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F. Hohenberg: Die Hexaeder und Tetraeder im Dodekaeder 101

5.1. Die Fünfecke von TIX bestehen aus Würfelkanten in den Seitenflächen von 77,

daher ist 77x 77. Auch 773 ist ein Dodekaeder, denn eB1 ist Verbindungsebene von
Würfelkanten in 5 Schnittpunkten III und en ist zur Seitenfläche 01234 von 77

parallel. 773 geht aus 77 durch (^F— 2)-fache Streckung aus M hervor.
5.2. In allen 9 in Figur 1 enthaltenen Schnittpunkten T, II', IIP von Tetraederkanten

ist deren Verbindungsebene die Ebene 326879. Diese Ebene ist zugleich die
Ebene e22 von Figur 2b, sie enthält die Würfelkanten 39, 78, 62, die sich in 3 Ecken II
von 772 schneiden. Daher sind 772, 77{, 772, 773 ein und dasselbe Ikosaeder (Mittelpunkt

M, Inkugelradius Inkugelradius der Tetraeder d/2^3). Dieses Ikosaeder
ist die Durchschnittsmenge der zehn Tetraeder im Dodekaeder.

5.3. Die Ebenen von 77^ bilden die Seitenflächen der 5 Würfel. 77^ entsteht aus

ü[ durch Polarisieren an der Inkugel der 5 Würfel, ist also ein Rhombentriakontaeder
(Mittelpunkt M, Inkugelradius d/2). Dieses Rhombentriakontaeder ist die
Durchschnittsmenge der fünf Würfel im Dodekaeder.

Fritz Hohenberg, Graz

Randomly Traversable Graphs
1. Introduction

A graph G is eulerian if it possesses a circuit containing all vertices and edges of G.

These graphs are named for Leonhard Euler [1], who encountered them while
giving a Solution to the Königsberg Bridge Problem. It is well known that a graph is
eulerian if and only if it is connected and each of its vertices is even.

Similar to the eulerian graphs are the traversable graphs. A graph G is traversable
if it possesses an open trail containing all vertices and edges of G. Traversable graphs
are characterized (see [2], p. 65) by the properties of being connected and containing
exactly two odd vertices. It is an elementary fact that every graph has an even
number of odd vertices. A connected graph G with odd vertices is called n-traversable
if there exist n open trails but no fewer which partition the edge set of G. Hence the
1-traversable graphs and the tiaversable graphs are identical. It follows (see [2], p. 65)
that a connected graph G is n-traversable, n > 1, if and only if G has exactly 2 n odd
vertices.

In [3] Ore introduced an interesting class of eulerian graphs. An eulerian graph G
is randomly eulerian from a vertex v of G if the following procedure always results in an
eulerian circuit of G: Begin a trail at v by choosing any edge incident with v. Next
(and at each step fhereafter), the trail is continued by selecting any edge not already
chosen which is adjacent with the edge most recently selected. The process terminates
when no such edge is available. Equivalently, a graph G is randomly eulerian from v if
every trail of G beginning at v can be extended to an eulerian circuit of G.

It is the object of this paper to study eulerian graphs which are randomly eulerian
from one or more of their vertices and to extend this concept to traversable graphs
and to tt-traversable graphs in general.
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2. Fundamental Terminology

In order to make this article self-contamed, we present here those fundamental
defmitions which are most pertment to our discussion For basic graph theory
terminology we follow [2]

For vertices u and v of a graph G, a u v trail of G is an alternatmg sequence

u ux, ex, u2, e2, uz, un_x, en_x, un v (1)

of vertices and edges of G, begmnmg with u and ending with v, such that each edge is
incident with the two distmct vertices immediately precedmg and following it and
such that no edge is repeated It should be noted that while no edge may be repeated
m a trail, vertices may be repeated Further, we may represent the trail (1) more
simply as

u ux,u2,uz, ,un__x,un v, (2)

smce the edges of the trail are then evident In general, we assume that every trail
contains at least one edge and, therefore, at least two vertices A u-v path, u^ v, is a
u-v tiail m which no vertices are repeated

A graph G is connected if for every two distmct vertices u and v of G, there exists a
u-v trail (or u v path) in G A maximal connected subgraph of a graph G is called a

component of G

A u-v trail is closed if u v, otherwise, it is open A closed trail is also referred
to as a circuit A circuit m which no vertex is repeated is called a cycle

A circuit contammg all edges of a connected graph G is an eulerian circuit of G,

while an open trail contammg all edges of G is an eulerian trau of G

Finally, the degree of a vertex v m a graph G, denoted deg?;, is the number of edges

m G incident with v, the vertex v is even or odd dependmg on whether degv is even or
odd.

3. Randomly Eulerian Graphs

We have already noted that an eulerian graph G is randomly eulerian from a
vertex v of G if and only if every trail beginnmg at v can be extended to an eulerian
circuit of G In Figure 1 are shown four eulerian graphs, each of which has six vertices
The graph G0 is randomly eulerian from no vertices, Gx is randomly eulerian from
exactly one vertex, namely u, G2 is randomly eulerian from the two vertices v and w,
while GB is randomly eulerian from each of its vertices

Ore [3] showed that an eulerian graph G is randomly eulerian from a vertex v of G

if and only if every cycle of G contains v With the aid of this result, it is easy to venfy
that the graphs of Figure 1 have the indicated properties Moreover, it follows
immediately that an eulerian graph is randomly eulerian from each of its vertices if
and only if it is a cycle We now show that the graphs of Figure 1 represent all
possibihties regarding the number of vertices from which an eulerian graph is randomly
eulerian.

Theorem 1 Let G be an eulerian graph with p (> 3) vertices Then the number of
vertices from which G is randomly eulerian is 0, 1, 2 or p.
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Proof. There is obviously nothing to prove if p 3, so we assume p > 4. Suppose
the result to be false so that there exists an eulerian graph H with p (> 4) vertices
such that H is randomly eulerian from three vertices, say u, v and w, but not from all
vertices. Hence H is not itself a cycle.

Figure 1

Since H is randomly eulerian from each of u, v and w, it follows by Ore's theorem
that every cycle of H contains u, v and w. Furthermore, there exists a vertex x from
which H is not randomly eulerian; therefore, not all cycles of H contain x. Let Cx be
a cycle not containing x. Because H is eulerian, there is a circuit containing x (namely
an eulerian circuit) and therefore a cycle C2 containing x. Necessarily, u, v and w also
lie on C2. Thus the distinct cycles Cx and C2 have at least three vertices in common.

The cycle C2 determines two paths Px and P2 connecting x with Cx. Suppose Px
is an x — xx path while P2 is an x — x2 path, where then xx is the only vertex of Cx on
Pt, for i 1, 2; moreover, % 4= #2. At least one of u, v and w is neither ^ nor x2,

^suppose w is such a vertex. Hence Cx determines two xx — #2 paths, only one of which
contains u; suppose Q is the xx — x2 path not containing u. Hence, if we begin with Px,
follow Q, and then proceed from x2 to x along P2, we have a cycle not containing u,
which produces a contradiction.

4. Randomly Traversable Graphs

We define a traversable graph G to be randomly traversable from a vertex v if every
trail in G with initial vertex v can be extended to an eulerian trail of G. Naturally, such
a vertex v is necessarily an odd vertex of G, implying that a traversable graph is

randomly traversable from at most two of its vertices. Figure 2 shows traversable
graphs H0, Hx, H2 such that Hk, k 0, 1, 2, is randomly traversable from k of its
vertices. A traversable graph G is said to be randomly traversable if it is randomly
traversable from both of its odd vertices.
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It is possible to charactenze traversable graphs which are randomly traversable
from a given vertex m much the same way as Orf did for randomly eulerian graphs

Theorem 2 Let u and v be the two odd vertices of a traversable graph G Then G is

randomly traversable from u if and only if every cycle of G contains v

Figure 2

Proof Suppose G is randomly traversable from u, and assume G has a cycle C

not containing v Denote by H the graph obtained by removmg the edges of C from G

Necessarily, each vertex of H has the same panty as it does m G, therefore, u and v

are the only two odd vertices of H and thus belong to the same component Hx of H
Hence Hx is traversable and has a u v trail Px containing all edges of 77-, Smce Px
contains all edges of G mcident with v, the trail Px cannot be extended to an eulerian
trail of G, contradictmg the fact that G is randomly traversable from u

Conversely, suppose every cycle of G contains v, and assume G is not randomly
traversable from u Hence there exists a maximal trail P oi G beginnmg at u which
cannot be extended to an eulerian u-v trail Thus P is a u v trail not contammg all
edges of G By deletmg the edges of P from G, a nonempty graph G' results in which

every vertex is even and v is isolated There exists a nontrivial component H' of G',
thus 77' is eulerian, contains an eulerian circuit, and therefore contains a cycle C.

Smce C does not contain v, a contradiction results

Corollary 2a Let u and v be the two odd vertices of a traversable graph G Then G

is randomly traversable if and only if every cycle of G contains both u and v

5. Randomly n-Traversable Graphs

Just as w-traversable graphs constitute a generalization of traversable graphs,
we now introduce the concept of randomly n-traversable graphs as a generalization
of randomly traversable graphs

For a graph G, we denote its edge set by E(G) Similarly, the edge set of a trail T
of a graph G is denoted E(T) By G — E(T) we mean the graph obtained by deletmg
the edges of T from G A trail T of a graph G, having initial vertex v and terminal
vertex w, is said to be maximal from v if every edge of G mcident with w belongs to T.

An w-traversable graph G (which necessarily then has 2 n odd vertices) is randomly
n4raversohle from an odd vertex v if for every sequence vx,v2, ,vnoin odd vertices
of G for which vt v and for every n trails Tx, T2t Tn such that Tx is maximal
from vx in G and Tt is maximal from vt m

?»i
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n

lt follows that E(G) \J E(Tt) A graph is randomly n-traversable if it is randomly
i 1

n-traversable from each of its odd vertices We note then that the randomly 1-

traversable graphs comcide with the randomly traversable graphs fhe following
theorem gives a necessary condition for a graph to be randomly n-traversable from
one of its odd vertices

Theorem 3 If G is a graph which is randomly n traversable from an odd vertex v,
then every cycle of G contams an odd vertex other than v

Proof Let C be an arbitrary cycle in G, and consider G — E(C), which has 2 n odd
vertices Let Tx be a trail in G — E(C) which is maximal from its initial vertex v,
while for i 2, 3, n, let T% be a trail maximal from an odd vertex vt m

% i
G — E(C) — (J E(T7) Each of these trails necessarily termmates in an odd vertex

7 1 % 1

of G Either Tx is not maximal in G or 7
t is not maximal in G — JJ E(Tj) for some

i 2, 3, n, for if all n trails are maximal in these respective graphs, then
n

\J E(Tt) 4= E(G), which contradicts the fact that G is randomly n-traversable from v
t i
Thus the terminal vertex of at least one trail Tt lies on C so that C contams an odd
vertex of G other than v

The necessary condition for a graph to be randomly traversable given in Theorem 2

now follows as a corollary to Iheorem 3 From Theorem 3 we may now denve a

necessary condition for a graph to be randomly n traversable
Corollary 3a If G is a randomly n-traversable graph, then every cycle of G contains

at least two odd vertices
Proof Let C be a cycle of G By 1 heorem 3, C contains at least one odd vertex,

say u By hypothesis, G is randomly n traversable from u so that, again by Theorem 3,
C contains an odd vertex other than u, completing the proof

Next we present a sufficient condition for an n-traversable graph to be randomly
n-traversable from one of its odd vertices

Theorem 4 Let G be an n-traversable graph with odd vertex v If every cycle of G

contains at least n odd vertices other than v, then G is randomly n-traversable from v

Proof Let vx,v2, ,vnben odd vertices of G, where vx v, and let Tx, I2, Tn

be n trails so that T\ is maximal from vx in G and Tt is maximal from vt in
X 1

G - U E(Tj) i 2, 3, n
i i

Smce Tt, i 1,2, ,n, is a trail which is maximal from vt, it must terminate at a

vertex wt having degree zero m

Ht=-G-\jE(Tj).
7-1

Because every vertex which is even in G is also even m Hl _x, wt is necessarily odd in G.

Furthermore, Ht has exactly 2 n — 2 i odd vertices Hence Hn has only even vertices.

If Hn has no edges, then E(G) (J E(Tt), which produces the desired result Suppose,
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then, that Hn has edges. In this case, Hn contains cycles; thus let C be a cycle in Hn.
By hypothesis, C contains at least n odd vertices of G other than v. Since G has

exactly 2 n odd vertices, C must contain a vertex wk, 1 < k < n. However, wÄ has

degree zero in Hk as well as in Hn. This produces a contradiction, completing the proof.
The sufficient condition for a graph to be randomly traversable given in Theorem 2

now follows as a corollary to Theorem 4.

The converse of the preceding theorem does not hold, in general. For example,
the 2-traversable graph G of Figure 3 is randomly 2-traversable from v; however, the
only cycle of G contains only one odd vertex.

vo
Figure 3

Corollary 4a. If every cycle of an n-traversable graph G contains at least n+l odd
vertices, then G is randomly n-traversable.

The number of odd vertices in the statement of Corollary 4a cannot be reduced,
as the following example shows. Let G be the graph consisting of a cycle C:

vx,v2, ,vn,v1, n additional vertices ux, u2, un, and the edges u{ vif i
1, 2, n. Figure 4 illustrates the graph G for the case n 5. Although G is n-
traversable, and the only cycle of G contains exactly n odd vertices, G is not randomly
n-traversable. For example, the n trails vit uif i 1, 2, n do not partition the
edge set of G.

9"i

Figure 4

We conclude by verifying the converse of Corollary 4a for the case n 2.

Theorem 5. If G is a randomly 2-traversable graph, then every cycle of G contains
at least three odd vertices.

Proof. By Corollary 3a, every cycle of G contains at least two odd vertices. Suppose
there exists a cycle C in G containing exactly two odd vertices, say u and v, and let ux
and vt be the remaining odd vertices of G. We consider two cases.
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Case 1 I here exists au — ux path mG — E(C) not contammg v^or a u — vx path in
G — E(C) not contammg ux Without loss of generality, we assume the former, denotmg
the path by P The graph G — E(C) — E(P) has exactly two odd vertices, namely v
and vx, which necessarily belong to the same component G' of G — E(C) — E(P)
Furthermore, the degree of vx is the same in G — E(C) — E(P) as in G Let 7 be a

v-vx eulerian trail m G', the trail T is therefore maximal from v m G Let I x be a
maximal trail from u in G — E(C) — E(T), necessarily terminatmg at u} 1 hen Tx is
also maximal in G — E(T) However, E(T) \J E(TX) =# E(G), which is contradictorv

Case 2 There exists no u — ux path in G — E(C) If there exists & u — vx path in
G — E(C) then we are in Case 1 and a contradiction results Hence we may assume
that G — E(C) has a u-v path P contammg neither ux nor vx If P has a vertex of C

different from u or v, then G has a cycle contammg onlv one odd vertex, namely u,
which is impossible Now the cycle C determines two edge disjomt u-v paths Px and
P2 Smce G is connected, there exists m G either a u — ux path not contammg Dora
v — ux path not contammg u, assume the former, denotmg the u — ux path by P3
We further suppose that P3 does not contain vx, otherwise, we let P3 denote the
lesultmg u — vx path The path P3 has at least one edge which is also an edge of C,
furthermore, P3 contams vertices of onl\ one of Px and P2 (with the exception of the
vertex u), for otherwise G has a cycle contammg only one odd vertex Suppose P1
ontams a vertex of P3 different from u or v so that P2 has no such vertex I he u — v

paths P and P2 combine to form a cycle Cx contammg u and v but neither ux nor vx

However, a u — ux path exists in G — E(CX) returnmg us to Case 1 which yields a

contradiction and completes the proof
Gary Chartrand1) and Arthur 1 Whitf, Westein Michigan University
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Über hebbare Unstetigkeiten
Die vorliegende Note ist als Beitrag zur Sammlung pathologischer Beispiele der

Analysis gedacht, wie sie etwa in fl] gegeben wird
Wir betrachten die Menge J\at b] der auf dem abgeschlossenen Intervall [a, b]

definierten Funktionen, die m jedem Punkt von \a, b] unstetig smd Eine solche

Funktion ist beispielsweise

+ 1 für x e Q

-1 fur %eR-Q,
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