Vertex cyclic graphs

Autor(en): Roberts, J.
Objekttyp: Article
\section*{Zeitschrift: Elemente der Mathematik}

Band (Jahr): 30 (1975)
Heft 1

PDF erstellt am:
19.03.2024

Persistenter Link: https://doi.org/10.5169/seals-30642

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Vertex Cyclic Graphs

§ 1. Definitions

In the following, we consider graphs which are finite, undirected, loop-free, and without multiple edges.

Let u and v be vertices of a graph G. A $u-v$ walk in G is an alterating sequence of vertices and edges beginning with u, ending with v, and such that each edge is incident with the vertices immediately preceeding and succeeding it. A $u-v$ walk is open if $u \neq v$ and closed if $u=v$. A trail is a walk without repeated edges and a path is a trail without repeated vertices. A circuit is a closed trail and a cycle is a circuit in which the intermediate vertices are not repeated.

A graph is connected if there is a walk joining every pair of vertices. A component of a graph G is a connected subgraph not properly contained in any other connected subgraph of G. A vertex v of a graph G is a cut-vertex of G if $G-v$ has more components than does G. A graph G is a block if it is connected and has no cut-vertex. A block of a graph G is a subgraph of G which is maximal with respect to being a block.

Let $V(G)$ and $E(G)$ denote respectively the vertex and edge sets of a graph G. For vertices u and v of G, let the distance $d_{G}(u, v)$ between u and v be the length of a shortest $u-v$ path. The eccentricity $e(v)$ for $v \in V(G)$ is $e(v)=\max \left\{d_{G}(u, v): u \in V(G)\right\}$ and the radius $\operatorname{rad} G$ of G is $\operatorname{rad} G=\min \{\mathrm{e}(v): v \in V(G)\}$. The center $Z(G)$ of G is $Z(G)=\{v \in V(G): e(v)=\operatorname{rad} G\}$.

In general, we will follow the conventions of Behzad and Chartrand [2].

§ 2. Randomly Eulerian graphs

Although we will consider 'randomly eulerian' graphs only to the extent that they exist in a larger class of graphs, they are introduced here for perspective and to illustrate the property we will investigate.

Let G be a connected graph. An eulerian trail in G is an open trail of G containing all edges of G and an eulerian circuit of G is a circuit of G which contains all edges of G. The graph G is eulerian if it has an eulerian circuit. Also, G is randomly eulerian from a vertex v if each trail with initial vertex v can be extended to an eulerian $v-v$ circuit of G.

Euler [3] characterized eulerian graphs and Ore [4] characterized graphs which are randomly eulerian from a vertex. In particular, if the degree $\operatorname{deg}_{G} v$ of $v \in V(G)$ is the number of edges in G incident with the vertex v, then we have the following well-known propositions.

Proposition 1. A connected graph is eulerian if and only if each vertex has even degree.

Proposition 2. A connected graph has an eulerian trail if and only if it has exactly two vertices of odd degree.

Proposition 3. An eulerian graph is randomly eulerian from a vertex v if and only if v belongs to every cycle of G.

It is a property inherent in the third proposition in which we are most interested and will pursue in the next section.

§ 3. Vertex cyclic graphs

A connected graph G with only cyclic blocks is vertex cyclic if it has a vertex which belongs to every cycle of G. In particular, a vertex cyclic graph G is v-cyclic if v is a vertex belonging to each cycle of G. To see that non-eulerian vertex cyclic graphs exist, it suffices to consider the complete bipartite graph $K(2,3)$.

Noting that a (p, q)-graph is a graph with p vertices and q edges, we have the following result.

Theorem 1. If G is a v-cyclic (p, q)-graph, then $q \leq 2 p-3$.
Proof: The graph $G-v$ is a forest with $p-1$ vertices and at most $p-2$ edges. Since v can be adjacent to at most $p-1$ vertices, G can have at most $2 p-3$ edges.

For a graph G, let $\Delta(G)$ and $\delta(G)$ respectively denote the maximum and minimum degree among the vertices of G. Another consequence following from the proof of Theorem 1 is presented below.

Corollary 2. If G is vertex cyclic, then $\delta(G)=2$.
In [1], Bäbler showed for a graph G randomly eulerian from a vertex v that $\operatorname{deg}_{G} v=\Delta(G)$. We now generalize this result by showing this is a property of vertex cyclic graphs.

Theorem 3. If G is a v-cyclic graph, then $\operatorname{deg}_{G} v=\Delta(G)$.
Proof: Since $H=G-v$ is a forest, we have that $\Delta(H)$ does not exceed the number n of end-vertices of H. In G, the vertex v is adjacent to each end-vertex of H, thus, $\Delta(H) \leq n \leq \operatorname{deg}_{G} v$. Furthermore, for $u \in V(H), \operatorname{deg}_{G} u=\operatorname{deg}_{H} u$ if $u v \notin E(G)$ and $\operatorname{deg}_{G} u$ $=1+\operatorname{deg}_{H} u$ if $u v \in E(G)$. In any event, $\operatorname{deg}_{G} u \leq \operatorname{deg}_{G} v$ for all $u \in V(H)$ since the only edges in G which are not in H, are those edges joining v to some vertex in H.

We may now obtain the following result.
Theorem 4. If G is a v-cyclic graph and $\operatorname{deg}_{G} w=\Delta(G)$ for some $w \in V(G)-\{v\}$, then G is also w-cyclic and $\operatorname{deg}_{G} u=\delta(G)$ for all $u \in V(G)-\{v, w\}$.

Proof: If G is a cycle, then the theorem follows. So, suppose G is not a cycle. Let n be the number of end-vertices of the forest $H=G-v$. Then, $\operatorname{deg}_{G} w=\operatorname{deg}_{G} v \geq n$.

We now show that $\operatorname{deg}_{\boldsymbol{H}^{w}}=n$. Since H is acyclic, we have that $\operatorname{deg}_{\boldsymbol{H}^{w}} \leq n$. So, suppose $\operatorname{deg}_{\boldsymbol{H}} w<n$. Then the edge $v w$ must be in $E(G)$ and we have that $n \geq 1+$ $\operatorname{deg}_{\boldsymbol{H}^{w}}=\operatorname{deg}_{G^{w}}=\operatorname{deg}_{G} v \geq n$. Thus, w is an end-vertex of H. Hence, $\operatorname{deg}_{\boldsymbol{H}^{w}}=1$ which implies that $\Delta(G)=\operatorname{deg}_{G} v=\operatorname{deg}_{G} w=2$. As such, G must be a cycle and this is a contradiction. Thus, $\operatorname{deg}_{\boldsymbol{H}^{w}}=n$.

Since $\operatorname{deg}_{\boldsymbol{H}^{w}}=n, H$ is a tree. Also, $\operatorname{deg}_{G^{w}}=n$ implies all vertices of H different from w have degree at most two in H. As such, every path joining two distinct endvertices of H must contain u. Furthermore, $\operatorname{deg}_{G} w=\operatorname{deg}_{G} v$ implies that v is adjacent to only end-vertices of H and possibly w. Consequently, every vertex of G different from v and w has degree $\delta(G)=2$ and w lies on every cycle of G.

As an immediate consequence of the preceding two results, we have the following.

Corollary 5. A graph is vertex cyclic from at least three vertices if and only if it is a cycle.

A property which is inherent in the eulerian situation, but not for vertex cyclic graphs in general, is presented below.

Lemma 6. If G is randomly eulerian from a vertex v and T is any trail with initial vertex v, then $G-E(T)$ has at most one nontrivial component.

Proof: If T is a circuit, then each nontrivial component of $G-E(T)$ is eulerian and, as such, contains a cycle which in turn contains v. Hence, $G-E(T)$ has at most one nontrivial component and it contains v. If T is not a circuit, then we can extend T by a path P to yield a circuit T^{\prime}. Let H_{v} be the component of $G-E\left(T^{\prime}\right)$ containing v. Then, any other component of $G-E\left(T^{\prime}\right)$ is trivial. Also, $G-E(T)$ is $G-E\left(T^{\prime}\right)$ together with the path P. Hence, given any component of $\mathrm{G}-E(T)$ not containing v, it must be trivial. Thus, the lemma follows.

A vertex cyclic graph G

A circuit T of G

Figure 1

To see that the result in Lemma 6 does not generalize to all vertex cyclic graphs, it suffices to consider the vertex cyclic graph G and the circuit T of G in Figure 1. Then, $G-E(T)$ has two nontrivial components, neither of which contain v. However, there do exist noneulerian vertex cyclic graphs with this property. In fact, the following theorem characterizes all such vertex cyclic graphs.

Theorem 7. Let G be a v-cyclic graph. Then, $G-E(T)$ has at most one nontrivial component for each trail T with intial vertex v if and only if:
a) G is vertex cyclic from exactly two vertices; or
b) G is eulerian.

Proof: The sufficiency of a) or b) follows from Theorem 4 and Lemma 6 respectively. To show the necessity of a) or b), we show that if G is noneulerian and vertex cyclic from only v, then G has a trail T with initial vertex v such that $G-E(T)$ has at least two nontrivial components. We now consider the following two cases.

Case 1. Suppose G has a block B with at least two vertices different from v and both of odd degree. Then, there exist vertices u and w in B of odd degree together with a $u-w$ path P containing neither v nor any other odd vertex.

For each edge e in $G-E(P)$ incident with a vertex x in P, there is an $x-v$ path P_{e} in $G-E(P)$. Also, for each pair of edges e_{1}, and e_{2} in $G-E(P)$ incident with a vertex x in P, the paths $P_{e_{1}}$ and $P_{e_{2}}$ have only x and v in common. Since each vertex x of P has even degree in $G-E(P)$, we may pair them to form cycles, the union of which is a $v-v$ circuit C_{x} which exhausts the edges in $G-E(P)$ incident
with x. Also, if $P_{e_{1}}$ and $P_{e_{2}}$ correspond to edges e_{1} and e_{2} incident with distinct vertices x_{1} and x_{2} respectively, then $P_{e_{1}}$ and $P_{e_{2}}$ have only v in common. Consequently, the $v-v$ circuits $C_{x_{1}}$ and $C_{x_{2}}$ have only v in common if $x_{1} \neq x_{2}$. Thus, the union T of all the circuits $C_{x}, x \in V(P)$, is a $v-v$ circuit in $G-E(P)$ exhausting all the edges in $G-E(P)$ incident with vertices of P.

Let C be a cycle in T containing w. Then C has an edge $x v$ incident with v but not with w. Then $T-x v$ has a $v-x$ trail T^{\prime} exhausting the edges in $G-E(P)$ incident with vertices of P. Thus, the paths P and x, v must be in different components of $G-E\left(T^{\prime}\right)$.

Case 2. Suppose G has a block B with exactly one vertex w different from v and of odd degree. Necessarily, the vertex v must also be of odd degree in B.

Suppose G is not a block. Let u be a vertex of B different from v and adjacent to w. Then, $B-u w$ is connected and has u and v as its only vertices of odd degree. By Proposition 2, B - uw has an eulerian $u-v$ trail T. Let B^{\prime} be any block of G different from B. Then the path u, w and the block B^{\prime} lie in different components of $G-E(T)$.

Conversely, suppose $G=B$. Since G is not w-cyclic, there is a cycle C in G not containing w. Since w can be adjacent to atmost one vertex of $C-v$, there is a vertex x in $G-V(C)$ adjacent to w. Note that $G-E(C)$ has only one nontrivial component H and $H-x w$ has only two vertices of odd degree; in particular, x and v are of odd degree. By Proposition 2, $H-x w$ has an eulerian $v-x$ trail T. Since T exhausts the edges in G - $x w$ incident with x and w, the path x, y and the cycle C lie in different components of $G-E(T)$.

We now consider the center of a vertex cyclic graph and show that it must contain any vertex for which the graph is vertex cyclic.

Theorem 8. If G is a v-cyclic graph, then $v \in Z(G)$.
Proof: Let $u \in V(G)$ be such that $d_{G}(u, v)=e_{G}(v)$ and suppose u is in block B of G. If $B \neq G$, then for each $w \in V(G)-V(B)$ we have that $e_{G}(w) \geq d_{G}(w, u)=d_{G}(w, v)+$ $d_{G}(v, u)>d_{G}(v, u)=e(v)$ since v can be the only cut-vertex of G. In any event, $Z(G) \subseteq V(B)$ since $e(z) \leq e(v)$ for all $z \in Z(G)$.

Since u and v are in a block, there exists a cycle containing u and v. Let C be a smallest such cycle. Given any two vertices of C and a diagonal path joining them, the path must contain v. Since C is a smallest cycle, we have $\operatorname{rad} C=e_{G}(v)$. Thus, $e_{C}(x)=\operatorname{rad} C$ for each $x \in V(C)$. Since there are no shorter paths in G joining any two vertices of C, we also have $e_{G}(x) \geq e_{C}(x)$ for all $x \in V(C)$.

Figure 2

If $B=C$, we are done. So, suppose $B \neq C$. Let $w \in V(B-C)$. Then there is exactly one path P not containing v but joining w to C. Suppose P joins C at the vertex x. Let $H=G-E(C)$ and let w_{1} be the vertex on $P-x$ closest to x which minimizes $d_{P}\left(w, w_{1}\right)+d_{H}\left(w_{1}, v\right)$. Let P_{1} be the $w_{1}-x$ subpath of P and let P_{2} be a shortest $w_{1}-v$ path in H. Clearly, P_{1} and P_{2} have only w_{1} in common. Let P_{3} be a shortest $x-v$ subpath of C containing u. Then P_{1}, P_{2} and P_{3} form a cycle C_{1} (cf. Figure 2) and $\operatorname{rad} C_{1} \geq \operatorname{rad} C$. As such, there is a vertex $s \in V\left(P_{3}\right)$ such that $d_{C_{1}}\left(w_{1}, s\right)$ $\geq \operatorname{rad} C$. By our choice of w_{1}, there is no shorter $s-w_{1}$ path in G and we have that $e(w) \geq d(w, s) \geq d\left(w_{1}, s\right) \geq \operatorname{rad} C \geq e(v)$. Hence, it follows that $v \in Z(G)$.

Given a set V of vertices of a graph G, the induced subgraph $\langle V\rangle$ of G has vertex set V and edge set $E=\{u v \in E(G): u, v \in V\}$. It is well known that the center need not induce a connected subgraph. This is also the case for eulerian graphs. In particular, the graph in Figure 3 is eulerian, has center $\{u, v\}$, and $\langle\{u, v\}\rangle$ is not connected. However, this is not the case for vertex cyclic graphs.

Figure 3

Theorem 9. If G is a vertex cyclic graph, then $Z(G)$ is connected.
Proof: Suppose G is v-cyclic. If $Z(G)=\{v\}$ or $d_{G}(v, z) \leq 1$ for all $z \in Z(G)$, then the result follows. So, suppose there is a $z \in Z(G)$ such that $d_{G}(v, z) \geq 2$ and let P be any shortest $v-z$ path. It suffices to show $V(P) \subseteq Z(G)$. To show this, it suffices to prove that the vertex u adjacent in P to z is also in $Z(G)$. Let P_{1} be the $v-u$ subpath of P. This is shown in Figure 4, the remainder of which we will construct in the following.

Figure 4

Suppose $u \notin Z(G)$. Since $z \in Z(G)$ and $u z \in E(G)$, we have that $e(u)=e(z)+1$. Let $w \in V(G)$ be such that $d(u, w)=e(u)$. Then, $v \neq w \neq z$ and $d(w, z)=e(z)$.

Let P_{2} be a shortest $z-w$ path. Since G is v-cyclic, v is the only vertex which P_{1} and P_{2} can have in common. In this case, the $z-v$ subpath P_{2}^{\prime} of P_{2} is of the same length as P. Hence, P_{1} together with the $v-w$ subpath of P_{2} is a $u-w$ walk of length $e(z)$. Since this is impossible, the paths P_{1} and P_{2} are disjoint.

Since $\operatorname{deg}_{G^{w}} \geq 2$, there is a vertex x adjacent to w but not on P_{2}. Then, $d_{G}(x, z) \leq$ $e(z)$. Let P_{3} be a shortest $x-z$ path. Clearly, $w \notin V\left(P_{3}\right)$ and v must be on P_{3}. Let
P_{3}^{\prime} and $P_{3}^{\prime \prime}$ respectively denote the $x-v$ and $v-z$ subpaths of P_{3}. Then, $P_{3}^{\prime \prime}$ has the same length as P. Hence, the paths P_{1}, P_{3}^{\prime}, and $\langle\{w, x\}\rangle$ constitute a $u-w$ walk of at most $e(z)$. Since this is impossible, it must be the case that $u \in Z(G)$. As such, the theorem follows.

As a special case of the preceding theorem, we have the following corollary.
Corollary 10. If a graph G is randomly eulerian from any vertex, then the center $Z(G)$ induces a connected subgraph.

John Roberts, Western Michigan Univ., Kalamazoo, USA

REFERENCES

[1] F. Bäbler, Über eine spezielle Klasse Euler'scher Graphen. Comment. Math. Helv. 27, 81-100 (1953).
[2] M. Behzad and G. Chartrand, Introduction to the Theory of Graphs. Allyn and Bacon, Boston (1972).
[3] L. Euler, Solutio problematis ad geometriam situs pertinentis. Comment. Academiae Sci. I. Petropolitanae 8, 128-140 (1736). Opera omnia $\mathrm{I}_{7}, 1-10$.
[4] O. Ore, A problem regarding the tracing of Graphs. Elem. Math. 6, 49-53 (1951).

Kleine Mitteilungen

When is the divisibility relation in a monoid a partial ordering?

1. Let $\langle M, \cdot, e\rangle$ be a monoid, i.e., a semigroup $\langle M, \cdot\rangle$ with an identity element e. We define the divisibility relation \leq in M by

$$
x, y \in M ; x \leq y \quad: \leftrightarrow \quad x u=y \quad \text { for some } \quad u \in M .
$$

By a non-trivial group we mean a group consisting of two or more elements. For $x \in M$, we denote the principal right ideal $\{x u ; u \in M\}$ by $x M$. It is easily seen that, for arbitrary $x, y \in M$,

$$
\begin{equation*}
x \leq y \leftrightarrow y M \subset x M \leftrightarrow y \in x M \tag{1}
\end{equation*}
$$

and that \leq is reflexive and transitive. Shwu-Yeng T. Lin [5] raised the problem to find a necessary and sufficient condition on M for \leq to be a partial ordering. In this note we present an answer to this question and several remarks about it.
2. Criterion 1: For a monoid $\langle M, \cdot, e\rangle$, the following statements are equivalent:
${ }^{(*)} x, u, v \in M ; x u v=x \rightarrow x u=x$,
$\left(^{\prime \prime}\right) x, y \in M ; x M=y M \rightarrow x=y$,
${ }^{(*)}$) the divisibility relation \leq in M is a partial ordering.
Proof: $\left({ }^{*}\right) \rightarrow\left({ }^{*}\right)$: Assume that $x M=y M$. Then $x=x e \in x M=y M$ and, analogously, $y \in x M$. Therefore there exist $u, v \in M$ such that $y=x u, x=y v$, hence $x u v=x$, and $\left({ }^{*}\right)$ implies $x u=x$, i.e., $x=y .-\left(*^{\prime}\right) \rightarrow\left({ }^{* \prime \prime}\right)$: Suppose that $x \leq y$ and $y \leq x$. From (1) we conclude $x M=y M$, and by virtue of (${ }^{* \prime}$) we get $x=y .-\left({ }^{* \prime \prime}\right) \rightarrow$ $\left(^{*}\right)$: Let be $x u v=x$. Then $x u \leq x$ and $x \leq x u$, and antisymmetry yields $x u=x$.

