{i \ge 1 \\ i \ne 4}} (i - 2) f_i. \tag{6}$$

Bezeichnet man mit s_i die Anzahl der *i*-fachen Schnittpunkte in A(n) und in E mit r(A) die Minimalzahl von Klassen paarweise zueinander paralleler Geraden sowie

mit n_i die Anzahl der Geraden in der i-ten Klasse $(1 \le i \le r)$, so gilt

$$s_E = \binom{n}{2} - \sum_{i \ge 3} \left(\binom{i}{2} - 1 \right) s_{i,E} - \sum_{i=1}^r \binom{n_i}{2}. \tag{7}$$

In P sind im Fall $s_n = 0$ mindestens n dreiseitige Flächen in A(n) vorhanden (siehe etwa [1], S. 25). Da man jeder dreiseitigen Fläche von A(n) in P eine dreiseitige von A(n) in E umkehrbar eindeutig zuordnen kann, gilt immer

$$f_3 \ge n$$
 für $s_n = 0$ und $r > 1$. (8)

Die trivialen A(n) mit $s_n \neq 0$ (d.h. $s_n = 1$) oder r = 1 haben $f_4 = 0 < V$ zur Folge. Wegen $f_1 = 0$ für r > 1 und mit $f_i \ge 0$ für $i \ge 5$ folgt in E aus (6) mit (7) und (8)

$$f_{4,E} \le {\binom{n-1}{2}} + \frac{n}{2} - 2 - \sum_{i \ge 3} \left({\binom{i}{2}} - 1 \right) s_{i,E} - \sum_{i=1}^{r} {\binom{n_i}{2}}. \tag{9}$$

Ist dann entweder $s_{i,E} \ge 1$ für ein $i \ge 3$ oder $n_i \ge 2$ für ein $i \ge 1$, so folgen durch Vergleich mit (2) alle E betreffenden Aussagen in Satz 1.

Nun sei für P noch angenommen, dass es eine nicht einfache Anordnung $A_{V,P}(n)$ gibt. Wegen $n \ge 4$ und $V_P(n) > 0$ gilt dann $f_1 = f_2 = s_n = 0$. Mit

$$s_P = \sum_{i \ge 2} s_{i,P}, \qquad k_P = \sum_{i \ge 2} i \, s_{i,P}, \qquad \sum_{i \ge 2} \left(\frac{i}{2}\right) s_{i,P} = \left(\frac{n}{2}\right) \tag{10}$$

gilt

$$f_P = \binom{n}{2} + 1 - \sum_{i \ge 3} \binom{i-1}{2} s_{i,P} \tag{11}$$

wegen (3). Mit (4) folgt hieraus

$$f_{4,P} = {\binom{n-1}{2}} - (f_{3,P} - n) - \sum_{i \ge 5} f_{i,P} - \sum_{i \ge 3} {\binom{i-1}{2}} s_{i,P}.$$
 (12)

Mit (10), (5), (4) und (3) ergibt sich die Gültigkeit von

$$f_{3,P} = 4 + 2\sum_{i \ge 3} (i-2)s_{i,P} + \sum_{i \ge 5} (i-4)f_{i,P}.$$
(13)

Da mindestens ein $s_{i,P}$ mit $i \ge 3$ grösser als 0 sein muss, kann $f_{4,P}$ aus (12) den Wert in (1) wegen (8) für n=4 gar nicht und für $n \ge 5$ nur annehmen, wenn $f_{3,P}=n$, $s_{3,P}=1$, $s_{i,P}=0$ für $i \ge 4$ und $f_{i,P}=0$ für $i \ge 5$ gelten. Dann folgt aber aus (13) noch $f_{3,P}=6$. Nach [1], S. 5, gibt es jedoch keine Anordnung von sechs Geraden mit diesen Werten $s_{i,P}$ und $f_{i,P}$.

Aus Satz 1 und (2) folgt unmittelbar noch

Korollar 1. Es gilt $V_E(n) = \bar{V}_E(n)$.

Zwei Anordnungen $A_1(n)$ und $A_2(n)$ sollen isomorph heissen, wenn es eine eineindeutige Abbildung der Schnittpunkte, Flächenseiten und Flächen von $A_1(n)$ auf diejenigen von $A_2(n)$ gibt, welche alle Nachbarschaftsbeziehungen erhält.

Satz 2. Es gibt bis auf Isomorphie genau eine Anordnung $A_{V,P}(n)$.

Beweis: Nach [1], S. 29, gibt es genau eine einfache Anordnung $A_{V,P}(n)$, und damit folgt Satz 2 aus Satz 1.

Für E gilt die Eindeutigkeit nicht, denn

Satz 3. Im Fall $n \equiv 0 \pmod{4}$ gibt es mindestens zwei nichtisomorphe Anordnungen $A_{V.E}(n)$, eine ohne und eine mit zwei Parallelen.

Beweis: Für n=4 sind die beiden Anordnungen in Abb. 1 nicht isomorph, da etwa schon die Schnittpunktanzahlen verschieden sind.

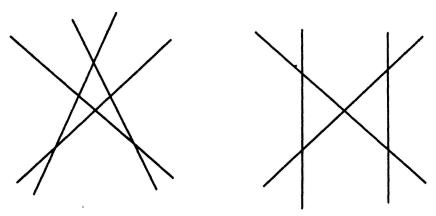


Abb. 1. Zwei nichtisomorphe Anordnungen $A_{V,E}$ (4).

In [2] wurde für $n-2\equiv 2\pmod 4$, $n\ge 6$ eine einfache Anordnung $A_{V,E}(n-2)$ konstruiert, in der einer unbeschränkten dreiseitigen Fläche D eine unbeschränkte zweiseitige Z_1 benachbart ist und eine unbeschränkte zweiseitige Z_2 «gegenüberliegt» (siehe Abb. 2). Mit g_1 sei die D und Z_1 trennende Gerade bezeichnet. Zu g_1 wird eine Parallele g_2 so gezeichnet, dass g_2 durch Z_1 und Z_2 verläuft und dass zwischen g_1 und g_2 keine Schnittpunkte liegen (dies ist immer möglich, da nur endlich viele Schnittpunkte vorhanden sind). Eine Gerade g_3 soll dann g_2 in Z_2 und g_1 erst von Z_1 nach D schneiden.

Da durch g_2 und g_3 jeweils n-4 und n-1 neue vierseitige Flächen zu $A_{V,E}(n-2)$ hinzugekommen sind, hat sich eine nicht einfache, maximale Anordnung $A_{V,E}(n)$ ergeben (mit den Parallelen g_1 und g_2). Die Nichtisomorphie zu der in [2] kon-

Kleine Mitteilungen 59

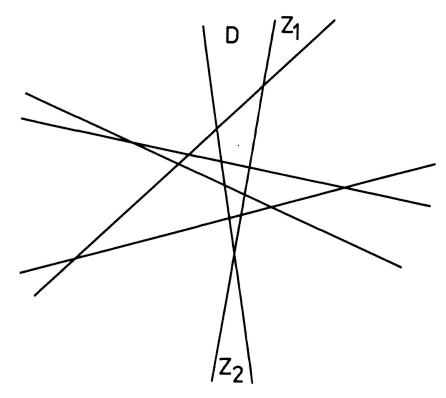


Abb. 2. Eine Anordnung $A_{V,E}$ (6).

struierten einfachen Anordnung $A_{V,E}(n)$ folgt etwa aus den verschiedenen Schnittpunktanzahlen.

Damit ist Satz 3 bewiesen. Es kann ausserdem gezeigt werden, dass für $n \equiv 0 \pmod{4}$ weitere maximale Anordnungen $A_{V,E}(n)$ existieren, und auch für $n \not\equiv 0 \pmod{4}$ gibt es, bis auf einige Ausnahmen, nichtisomorphe Anordnungen $A_{V,E}(n)$.

Ingrid Mengersen, Braunschweig, BRD

LITERATURVERZEICHNIS

- 1 B. Grünbaum: Arrangements und spreads. Am. Math. Soc., Providence, R.I. (1972).
- 2 H. Harborth und I. Mengersen: Geradenanordnungen mit maximaler Anzahl vierseitiger Flächen (eingereicht).

Kleine Mitteilungen

An application of Dirichlet convolution in proving some inequalities from elementary number theory

1. The aim of this note is to show how we can use the properties of a ring of real arithmetic functions to prove some known inequalities from the elementary theory of numbers.