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Periodic billiard trajectories and Morse theory on loop spaces

Ket Irte

Abstract. We study periodic billiard liajectoncs on a compact Riemannian manifold with
boundary by applying Morse theoiy to Lagiangian action lunctionals on the loop space of
the manifold Based on the approximation method pioposed by Benci-Giannoni, we prove that

nonvamshing ol iclative homology ol a ceitain pair ol loop spaces implies the existence of
a periodic billiaid liajcctory We also piove a paiallel lesult tor path spaces We apply those
results to show the existence ol shoit billiaid tiajectoncs and shoit geodesic loops Fuither,
we lecovci two known lesults on the length ol a shoilest penodic billiard trajectory in a

convex body Ghonn's inequality, and Biunn-Minkowski type inequality pioposed by Artstein-
Avidan-Ostrovei

Mathematics Subject Classification (2010) 77J45, 70HI2, 52A20
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1. Introduction and results

In this section, we descnbe our main results and the stiucture of this paper.

1.1. Definitions of periodic and brake billiard trajectories. First, let us fix the

definition ol a penodic billiaid trajecloiy We also introduce the notion of a brake

billiard tiajectory, which is a relative veision ol the penodic tiajectory.
Let Q be a Riemannian manifold with C'°° boundary. We set S1 := R/Z. A

nonconstant, continuous, and piecewise C°° map y ^ Q is called a periodic
billiard trajectory if there exists a finite set By C S[ such that y 0 on S: \ By,
and eveiy t e By satisfies the following conditions'

B-(i) y(t)ei)Q
B-(n): y±(0 := lim/,_>0± y(t + h) satisfies the following equation

y+(t) + y-(') e Ty(t)dQ, y+(t) - y'C) e (T^dQ)1 \ {0}.

This equation is called the law oj teflei turn
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Remark 1.1. Here, we state some remarks on the above definition.

• A periodic billiard trajectory y might be a closed geodesic on Q. In that case,

By =0
• If y is tangent to <)Q at y(t), B-(n) does not hold since y+{t) — y~(t) 0.

Therefore, y~' (<)Q) might be strictly larger than By.

• The law of reflection implies that | j>| is constant on S1 \By. Moreover, |y| ^
0 since y is a nonconstant map.

A nonconstant, continuous, and piecewise C°° map y : [0, 1] Q is called a

brake billiard trajecton it it satisfies the following conditions:

• There exists a hnite set By C (0, 1) such that y 0 on [0, 1] \ By, and every
t e By satisfies B-(i), B-(n).

• y(0). y(l) e i)Q. y+(0), y~(l) are perpendicular to 3Q.

The name "brake" billiard trajectory is derived from the notion of a brake orbit in

classical mechanics (see [ 11 ] pp. 131) In both (periodic and brake) cases, elements

of By are called bounce times of y
For any brake billiard trajectory y : [0, 1] Q, we have a periodic billiard

trajectory T : S1 —> Q, which is defined as

\y{2t) (0 < f < 1/2)
HO 0

\y(2-2t) (1/2 < t < 1).

This is a genuine billiard trajectory, i.e., Br ^ 0. It y satisfies By 0, T is called
a bouncing ball orbit.

1.2. Billiard trajectory and topology of path/loop spaces. We state our first
result, Theorem 1.2. which claims that the nonvanishing of the relative homology
of a certain pair of loop spaces implies the existence of a periodic billiard trajectory.
We also prove a parallel result for brake billiard trajectories.

First, we fix some notations. A continuous map y : S1 Q is of class W1,2, if
it is absolutely continuous and its first derivative is square-integrable. H/l'2(51, Q)
denotes the space of FK1-2-maps Sl - Q. l^»'2([0, 1], Q) is defined in the same
manner We use the following notations:

MQ) := W"'2([0, 1], 2), fi(ß) := W{'2(S\Q).

These spaces are equipped with natural topologies. For any subset 5 c Q, we set

A(S) •= {y e A(2) | y([0, 1]) C 5), fi(5) := {y Q(Q) | y(5i} c 5}.

They are equipped with induced topologies as subsets of A(£>), £2(2).
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We define £ : A(0) ->• M by £(y) := f0' dt. £ : £2(0) ->• R is defined
in the same manner. For any a £ R, we define

Aa(Q) := {y e A(0) \ £(y) < a}, Qa(Q) := {y 6 £2(0) \ £(y) < a}.

When a < b, one has obvious inclusions Aa(Q) C Ab(Q) and £2°(0) c £2^(0).
Let 8 be any positive number. We denote the distance on 0 by dist, and define

Q(8):= {q £ Q \ dist(c/, 30) > 8},

A«(0) := A(Ö) \ A(0(«)) {yeA(Q)\ dist(y([0,1]), 30) < 5},

fi«(0) := n(ß) \ £2(ß(«)) (7 e Q(Q) \ distCyCS1), dQ) < 5}.

When 8' < 8, one has obvious inclusions A$>(Q) C A^(g) and Qs'(Q) C ^2^(0).
Theorem 1.2. Let Q be a compact Riemannian manifold with C°° boundary, a < b

be positive real numbers, and j be a non-negative integer.

(i): //'lim^ Hj{Ab(Q) U Ag(Q), Aa(Q) U A^(0)) ^ 0, there exists a brake

billiard trajectory y on Q such that [JBy < j —2 and length(y) e \\fla, -Jib],

(ii): //'fim^ Hj(^b(Q)UQg(Q), Qa(Q) (Q)) 0, there exists a periodic

billiard trajectory y on Q such that (JBy < j and length(y) e [^/la, s/2b\.

Remark 1.3. Let us verify Theorem 1.2 when Q is a closed manifold. In this case,

H*(Ab(Q), Aa(Q)) 0 always holds, and therefore, the assumption of (i) is never
satisfied. On the other hand, (ii) claims that if H*{£lb{Q), 02a(Q)) ^ 0, then there

exists a closed geodesic y on Q such that length(y) e [s/la, sflb]. This is a well-
known fact in the study of closed geodesies (see e.g., [13]). Thus, the main point
of Theorem 1.2 is when Q has a nonempty boundary, and one can think of it as the

billiard version of the above-mentioned classical fact.

We explain the idea of the proof of Theorem 1.2. For simplicity, we only discuss

case (i). We take a "potential function" U : \nlQ -> R>o which diverges to oo near

30. We also take e > 0, and study the following equation for y : [0, 1] -»• int0.

y(0) y(l) 0, y(t) + eVU(y(t)) 0. (1.1)

As is well-known, the solutions of this equation are critical points of the Lagrangian
functional Cs on the path space A(int0), which is defined as

C£(y):= f ^f--sU(y{t))dt.
J0 2

Proposition 2.2, which is proved in Section 2, shows that one can prove the existence

of a solution of (1.1) using Morse theory for the functional Ce.

Suppose that we have a solution ys of (1.1) for any sufficiently small e > 0,
which satisfies certain estimates on C£(ye) and the Morse index. Proposition 3.1,
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which is proved in Section 3, claims that we can get a billiard trajectory y as a

limit of yE as e —>• 0, which satisfies corresponding estimates on length(y) and ftBy-

Combining the results in Sections 2 and 3, we will complete the proof of Theorem 1.2

in Section 4.

The above strategy of the proof is significantly influenced by [7|. In particular,

our arguments in Sections 2 and 3 closely follow the arguments in [7], Nevertheless,

we explain most details for the reader's convenience.

1.3. Short billiard trajectory. As an application of Theorem 1.2, we prove the

existence of short billiard trajectories. First, we state the result. Let Q be a compact,
connected Riemannian manifold with a nonempty C°° boundary. r(Q) denotes the

in radius of Q, i.e., r(Q) := maxqeQ distfc/, dQ). It is easy to see that r(Q) < oo.

Theorem 1.4. Let j be a positive integer such that Hji Q, HQ : Z) / 0. Then, there

exist the following billiard trajectories on Q:

• A brake billiard trajectory ys, such that ffByij < j — 1 and

length(yß) < 2jr(Q).

• A periodic billiard trajectory yp, such that [JBy,, < j + 1 and

length(y/>) £ 2(j + 1 )r(Q).

Remark 1.5. To the best of the author's knowledge, there are very few examples in

which the above estimates are sharp. It is easy to see that the estimates are sharp for
y' l, considering the case Q is a line segment. For j 2, the estimates $By/j < I

and ftBYi, < 3 are sharp, since there exists a planar domain that does not contain any
bouncing ball orbits, see Figure 1-(b) in [10].

Theorem 1.4 is proved in Section 5. In this subsection, we explain some

consequences of Theorem 1.4. Let us introduce the following notations.

Pb(Q) infjlength(y) | y : brake billiard trajectory on Q\,
p.p(Q) := inf jlength(y) | y : periodic billiard trajectory on Q}.

As an immediate consequence of Theorem 1.4, we obtain the following estimate.

Corollary 1.6. Let n denote the dimension of Q. Then, there holds [1b(Q) < 2nr(Q)
and pp(Q) < 2(n + 1 )r(Q).

The above estimate of p.P was already proved in [51 for convex domains in M",
and in [ 12] for arbitrary domains in R". For other previous results on short periodic
billiard trajectories, see [5] Section 1, and the references therein.

Another consequence of Theorem 1.4 is a new proof of the following result on
short geodesic loops, which is proved in [14], The original proof in [ 14] is based on
the Birkholf curve shortening process, and it seems considerably different from our
arguments.
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Corollary 1.7 (Rotman [14]). Let M be a closed Riemannian manifold, p M,
and j be a positive integer. If ji j (M. p) f 0, there exists a nonconstant geodesic

loop y at p (i.e., a geodesic path y : [0, 1] —>• M such that y(0),y(l) p) such

that length(y) < 2y'diam(A/).

We prove Corollary 1.7 by considering a short brake billiard trajectory on

{x e M | dist(.v, p) > e] and letting s 0. The details will be explained in
Section 5.3.

1.4. Length of the shortest periodic billiard trajectory in a convex body. A
convex set K C R" is called a convex body if A" is compact and int AT ^ 0. It
is possible to show that, for any convex body K with C°° boundary, there exists a

periodic billiard trajectory in K oflength pp(K) (see Remark 6.5).

Let us recall two remarkable geometric inequalities on p p of convex bodies,
which are proved in [5] and [10]. In Section 6, we recover these results as

applications of our method. A recent paper [3] obtained similar proofs based on
the results in [8] in a more general setting of Finsler billiards.

The first inequality is the Brunn-Minkowski type inequality [5], For any two
convex bodies K\.K2 C R", their Minkowski sum K\ + A-2 '= {x\ + X2 \

xi e Ki, ,\'2 e K2} is a convex body. The following result is proved in [5], based on
their Brunn-Minkowski type inequality for symplectic capacity |4|.

Theorem 1.8 (Arlstein-Avidan-Ostrover ]5|). Let K\, A'2 be convex bodies in M".

Suppose that K\, K2, and K\ + K2 have C°° boundaries. Then,

Hp(K 1 + K2) > ßp(AT 1) + pp(K2).

Equality holds if and only if there exists a closed curve which, up to parallel
displacement and scaling, is the shortest periodic billiard trajectory of both K\ and

k2.

The second inequality is a lower bound of p p by inradius, which is proved in [10]
by beautiful elementary arguments, widthf K) denotes the thickness of the narrowest
slab that contains K.

Theorem 1.9 (Ghomi 11()|). For any convex body K C 1" with C°° boundary, there
holds pP(K) > 4r(K). Equality holds if and only if 2r(K) width(A'). In this

<'ase, every shortest periodic billiard trajectory in K is a bouncing ball orbit.

Remark 1.10. We only partially recover the original results in |5] and 110], In [5],
the authors prove Theorem 1.8 in a more general setting of Minkowski billiards,
whereas we discuss only Euclidean billiards. On the other hand, [10] does not
assume the smoothness of i)K.
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2. Approximating problem

In this section, we study an approximating problem for the billiard problem, which

was introduced in [71. In Section 2.1, we fix the setting and state Proposition 2.2,

which is the main result in this section. Section 2.2 is devoted to its proof.
Throughout Sections 2 and 3, Q denotes a compact, connected Riemannian

manifold with a nonempty boundary. We abbreviate A(int0), £2(int(?) as A, £2.

These spaces have natural structures of smooth Hilbert manifolds. For any yA e A
and yq e £2, tangent spaces at ya and ya are described as

TYaA Wu2([0, 1 }.y*A(TQ)), TynQ Wl'2(Sl ,y^(TQ)).

2.1. Setting. We take and fix p e C°°(R>o) such that

• p(t) l for any 0 < t < 1.

• 0 < p(t) < 2, 0 < p'(t) < 1 for any t > 0.

• p(t) 2 for any t > 3.

We define d e C°(Q) by d{q) := dist(r/, 9(2). Recall the notation Q(8) :

{q G Q | d(q) > 5} in Section 1.2. When 8 > 0 is sufficiently small, d is of C°°
and satisfies |Vr/| 1 on Q \ Q(38). For such 8, we define hg e C°°(Q) and

US e C°°(intG)by

hs(q) \= 8p(d(q)/8), Us(q) := h5(q)~2 - (28)~2.

Notice that Ug 0 on Q(38). In Sections 2 and 3, we fix 8 and abbreviate hg, Ug as

lu U. The following lemma is easy to prove, and we will use it a few times.

Lemma 2.1.

(i): Let v be a smooth vectorfield on Q such that v ~Vd on Q \ Q(38). Then,

\VU(q)\ (VU(q). v(q)) for any q e int£>.

(ii): There holds lim^ag (7(r/)/|Vt/(c/)| 0.

First, we consider the approximating problem for brake billiard trajectories.
Suppose that V e C°°([0, 1] x int£>) satisfies the following property.

V-(i): There exists e > 0 and a compact set K c intg such that V(t,q) sU{q)
for any t 6 [0, 1 ], q £ K.

We define Ly e C°°([0, 1] x T(int(2)) and Cy : A -> R by

A \V\2
A flLv(t,q,v):= — V(t,q)(q intg.u G TqQ), C$(y) \= j L$(t,y,y)dt.

Cy is a C°° functional on A, and its differential is computed as

dCUY)U)= ^(Y^tü-dVdOdt (l;eTyA),
Jo
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where V, denotes the Levi-Civita covariant derivative, and V, e C°°(intQ) is

defined by Vt(q) := V(t,q). ye A satisfies dCy(y) 0 if and only if it is of
class C°° and satisfies

y(0) y(l) =0, y(l) + WVt(y(t))=0. (2.1)

For any y satisfying (2.1), the Hessian of Cy at y is given by the following
formula, where R denotes the curvature tensor.

d2CUy)(n, 0 f\vtq, V(£) —(/?(y, ,])(£). y)-<V„W,(y), f) dt (q, £ TyA).
Jo

(2.2)

ind(y) denotes the Morse index of y, which is the number of negative eigenvalues
of d2Cy(y). As is well known, ind(y) < oo (see e.g., (2] Proposition 3.1 (iii)). y is

called nondegenerate if 0 is not an eigenvalue of d2Cy(y).
Next, we consider the approximating problem for periodic billiard trajectories.

Suppose that V e C°°(Sl x intQ) satisfies the following property.

V-(ii): There exists s > 0 and a compact set K C intQ such that V(t,q) sU(q)
for any t e Sl, q <£ K.

We dehne Ly e x T(inl(9)) and : £2 -» R by

L${t,q.v) ^--V(t,q). £p(y) := [ L${t,y,y)dt.
2 Js1

y 6 satishes dCy(y) -- 0 if and only if it is of class C°° and satisfies

y(t) + W,(y(t)) 0. The goal of this section is to prove fhe following proposition.

Proposition 2.2. Let a < b be real numbers, and j be a non-negative integer.

(i): For any V G C°°([0, 1] x int (9) that satisfies V-(i) and

HI ({Cy < h).{Cy < «}) ^ 0.

there exists ye A such that dCy(y) 0, Cy(y) e [a.b], and ind(y) < j.
(ii): For any V e C°°(SX x int Q) that satisfies V-(ii) and

Hj({£% <h}.{£% <a})^ 0,

there exists y eQ such that d £p(y) 0, £p(y) e [a,b]< and ind(y) < j.

2.2. Proof of Proposition 2.2. We only prove (i), since (ii) can be proved by
Parallel arguments. In this subsection, we abbreviate Ly and Cy as Ly and Cy,
respectively. As a first step, we need the following result.
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Lemma 2.3. Let(yj), be a sequence in A, such that lim/^.00dist(y ,([(), 1]),90) 0

and sup; ||yt \\Li < oo. Then, there holds limy —>oo ,/0' h(y})~2 dt oo.

Proof. See Lemma 3.6 in [7],

For any ye A and q, £ e Ty A, we define a Riemannian metric (•, -)a on A as

('/ 0a := + hllA := (ri-v)1/!2- (2.3)
J o

|| • ||a defines a distance function da on A in the obvious manner. This metric

structure on A A(int(7) naturally extends to A(Q), and this makes A(Q) a

complete metric space. (Notice that A((7) is not a Hilbert manifold, even with
boundary.)

Lemma 2.4. For any interval J C K, which is closed and bounded from below,

(Cyl{J), dA) is a complete metric space.

Proof. Let (y;), be a Cauchy sequence on (Ty1 (J), dA). There exists yQ0 e A(Q)
such that liniy^oo Loo) 0- It is sufficient to show that yoo([0, 1]) C int(7.

Suppose that yoo([0. ']) intersects 8Q. Then, lim^oo dist(y7 ([0, 1]),9(?) 0.

On the other hand, sup; ||||< oo, since the convergence in dA implies a

convergence in fL'^-topology. Hence Lemma 2.3 implies lim^oo Cv(yt) — oo,

contradicting the assumption that Ty(y,) £ J for all j.
Next, we discuss the Palais-Smale (PS) condition for Cv For each ye A, we

define VTy(y) G Ty A, the gradient vector of Ty at y, as

(S/Tv(y),t])A \= dTv(rj) (St] e TyA).

Definition 2.5. Let X be a (possibly infinite-dimensional) Riemannian manifold and

/ : X -> K be a smooth function. A sequence (x, )j=\,2,„. is a PS-sequence of /
if (fix,)) j is bounded and lim7^oo II V /'(-V7) || 0. / is said to satisfy the PS-

condition, if any PS-sequence of / contains a convergent subsequence.

We will show that Ty satisfies the PS-condition. Our argument is based on the

following result.

Lemma 2.6. Let M be a closed Riemannian manifold, and suppose that A(M)
is equipped with a Riemannian metric in the same manner as (2.3). For any
W e C°°([0, 1] x M),

TW:A(M)-+R: y f -W(t.y(t))dtJ o 2

satisfies the PS-condition.

Proof. The claim follows from Proposition 3.3 in |2] (see also |6|).
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Since our base manifold int(9 is open and V diverges to oo near the boundary,
we cannot apply Lemma 2.6 directly. Thus, we need the following lemma.

Lemma 2.7. If ()/ is a PS-sequence of Cy, then inf, dist(y7 ([0, 1]), dQ) > 0.

Proof. Since V satisfies V-(i), there exists e > 0 such that V(t,q) — eU(q) is

compactly supported. Then, Ceu(yj). ||^CEu(y, )||a are both bounded on j, since

{Yj)j is a PS-sequence of Cy - Let us take t» as in Lemma 2.1 (i). Then, there holds

f \eVU(Y,)\cIt f {sVU(Y,).v(Y,))dt
Jo Jo

-(VCeu(y,)-v(y,))a + f {Y,,V,(v(Yj)))dt-
Jo

We can bound RHS using the following obvious inequalities.

||WK;)||L2 < max \v(q)\. ||V,(u(y;))||L2 < max|Vv(</)| • ||y;||L2.
qeQ qeQ

Thus, there exists a constant Mo > 0, which is independent on j, such that

• t

/Jo
\sVU(y,)\dt < A7o( 1 + ||yj^2).

By Lemma 2.1 (ii), there exists M\ > 0 such that U(q) < \VU{q)\/4Mo + M\ for

any q e int(9. Thus,

\+\\YjW2L2
< — + sMi

4[ EU(Y,)dt < —f |fV{/(yy)| dt + eM\
Jo 4A?o Jq

— -^eu(YI) 4- EU(YI) dt^j + - + EM\.

Therefore, we obtain

2
fo ~ 4

Since CEu(y,) is bounded on /, we obtain sup; /0' FU(y,)dt < ooandsup7 \\Yj\\L2
< oo. Since U(q) h(q)~2-(26)~2, Lemma 2.3 implies inf; dist(y; ([0, 1]),9(7) >
0.

Lemma 2.8. Cy satisfies the PS-condition.

Pr<>ofi Let (y,), be a PS-sequence of Cy. By Lemma 2.7, there exists a compact
submanifold Q' c inl(9, such that y/([0. 1]) C Q' for all /.

It is easy to show that there exists a closed Riemannian manifold M, an isometric
embedding e : Q' -> M,and W E C°°([(), 1] x M). such that V(t.q) W(t.e(q))
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for all / e [0 1], q e Q' Then, {e(y7)}y is a PS-sequence of Cw Hence, by
Lemma 2 6, it has a convergent subsequence Thus, {Yj)j a'SC) has a conveigent
subsequence

We dehne the spectmm of Cy as

Spec(ZV) {Cv(y) I clCv(Y) 0} c M

Lemma 2.9. Spec(ZV) 's closed in M and lias a zero measure

Proof Closedness is immediate since Cy satishes the PS-condition To show that

Specf/V) has a zeio measure, we modify the arguments in [15] pp436
For each x e int(), we dehne yv [0 1] —> intQ by yx(0) x, Yx(0) 0, and

Yx(0 + VK,(yr(0) 0 Then, /(v) Cy{yx) is a C°° function on mXQ, and

Spec(£i/) is contained in the set of critical values of f Flence, our claim follows
from the Said theorem foi finite-dimensional manifolds

Remark 2.10. The above pioof is based on the fact that any critical point y of
Cy is determined by y(0) £ intQ This argument does not apply directly to the

periodic case, since any solution y of the Euler-Lagrange equation with the periodic
boundary condition is determined by y(0) and y(0) To prove that Spec(£^) has a

zero measure for any V C°°(Sl xTQ), we may apply Lemma 3 8 in [ 151 directly
to a Hamiltoniun H e C°°(S' x T*Q), which is the Legendre transform of V

The following lemma is a key step in the proof of Proposition 2 2

Lemma 2.11. Let c _ < c + be teal numbers such that t± £ Spec(£^) We set

C(l-C+) \y e A I £v(Y) g (<—c+)< dCv(Y) 0}

If H, ({Cy < i + ] Cy <c-))^() and all elements ofC(c_ L+) ate nondegenerate
critical points of Cy theie exists y £ C(6_,c+) such that ind(y) j
Proof We use the theory developed in [ 1 ], Section 2 Let us set

M ={Cv<t + \ M ={c-<Cy<c + }, / Cy

We take a smooth vector held X on M, which is a negative scalar multiple of V/
and satishes the following properties

II V f (p)\\ < 1 => X(p) -V f(p) || V/(/7)|| > 1 => 1 < ||X(/;)|| < 2

Let us examine whethei M,M, f and X satisfy conditions (A 1)-(A7) in [I |, pp 22-
23 (Al) follows from Lemma 2 4, (A6) follows from Lemma 2 8, and (A2)-(A5)
are immediate Since X is smooth, (A7) is also achieved by a small pertuibation of
X, without violating (Al )-(A6) (See Remark 2 1 [2]) Now our claim follows from
Theorem 2 8 in [ 1 ]
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V is said to be regular if all critical points of Cy are nondegenerate. The next
Lemma 2.12 shows that regularness can be achieved by compactly supported small

perturbations.

Lemma 2.12. For any V satisfying V-(i), there exists a sequence (Vm)m=\g,... such

that all Vm are regular and satisfy V-(i), and (Vm)m converges to V in C00-topology,
i.e., for any k > 0, limm_>.oo II V ~ Kn llc*([o,i]x£>) 0 holds (notice that V — V,„

extends to a C00-function on [0, 1] x Q).

Lemma 2.12 can be proved in a similar manner as Theorem 1.1 in [16]. The

setting in [ 16] is slightly different from ours: in 116], the base Riemannian manifold
is closed, and the Lagrangian is parametrized by S1. However, these differences do

not affect the proof. Now, we can finish the proof of Proposition 2.2 (i). As explained
at the beginning of this subsection, the proof of (ii) is parallel and omitted.

ProofofProposition 2.2 (i). First, we consider the case when a,h £ Spec(/V)-
Since Spec(£i/) is closed, there exists c > 0 such that \a — c,a + c] and [b — c, b + c]

are disjoint from Spec(£i/)- By Lemma 2.11, inclusions

{Cy < a — r] C {Cy < a} C {Cy < n + £'},

{Cy < b — c} C {Cy < b] C {Cy < b + c}

induce isomorphisms on homologies. In particular, the homomorphism

H /({Cy < h — c}, {Cy <« — £'})—> Hj(]Cv < b -\- c), {Cy < a + c})

induced by inclusion is an isomorphism, and the homologies on both sides are

isomorphic to H/({Cy < h}, {Cy < a)), which is nonzero by our assumption.
Take a sequence (Vm)„, as in Lemma 2.12. For suiliciently large m, we have

[Cy < a - (} C {CVin < a} c {Cv < a + c[,

{Cv < b - £} C {CVm < b) c {Cy <b + r}.

Hence, there holds H/({Cym < b\. [Cym < «]) ± 0. By Lemma 2.11, there exists

Ym e A such that dCVm(ym) 0, Cym(Ym) <= and ind(y,„) j.
Since limm_>oo \\Vm-V\\c\ 0, (y,„)m is a PS-sequence of Cy. Hence, (ym)m

has a convergent subsequence, and its limit y satislies d£y(y) 0 and Cy(y)
[«,b\. ind(y) < j follows from ind(y) < lim inf,,,-»«, ind(y,„), which easily follows
from (2.2).

Finally, we consider the general case, i.e., a and b may be in Spec(£j/)- Since

Spec(£[/) has a zero measure, there exist increasing sequences (am)m, (bm)m such

that am, bm £ Spec(£i/) lor every in, and a lim,,, am, b lini,,, bm. Then, tor
sufficiently large/», Hj({Cy < bm),\Cy < //,„}) 7^ 0. Therefore, there exists

Ym such that dCv(ym) 0, Cv(ym) e [am,bm], and ind(y,„) 5 j- (Ym)m >s a

PS-sequence of Cy, and therefore, it has a convergent subsequence. Then, its limit
Y satisfies dCy(y) 0, Cy(y) e [«,/;], and ind(y) < j.
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Remark 2.13. From the above proof, it is easy to see that y satisfies ind(y) +
null(y) > j, where null(y) denotes the dimension of the kernel of d2Cv(y)- The
referee suggested that this inequality can be used to provide a lower bound of the

number of bounce times of billiard trajectories.

3. Billiard trajectory as a limit

As in the previous section, we fix S > 0 and use abbreviations h : hg, U := Ug.

The goal of this section is to prove Proposition 3.1, which enables us to get a billiard
trajectory as a limit of solutions of the approximating problem.

Proposition 3.1. Let a < b be positive real numbers, and j be a non-negative
integer.

(i): Suppose that for any sufficiently small e > 0, there exists yE e A such that
(Ye) — 0, C^jj (ye) e [a. b], and ind(yE) < j. Then, there exists a brake

billiard trajectory y such that $By < j — 2 and length(y) [s/la. s/lb],

(ii): Suppose that for any sufficiently small s > 0, there exists y£ <E Q such

that d£fv(y£) 0, C^v(yE) e [a,b\, and ind(y£) < j. Then, there
exists a periodic billiard trajectory y such that j\ßY < j and length(y) e

[i/2~a, sflb\.

We only prove (i), since (ii) can be proved by parallel arguments. In the following
arguments, we fix ye for each e, and abbreviate jC^v as £s.

Lemma 3.2. lim£^0 /0' EU(Ye)dt 0.

Proof. Let us take v as in Lemma 2.1 (i). By ys + eVU(ys) 0 and ye(0)
y£( 1) 0, we have

By Lemma 2.1 (ii), there exists M\ > 0 such that U(q) < \S7U(q)\/4M0 + M\ for
any q mtQ. By the same arguments as in the proof of Lemma 2.7, we get

f e\VU(yE)\dt f (eS7U(ys),v(ye))dt f (y£,V,(v(yE))) dt.

Setting M0 := max^gg | Vv(cy)|, there holds
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Since sup££g(y£) < b, the above estimate implies supe eU(yE)dt < oo. By

(3.1), we get sup£ /0' e|VJ/(yg)| dt < oo. The following identity is clear from the

definition of U.

[ e\VU(yE)\dt f 2e\Vh(ye)\h(yE)~3 dt.
Jo Jo

Since \Vh(q)\ 1 for any q such that h(q) < S, we get sup£ JQl eh(yE)~3 dt < oo.

Finally, by the Holder inequality, we obtain

limsup f eh(yE)~2 dt < lim supf f eh(yE)~3 dt\ e1/3 0.
e—> 0 Jo e-^-0 \J0 /

Since 0 < eU(q) < sh(q)~2 for any q e \nxQ, we obtain lime^0 /0' sU(Ye) dt 0.

Corollary 3.3. The following quantities are bounded on s.

f \ys(t)\dt f e\VU(yE)\dt. f eh{yE)~3 dt. E(y£) := \ye\2/2+eU(ye).
Jo Jo Jo

Proof. In the course of the proof of Lemma 3.2, we have shown that the first two
quantities are bounded. sup£ E{yE) < oo follows from the identity

E(ye) f + eU{yE)dt Ce(yE) + 2 f eU{yE)dt
Jo 2 Jo

and estimates sup£ CE(yE) < b, sup£ /J sU(yE) dt < oo.

By Corollary 3.3, yE is L1-bounded. Since VF2'1)]!), 1]) is compactly embedded

to Wl'2([0, 1]), a certain subsequence of (y£)£ is convergent in fF1 '2([0, 1], Q) as

e -> 0. We denote the limit as yo. Moreover, since 2eh{yE)~3 is L1 -bounded, up to

subsequence it converges to a certain Borel measure /x > 0 on [0. 1] in a weak sense,

i.e., for any / e C°([0, 1]) there holds

lim f f(t)2eh{yE(t))~3 dt [ f(t)dß(t).
£^>° Jo Jo

For any t e [0, 1] and c > 0, we set Bc(t) := {s e [0. 1] | |,v — /1 < c}. The

support of p is defined as suppyt := {t e [0. 1] | Vc > 0,p(Bc(t)) > 0}.

Lemma 3.4. There holds supp/x C y^HdQ) and (Jsupp/x < j.
Proof. If r e [0. 1] satisfies yo(r) £ 3Q, sh(yE(t))~3 converges uniformly to 0 in a

neighborhood of r, and thus, r ^ supp/x. Therefore, supp/x C yj"' (dQ).
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We show that tJsupp/i < /. For any r e supp/x, we have shown that yo(*) e 3Q.
Hence, d(yo(r)) 0. We take c > 0 so that d(y0(t)) < 8 for any t Bc(r).

We take i(r 6 C°°([(), I]) so that 0 < ij/(t) < 1 for any t, suppig C Bc(z), and

\fi 1 on Bc/2(t). Let vE(t) := ifi(t)Vh(yE(t)). Our aim is to show that

lim d2CE{ys)(ve, vs) -oo. (3.2)
E—>0

Obviously, suppu£ C Bc(r), and we may take c > 0 arbitrarily small. Hence, once

we prove (3.2), it is easy to show that liminf£_yo ind(ye) > flsupp/tx. On the other

hand, by our assumption in Proposition 3.1, ind(y£) < j for any e > 0. Hence,

(Jsupp/i < j.
Now, we show (3.2). By (2.2), there holds

d2£e(yE)(ve,vE) f |V,i;e|2 - {R(ye, vE)(vE), yE) dt
Jo

+ 2sf (VVfVh(yE),ve)h(yE)~3 dt-6s f {dh(yg)(vE)}2h(yE)~4 dt.
Jo Jo

By Corollary 3.3, supe j| || z.00 < 00 Thus, it is easy to check that the first integral

is bounded on e. Corollary 3.3 also shows sup£ j0' sh(yE)~3 dt < oo, and thus, the

second integral is bounded on s.

Recall that d(y0(t)) < 8 for any t 6 Bc(r). Hence, when s > 0 is sufficiently
small, d(yE(t)) < 8 for any t e Bc/2(r). For such s > 0, dh(yE)(vE)
|V/?(ye)|2 1 on Bc/2(?) Therefore,

l

£ f Idh(yE)(vE))2h(yE) 4 dt > s [ h{yE) 4 dt
Jo Jbc/2(t)

> (ce)-U3( f sh(yEr3dt)f
s JB( /2<r) /

The second inequality follows from the Holder inequality. Since r supp/ti,

hrninf / sh(yE)~3 dt > ß(Bci2(r))/2 > 0.^ JBi/2(z)

Hence, lim£^0£ /0' {dh(yE)(ve))2h(yE)~4 dt oo, and therefore, we have proved
(3.2).

For q 6 dQ, let v(q) denote the unit vector that is outer normal to 3Q at q.
Lemma 3.5. For any v W71 2([0, 1], y* (TQ)), there holds

[ {ya.V,v)dt=[ {v(yo),v) dß(t).
Jo Jo

Notice that the RHS is well-defined, since supp/i C y(("' (DQ).
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Proof. One can take ve G TYf A so that vE -» v as s —> 0, in W'^-norm. By
Ye + eVU(ys) o ye(0) Ye(\) 0, we get

f (eVU(ys),ve(t))dt - f {y£(t). v£{t)) dt f (y£(/), V,(u£(/))) dt.
Jo Jo Jo

As e -> 0, RHS goes to /J (yo. V,v) dt. On the other hand, since VU(q)
—2Vh(q)h(c/)~3, LHS goes to /0' (v(yo). f) dpU) us e -> 0.

Lemma 3.5 shows that yo 0 on [0, 1] \ supp/x. Lemma 3.4 shows that supp/x
is discrete. Hence, yfit) lim/,_».o— YaU + h) exists for any t > 0, and Yo (0
lini/,^0+ y0(f + h) exists for any / < 1. Now, we show that y0 satisfies the following
properties:

• length(y0) 6 [V2a. \/2~b\.

• {0, 1} C supp/x. Moreover, y£(0), yf( 1) are perpendicular to 3Q.

• yo satisfies the law of reflection at every point on supp/x \ {0, 1}.

Once these properties are confirmed, yo is a brake billiard trajectory with Byo

supp/x \ {0, 1}, and Proposition 3.1 (i) is proved.
Let / be any interval on [0. 1], By Lemma 3.2,

J \y0\2 dt J ^ \Ye\2 dt Jim 2^|/|£(y£) - eU(yE)dt j
21/1 lim E(ye).

e—()

Hence, E := lim£_>o E(ye) exists, and |yo(OI \/2~E holds for any t £ supp/x.
Then, length(y0) e [s/la. s/lh] follows from

E lim E(ye) lim Cg(yE) + 2 f F.U(ye)dt lim C£{y£) e [a.b],
£->() E->0 Jo e~*0

Let us prove that 0 supp/x. If not, there exists c > 0 such that /x 0

on [0, c]. Take / C°°([(). 1]) such that /(()) 1 and supp/ C [O.c], Let

v{t) := f(t)y0(t). Then, Lemma 3.5 implies

0= f{Yo.V,v)dt= f f'(t)\y0(t)\2dt ~2E.
J o J 0

This contradicts E e [a.h] and a > 0, hence 0 e supp/x. We can show that
1

supp/x by the same arguments.
Let us prove that y^(0) is perpendicular to 3(9. Let £0 be any tangent vector of

9(9 at y0(0). Take c > 0 sullicienlly small so that [0. c] D supp/x {()}, and define
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Qt) Ty0(,)Q for any 0 < t < by £(()) £o and 0. Take / C°°([0, 1])

as above, and set v(!) f(t)Qt). Then, Lemma 3.5 implies

/x({0})(u(yo(0)).to) f {v(yo).v) dfi(t) f (y0, V,v)dt -{fa, J>(|(0)).
Jo Jo

Since £o is tangent to DQ, LHS is zero, and therefore, (£o. Yo W) ^ This sh°ws
that Yo (0) is perpendicular to DQ By the same arguments, we can show that ]>^~( 1)

is perpendicular to DQ

Finally, let us prove that yo satisfies the law of reflection at any t e supp/i\{0, 1}.

Similar arguments as above show that y^Q) — YöU) is nonzero and perpendiculai
to DQ. On the other hand, |y(*(Ol |yö"(OI» since both are equal to *J2E. Then, it
is immediate that yo satisfies the law of reflection at t.

We have now finished the proof of Proposition 3.1 (i). As we explained at the

beginning of this section, (n) can be pioved by parallel arguments.

4. Proof of Theorem 1.2

In this section, we complete the proof of Theorem 1.2. We only prove (l), since

(n) can be pioved by parallel arguments. We may assume that Q is connected and

DQ ^ 0 (see Remark 1 3) First, we need the following technical lemma. Let us

denote

Ac(int0) - A' (Q) n A(intß). Aa(intß) := Ag(Q) n A(intß).

Lemma 4.1. Foi an\ c e R and S > 0, there holds

//*(A£ (<2) u Ah(Q), A'(intQ) U Aa(intß)) 0.

Proof. It is sufficient to show that the inclusion

Ac (intß) U Aa(int(?) —» hc(Q) U A$(Q) (4.1)

is a homotopy equivalence Let Z be a smooth vector field on Q, which points
strictly inwards on DQ. and Z 0 on Q(8). Let {f')t>o be the isotopy generated
by Z, l e it satisfies if/° idg and D,f Z(f'). Then, it is easy to show that

AL(Q) U Aa(ß) A£(intß) U Aa(intß); y w- o y

is a homotopy inverse of (4 1)

By Lemma 4 I, the assumption of Theorem 1.2 (i) is equivalent to

hm H,(Ab(mtQ) U Aa(intß), Aa(intß) U Aa(intß)) ^ 0.
Ä->0
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In this section, we abbreviate Aft(int£7) as Ab, A,$(int(9) as Ag, and so on. There
exists <5() > 0 such that

lim Hj(Ab U Aj.A" U As) H, (Ah U AÄ|1, A" U AÄ(J) (4.2)

is nonzero. We take Ai > 0 so that 36'i < 60. We are going to prove

»A^uSx <b)AtfuSi <«})^0
for any s > 0. Once we prove this, Proposition 2.2 and Proposition 3.1 show that
there exists a brake billiard trajectory y such that (JBy < j — 2 and length(y) e

We fix s > 0. For any c > 0, there holds < c} C Ac U A^0 since Ust 0

on Q(So). On the other hand, Lemma 2.3 shows that, for sufficiently small 82 > 0,

there holds Ab fl Ag2 C {^u < «} Thus, we have the following commutative

diagram, where all homomorphisms are induced by inclusions.

//,-(Ai,AflU(A*nAi2)) <b},{^US[ < a})

Hj(Ab U AÄ2. Aa U AÄ2) Hj(Ab U AÄ„. Aa U Ai()).

Since (4.2) is nonzero, the bottom arrow is nonzero. On the other hand, the excision

property shows that the left vertical arrow is an isomorphism. By commutativity of
the diagram, we have H< b}, {C£U/S < «») 7^ 0, and this completes the

proof.

5. Short billiard trajectory

In this section, we prove Theorem 1.4. In Section 5.1, we introduce the notion of
capacity for Riemannian manifolds with boundaries, and show that the capacity is

equal to the length of a billiard trajectory (Lemma 5.4). In Section 5.2, we bound the

capacity by the inradius, and complete the proof of Theorem 1.4. In Section 5.3, we

prove Corollary 1.7 as a consequence of Theorem 1.4.

5.1. Capacity. First, we introduce some notations.

• We define Ag(Q) C A(Q), •)((}) c £2((?) as

Aa(0) := {y e A(0) | y([(). I])nö0 ± 0}.

Q;)(Q) := {y e Q(Q) \ y(Sl) n i)Q ^ V).
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• For each q e Q, pq denotes the constant path at q, and Iq denotes the constant

loop at q.

We often identify q e Q with pq and lq, and thus, we have inclusions Q —» A(0),
Q —>• £2(0). For each a > 0, we consider the following homomorphisms, all
induced by inclusions.

I0A'a : H.(Q. 90) H*(Aa(Q) U Aa(0). Aa(0)).
IA'a : //*(0, 30) lim //*(Afl(0)U Aa(0), Aa(0)).

,5^0

/2A'a : //*(0. 30) s lim //*(int0. int0 \ 0(3))
s-* o

lim //*(Aö(int0) U Aa(int0), Aa(int0)).
8^0

One can dehne I^'a, lf"a, and in the same manner.

Lemma 5.1. For any a H*(Q.dQ) and j — 0. 1.2, let us define

cA(a) := inf{c > 0 | IA'C ^2(a) Oj.

Then, cA{a) t'A(a) c^(a).

Proof. cA(a) cA(ot) is immediate from Lemma 4.1. c^(a) < is also

clear, since there exists a natural homomorphism

H*(Aa(Q) U Aa(0), Aa(0)) -> lim H*(Aa(Q) U AÄ(0). Aa(0)).
8—*0

which is induced by inclusions. Hence, it is sufficient to prove c^(a) > c^(a).
Let a > a' be any positive real numbers. When 8 > 0 is sufficiently small, there

exists a C°° map : Q x [0. 1] —» Q:(.x,t) i-» such that

• fio idg>. fit\dQ id3ß for any 0 < / < 1.

• fi(Q\Q(S)) 3Q.

• < x/a/a'|£| for any £ e TQ.

Then, we have the commutative diagram

HAQ.dQ) ^//,(Afl'(0)UA,(0).Aj(0))

//*(A"(0) U Aa(0), Aa(0)).

If a' > c^(a)2 /2, a e FI*(Q. 30) vanishes by the top arrow, hence IAa(a) 0,

and therefore, a > cA{a)2/2. Since we may take a > a' arbitrarily, we have shown
that ef (a) > cA(a).
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For any a e H*(Q, dQ), we denote cA(a) cf (a) cA(a) in Lemma 5.1 by
cA(Q : a). On the other hand, for j 0, 1. 2, we define

cf (a) := infjr > 0 | lf'c2/2(a) 0}.

By the same arguments as in Lemma 5.1, we can show that Cg(a) cp(a)
c^(a). We denote it by cn(Q : a). We call cA(Q :a)andr^(<2 : a) the capacities
of Q.

Remark 5.2. The above definition of cA and imitate the definition of the Floer-
Hofer-Wysocki (FHW) capacity, which is defined in [9] (see also [ 12], Section 2.4).
In fact, when Q is a domain in the Euclidean space and [Q. dQ] denotes its relative
fundamental class, cQ(<2 : [Q-dQ]) is equal to the FHW capacity of its disc

cotangent bundle. See Corollary 1.4 in [ 12].

Lemma 5.3. For any a e H*(Q. dQ) \ {0}, cA(Q : a),cQ(Q : a) > 0.

Proof. We only prove cA(Q : a) > 0, since cq(Q : a) > 0 can be proved
by parallel arguments. In this proof, we use abbreviations A" : Aa(intg),

:= A^intg). For any positive a and 8, the excision property shows that

//t(Aa,A"nAj)^ //,(AflUAj,Aj)

is an isomorphism. Therefore, it is sufficient to show that for sufficiently small a > 0

lim //»(intß. intg \ Q(8)) - lim H*(Aa, A" n Aj)

is injective. For any y A" (1 Ag, there holds

y(0) e intg \ Q(8 + length(y)) c intg \ Q(8 + -Jlci).

Define ev : Aa —> intg by ev(y) := y(0), and consider the commutative diagram

lint //„(int0.intg\0(«)) -lim H*(Aa. A" fl Aj)
<—0—>0 <—ö —*u

(ev)*

lim //*(int<2, intg \ Q(8 + Via)).
<—8—>0

When a > 0 is sufficiently small, the diagonal arrow is an isomorphism. Therefore,
the horizontal arrow is injective. d
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The next lemma shows that the capacity is equal to the length of a billiard
trajectory.

Lemma 5.4. Let a e Hj(Q. dQ) \ {0}.

(i): If ca(Q : a) < oc, there exists a brake billiard trajectory y on Q such that

ttBy — j — 1 and length(y) cA(Q : a).

(ii): Ifcq(Q : a) < oo, there exists a periodic billiard trajectory y on Q such that

§By 5 7 + 1 und length(y) cq(Q : a).

Proof. We only prove (i), since (ii) can be proved by parallel arguments. We

set a := cA(Q : a)212. Then, for any e > 0, there holds IA'a~E(a) 7^ 0 and

/0A'a+£(a) 0. In this proof, we use the notations Aa := Aa(Q), A$ := Ag(Q),
Ag := A3(Q), and so on.

For any 5 > 0, we have a commutative diagram

//, + ,(Aa+E U Aa, Aa~E U Aa) H, (Aa~E U Aa. A3)

H, + {(Aa+E U A«, Aa~e U Aa) —- H,{Aa~E U A,. Aa),
»$

where vertical arrows are induced by inclusions, and horizontal arrows are connecting

homomorphisms. Since /A'fl+e(or) 0, we have IA'"~e(a) e Im3o. Letting
5 —>• 0 of the above diagram, we have the following commutative diagram.

//, + ,(Aa+E U A3, Aa~s U A3) - Hy {A"~E U A3. A3)

I

w

Hm^o H, + l {A«+E U Aa, Aa~E U Aa) lim^o Hj(Aa~E U Aa, Aa).

Let us denote the right vertical arrow as Then, i(fA'a~s(a)) /A'a £(a) 7^

Since /0A,a_£(a') e Im90, we get lint HJ + \(Aa+E U Ag. Aa~E U Aa) 7^ 0. By
Theorem 1.2, there exists a brake billiard trajectory yE on Q such that $Byf < j — \

and length(y£) [y/2{a - e), yj2{a + £•)]. Ase -> 0, a certain subsequence of (y£)£

converges to a brake billiard trajectory y such that J\By <7 — 1 and length(y)
Jla=cA(Q:a).

5.2. Capacity and inradius. By Lemma 5.4, Theorem 1.4 follows at once from
the following proposition. Recall that r(Q) denotes the inradius of Q.

Proposition 5.5. Let Q be a compact, connected Riemannian manifold with

nonempty boundary, and a H ,(Q ,i)Q). Then, there holds cA(Q : a) < 2jr(Q),
cu(Q : a)<2(j + l)r(0).
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Proposition 5 5 is proved in this subsection We will give a proof that stems from

arguments in our paper (12], Section 7 First, we need some preliminary results
Lemma 5 6, Lemma 5 7

Let P be a finite snnplicial complex and a be a simplex on P Star(a) C P

denotes the union of interiors of all simplices of P which contain a as a facet, i e

Star(a) UctCt intr

Lemma 5.6. Let P be a finite simphcial complex There exist continuous functions
wa /'—»[Ol] xxlieie a tuns oxer all simplices of P, such that the following holds

(l) For any simplex a, supputCT C Star(a)

(n) For any distinct simplices a, a' of same dimensions, suppuv fl suppuv 0

(m) (JCT iu~'(l) P, where a runs overall simplices of P

Proof We prove the lemma by induction on dim/1 The claim is obvious when
dim/3 0 Suppose that we have proved the claim for finite simphcial complexes
of dimension < d — 1, and let P be a hmte simphcial complex of dimension d

Let a1 ,om be all simplices on P of dimension d, and denote the

union of all simplices on P of dimension < d — 1 Take e inta7 for every

j 1 m There exists a continuous retraction / P\{\i
such that there holds l (o} \ j \,}) do, foi any j 1 m

We dehne a continuous function wa P -» [0 1] tor each simplex a of P

When dima d, l e a o, for some j 1 ,m, we dehne w0/ so that

suppinCT; C into,, and ü)CT/ 1 on some neighboihood of \, Then, there exists
a continuous function v —> [0 1] such that \i \m ^ suppu and in~'(l) U

• UiF-'OlUu-'O) P

Next, we define wa when dima < d — 1 By induction hypothesis, one can take

wa pW-1) [o j] tor each a C /3'^_1) so that our lequirements (i)-(iu) hold
tor (wa)aCpUi-\) We dehne wa P [0 1] by

w (v) =1° ^ ' X'"^'
\v(y)wa(i(\)) (v^{vj ,\m})

Let us check that (wa)a satishes our requirements (i)-(in) By dehnition, if
dima d, then suppi7;CT C into Then, (i), (11) are obvious when dinier d It
dima < d — 1, then suppiüCT C /_1 (suppu;CT) This is because {u;a 7^ 0] is

contained in suppu n /_1 (suppmCT), which is closed in P Then, one can prove
(1) for dima < d — 1 by

suppig C 1 -1(suppiuCT) C r_1(Star(a) n c Star(a)

The second inclusion holds since (wa)a satishes (1), and the thud inclusion holds

since 1 (o, \ j \,}) do, foi any j 1, m (11) tor dima < r/ — 1 is proved as
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follows (notice that suppu;CT fl suppuv 0, since (wa)a satisfies (ii)):

supptJjfj fl suppuv C /•"'(suppwv n suppuv) 0.

(iii) follows from UacA''-11 UV
' 0) (since (wa)a satisfies (iii)) and

»"'(DU.-Ui^fDUr-'d) P.

Lemma 5.7. For any R > r(Q)2/2 and q £ Q, there exists an open neighborhood
V of q and a continuous map A : V -> AR(Q) such that there holds A(u)(0) v

and A(u)( 1) e i) Q for any v £ V.

Proof. Since R > r(Q)2/2 > distfi/. dQ)2/2, there exists y £ AR(Q) such that

y(0) q and y{\) £ dQ. Then, there exists an open neighborhood V of q and a

continuous map I : V —» A(Q) such that \(q) yandl(u)(0) v, A(u)(1) 6

dQ (Vv £ V). Then, V := X~'(AR(Q)) and A := \\y satisfy our requirements.

Before starting the proof of Proposition 5.5, we introduce some operations on

A(0).
• For any a £ [0, 1] and y £ A(Q), we define ay £ A(Q) by ay(t) := y(at).

The map [0. 1] x A(Q) -+ A(£>); (a. y) i-> ay is continuous.

• For any y £ A(Q), we define y £ A(Q) by y(t) \= y(l — t). The map
A (^) —^ A (^>): y y is continuous.

• For any y, ym £ A(Q) such that yk(l) yÄ+1 (0) for A: l,...,w-l,
We define con(yi ym) £ A(Q) by

con(yi ym)U) Yk+i(»>(t ~k/m))
(.k/m < t < (k + 1 )/m, k 0 m- 1).

This is called the concatenation of yi ym. The following map is
continuous:

tyi Ym) I Fl Yrn £ A(Q),
Yk( 1) yjt+1 (0) (k 1 in - I)} -> A(Q):

(Yi,...,ym) i-> con(yi ym).

Proofof Proposition 5.5. First, we prove cA(Q : a) < 2jr(Q). It is sufficient to
show /0 (a) 0 for any a > (2jr(Q))2/2. Let us take a j-dimensional finite
simplicial complex P, a subcomplex P' c P, and a continuous map f:{P, P')
(Q, dQ) such that a £ f*(Hj(P, P')).
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Suppose that there exists a continuous map F : P x [0. 1] -> Aa(Q) that satisfies
the following properties.

F-(i): For any x G P, F(x, 0) Pf(x)-

F-(ii): For any (x.t) G P" := P' x [0, 1] U P x {1}, F(x,t) G A^(Q).

We obtain the following commutative diagram, where ip : (P,P') —s (P x
[0, 1], P") is defined by ip (x) := (.v, 0).

H,(P.P') - *H,(Q.dQ)

(i '')*

Hj{P x 0. 1], P") Hj (Aa{Q), A"(Q) n Aa(0)) Hj(A"(Q) U Aa(0), Aa(£

It is easy to see that (ip)* 0, thus I^'a o /* 0. Since a e f*(Flj{P. P')), we

have Iq'" (a) 0. Hence, it is sullicient to define F that satisfies F-(i) and F-(ii).
By our assumption, a/(2j)2 > r(Q)2/2, By Lemma 5.7, for any q e Q

there exists a neighborhood Vq o( q and A(/ : Vq ->• ha^2j^2(Q) that satisfies

Xq(v)(0) v and A(/(u)(l) G dQ for any v e Vq.

By replacing P with its subdivison if necessary, we may assume that the following

holds: for any simplex a of P, there exists q e Q such that /(Star(o)) C Vq.

We choose such q, and denote it by q(o). Moreover, we take (wa)a, a family of
continuous functions on P as in Lemma 5.6.

We define F^ : P -> A(<2) for each k 0 j. Since (u;^ satisfies

Lemma 5.6 (ii), for each .v e P and k 0 j, either (a) or (b) holds.

(a): There exists a unique A'-dimensional simplex a of P such that v suppuv

(b): .v ^ supptnCT for any A-dimensional simplex a of P.

In case (a), f(x) e /(Star(rr)) C Vq(a). Then, we define Fk(x) e A{Q) by

Fk(x) := wa(x) A(/(a)( /'(v)), i.e.,

Fk(x) : [0, 1] ^ Q: t ^ Xq{a)( f(x))(wG(x) /).

In case (b), we define Fk(\) := />/(*)• Then, it is easy to check that Fk is a

continuous map, which satisfies the following properties.

• For any .v e P,£(Fk(\-)) <a/(2j)2.
• For any .v P, Fk(.v)(0) f(x).
• If x G P satisfies w;CT(.v) I for some A-dimensional simplex a of P,

Fk(x)(\) A,(ff)(/(v))(l) G dQ.
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Now, we define F : P x [0, 1] ->• A(ß) by

F(x, t) := con (tF0(x),tFl (x)jFx {x) tFj^i(x), tFj-i(x), tFj(x)).

The above concatenation is well-defined, since Fo(-t)(0) Fj(jc)(0).
For any x e P, £(Fo(x)) £(Fj(x)) < a/(!j)2. Thus, £{F{x, t)) < a.
Therefore, F(P x [0, 1]) C Aa(Q). For any x e P and k — 0,..., j, there holds
0- Fk(x) Pf(x), and therefore, F(x, 0) pf(x)- This shows that F satisfies

F-(i).
We check that F satisfies F-(ii). There holds F(x,t) e As(Q) for any

(x,t) e P' x [0,1], since F(x,t)(\/2j) /<oOO(0) f{x) e 3Q. Flence,
it is sufficient to show that F(x, 1) e Ag(ß) for any x e P. By Lemma 5.6

(iii), there exists a simplex o of P such that wa(x) 1. Let k := dimcr. Then,

F(x,\)(k/j) Fk(x)(\) e 3Q. Hence, F(x, 1) e Ag(Q). This completes the

proof of ca(Q : a) < 2jr(Q).
The proof of cq(Q : a) < 2(j + 1 )r(Q) is similar. Let us take P' C P and

/ : (P, P') -» (Q, 3Q) so that a e f*(Hj(P, P')). It is sufficient to show that, if
a/(2j + 2)2 > r(Q)2/2, there exists a continuous map F' : P x [0, 1] -» Sla(Q)
such that

F'-(i): For any x 6 P, F'(x, 0) //(*).

F'-(fi): For any (x,t) e P" /"x[0,l]UPx {1}, F'(x,t) e fi3(ß).

For each k 0,... ,j, we define F'k : P —> A«/(2f+2)2(g) as jn ^e proof of
ca(Q : a) < 2jr(Q). Then, we define F' by

F'(x, t) := con(tFq(x), tF^x),... ,tFj(x), tF'j{x)).

Since F'(x,t)(0) f(x) F'(x, t)(l), one can consider F'(x, t) as an element in
L2(£>). It is easy to verify that £(F'(x,!)) < a for any (x, t) e Px[0, 1], Therefore,
F'(P x [0, 1]) c Sla(Q). It is also easy to verify that F' satisfies F'-(i), (ii), in a

similar manner as in the proof of cA(Q : a) < 2jr(Q).

5.3. Proof of Corollary 1.7. We conclude this section with a proof of Corollary 1.7.

Proof. The case j 1 is easy, and therefore, omitted (see |14], pp.501-502).
Hence, we may assume that M is simply connected. By the Hurewicz theorem,
it is sufficient to show that if Hj(M) 0, then there exists a nontrivial geodesic
loop at p of length < 2ydiam(M).

Let p(M) be the injectivity radius of M. For any e < p(M), let Q£ := {x e
M | dist(jc, /?) > e}. Then, it is clear that r(Qs) < diam(M) — e < diam(Af).
Moreover, Hj(Qe,dQe) s Hj(M) + 0.
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We apply Theorem 1.4 for Qe. Then, there exists a brake billiard trajectory y£

on Qe such that length(yE) < 2jr(Qs) < 2ydiam(M). We set re := min{f >
0 | yE(t) e dQe}, and define TE : [0, 1] -> Qs by rE(f) := yE(zEt). Since

re(0),rfi(l) e dQs, and length(rE) < length(yE) < 2ydiam(M), a certain

subsequence of (TE)E converges to a geodesic loop T : [0, 1] -» M at p such that

length(T) < 2ydiam(A/).
We have to check that T is nonconstant. Since T£+ (0) is perpendicular to 3Qe

and nonzero, T£([0, 1]) intersects S := {x e M \ dist(x,/?) p(M)}. Hence

T([0, 1]) also intersects S. Since p S,Y is nonconstant.

6. Shortest periodic billiard trajectory in a convex body

In this section, we prove Theorem 1.8 and Theorem 1.9 using our method. A recent

paper [3] obtained similar proofs based on the results in [8]. Several results in this
section were already obtained in [81 in a more general setting. We include proofs
of these results for the sake of completeness, although some arguments overlap with
the arguments in [8].

First, let us introduce some notations. Let K C M" be a convex body with C°°
boundary.

• We abbreviate ca(K : [K, 3/f]) as ca(K).

• V(K) denotes the set of periodic billiard trajectories in K.

• V+(K) denotes the set consisting of piecewise geodesic curves y : Sl —> R"
such that y (S1) + x <£ intK for any x e M".

• For any v e M" and a compact set S C K", h(S : u) := max{s • v \ s e 5}.

• For any q e dK, v(q) denotes the unit vector that is outer normal to dK at q.

Lemma 6.1. Let K be a convex body with C°° boundary, and y : S1 -x M" be a

piecewise geodesic curve. If there exists A' C K" \{ (0,..., 0)} such that (0,..., 0) 6

conv(A0 and h(K : v) < h(y(Sl) : v) for any v Af, then y e V+(K).

Proof. Take x e M" arbitrarily. Since (0 0) e conv(A/"), there exists v M
such that x v > 0. Thus, h(y(Sl) + x : v) > h(y(Sl) : v) > h(K : v). Since

r^0, this shows that y(S1) + x intK.

Lemma 6.2. Any y e V( K) satisfies the assumption in Lemma 6.1 with Af '.=
{v(y(f)) | t e By}. In particular, V(K) C V+(K).

Proof For any t e By, there holds h(K : v(y(t))) y(t) v(y(t)) since K is

convex. Hence h(K : v) IfyiS1) : u) for any v e M.
Suppose that (0,..., 0) ^ conv(AC). Since M is a finite set, there exists xel"

such that x v > 0 for any v e Af. Since y 0 on S1 \ By, there exists t e By
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such that x (y~(t) — y+(t)) < 0. On the other hand, it is easy to see that

v(y{t)) y~(t) - y+U)/\y~{t) - y+(t)|. Thus, we have x v(y(t)) < 0. This is

a contradiction, thus (0 0) e conv(A/").

The following proposition is a key step in the proof.

Proposition 6.3. For any y e V+(K), there holds cQ(K) < length(y).

Proof. It is sufficient to show that, for any a > length(y)2/2 and S > 0, the

homomorphism

Hn(\niK, int AT \ K(8)) -> Hn(Qa(mtK), Qa(intK) 0 S2a(intAT))

is zero. By the excision property, this is equivalent to show that

Hn(R",R" \ K(8)) -+ Hn(na(Rn),na(Rn) \ Q(K(8)))

is zero. By changing parameters of y if necessary, we may assume that £(y)
Iength(y)2/2. Therefore, £(y) < a.

Let us set Br {x e R" | \x\ < R} for any R > 0. We define
F : ß«x[0, 1] L>a(R") by F(w,s)(t) := w+sy{t). When R is sufficiently large,
w + xyjS1) K(8) for any w e 9Br andO < s < 1. Moreover, iu+y(5'1) K(8)
for any w e Br, since y e V+{K). Thus, setting P := ß« x [0,1] and

P' := 3Br x [0, 1] U Br x {1}, we have

F : (P. P') (£2a(R"), ßa(M") \ £2(AT(«))).

Setting i : (Br, 3Br) ->• (P. P')\x (x, 0), we have the commutative diagram

Hn(BR. 3Br) ^ > H„(P, P')

F*

Hn(R\ W \ K(8)) ^//„(ßa(R"),£2a(R")\ß(K(5))).

Since K(8) is also convex, the left vertical arrow is an isomorphism. On the other
hand, /* 0. Thus, the bottom homomorphism is zero.

Corollary 6.4. Let us define n+(K) : inf{length(y) | y e V+{K)}. Then,
cq(K) tip(K) ß+(K).

Proof. Lemma 5.4 shows ca(K) > iiP(K). V{K) C P+(K) shows ßP(K) >
lip(K). Proposition 6.3 shows fip(K) > cu(K).

Remark 6.5. The identity ca(K) ßp(K) implies that there exists a shortest
periodic billiard trajectory in K, since Lemma 5.4 shows that there exists a periodic
billiard trajectory y in K such that length(y) ca(K).
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The identity ptp{K) /xJ(A') can be considered as a variational characterization

of fip. The same result is established in [8] (see also [31, Theorem 2.1). As

an immediate consequence, we can recover the following result, which was already
obtained in Proposition 1.4 [51 (see also [3] Section 2.2).

Corollary 6.6 ([5]). Let K\ C K2 be convex bodies with C°° boundaries. Then,

TP(KI) < ßp(K2)-

Proof. It is obvious that V+(K2) C V+(K\). Then, we have

Hp(K\) a4(^i) < Pp(K2) 2).

We also need Lemma 6.7 to determine when equality holds in Theorem 1.8 and

Theorem 1.9.

Lemma 6.7. Suppose that y V+(K) satisfies length(y) p.~^(K), and |y(OI is

constantfor all t such that y(t) exists. Then, up to parallel displacement, y e V(K).

Proof. For any s > 0, we set yE(t) := (1 — e)y(t). Since length(y£) <
length(y) p,~p(K), there holds y£ £ V+(K). There exists xe e M" such that

Xe + Ys(Sl) C int/f for any e > 0, thus by parallel displacement, we may assume
that /(S1) C K. We show that y e V(K).

Take 0 to < 11 < ••• < tm 1 so that are geodesies and

Y~(tj) 7^ Y+(tj) f°r a" ' - j - We set J := {1 5 j 5 m \ y({j) e 9^}-
For each j e J, let us abbreviate u(y(t;)) as v}. By convexity of K, h(K : v})
y{tj) Vj for each j e J.

Let Af \= {vj I j G J}. If (0,..., 0) ^ conv{N), there exists rel" such that

x Vj <0 for any j e J. Thus, y(S') + cx c inlA^ for sufficiently small c > 0.

This is impossible since y e V+(K). Thus, we have shown (0,..., 0) e conv(A/").

We show that J {l,...,m}. If 7 C {1 m}, there exists y' : Sl —> K
such that length(y') < length(y) and y'(5') D {y(tj) \ j e J). For each j e J,
one has

h(K : Vj) y(t,) v} < h(y'(Sl) : Vj).

Then, Lemma 6.1 implies y' e V+(K). This is impossible since y has the shortest

length in V+{K).
To prove y e V(K), it is sufficient to check that y satisfies the law of reflection

at every tj. If this is not the case, i.e., y+(tj) — y~(tj) is not a multiple of v, for
some j, there exists v e TY(t/)dK such that

\Y(tj)-y(tj-i)\ + \y(tj+i)-YUj)\ > \Y{tj) + v-Y{tj-\)\ + \y{tj+i)-Y{t})-v\.
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Define y' : S1 -» M" so that

y,,l)=H> + » (/ ;)
(y('i) 0 ^ J)

and y'\[ti_|>(/] are geodesies for all 1 < i < m. Then, length(y') < length(y).
It is easy to check h(y'(Sl) : v,) > h(K : v,) for any 1 < / < m, and thus,

Lemma 6.1 implies y' V+(K). This is impossible since y has the shortest length
in V+(K).

For any two curves y, : S1 -* M" (/ 1,2), we define yi + y2 : Sl M"

by yi + y2(t) := yx(t) + y2(t). The following lemma would be clear from the

definition of V+.

Lemma 6.8. Ify,(Sl) £ V+( Kl) for i 1,2, one has yx + y2 £ V+(KX + K2).

Now, we can prove Theorem 1.8.

Proofof Theorem 1.8. Let a, := If length(y) < (iP(Kx) +
ßp(K2), we have the following inequality for each j 1,2.

length)«, y) a} length(y) < ßp(Kj) n+p{Kj).

Then, a}y £ V+(K/). By Lemma 6.8, y a xy + «27 $ V+(K 1 + K2). Thus, we
have shown that ß~^{Kx + K2) > hp(Kx) + fip(K2). By Corollary 6.4, we get

ßpiKi + K2) + K2) > iip(Ki) + iip(K2). (6.1)

We have to show that the following two conditions are equivalent.

(i): fip(K\ + K2) fXp(Ki) + hp(K2).
(ii): There exists a closed curve y which, up to parallel displacement and scaling,

is the shortest periodic billiard trajectory in both K1 and K2.

(') => (ii): There exists y £ V{K\+ K2) such that length(y) fip(Kx + K2).
If «1 y V+(K\), one has («1 + e)y f. V+{K\) for sufficiently small £ > 0.
On the other hand, (a2 — £)y £ V+(K2) since («2 — e)length(y) < iip{K2).
Thus, y ^ V+(K\ + K2), which is a contradiction. Therefore, a\y e V+(K 1).
Since length(« 1 y) ßp{Kx), Lemma 6.7 implies ayy e V(KX) up to parallel
displacement. We can prove a2y e V(K2) in the same manner, and thus, (ii) holds.

('') ('): Take y : S1 -* M" as in (ii). For j 1,2, let y7 be a shortest
periodic billiard trajectory on Kj, which is obtained by parallel displacement and
scaling of y. We may assume that y y{ + y2. Then, length(y) length(yi) +
length(y2) ^P(KX) + nP(K2).

It is easy to see that BY] By2. Let us denote it as B. For each t e B,
v(t)'.= y {t) — y + (t)/\y~(t) — y + (t)\ is outer normal to dKj at y, (t) for j 1,2.
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Let us set Af := {v(0 | t e B). By Lemma 6.2, we have (0,... ,0) 6 conv(7V) and

h(K/ : v) h(Yj{Sl) : v) for any v e Af, j 1,2. Then, for any v e Af

h(Kx +K2 : v) h(K] : v) + h(K2 : v) /,(y,(51) : vj + Mys^1) : v)

h(y(Sl):v).

By Lemma 6.1, y e V+(K\ + K2). Hence,

p,p{Kx + K2) ii+p{Ki + K2) < length(y) fip(Kx) + ßp(K2).

Combined with (6.1), (i) is proved.

To prove Theorem 1.9, we need the following lemma.

Lemma 6.9. Let B be a ball in R" with radius r > 0. Then, any y 6 V(B) satisfies

length(y) > 4r, and equality holds if and only if y is a bouncing ball orbit. In
particular, pp(B) 4r.

Proof. Let k := ft By- Then, one has length(y) 2kr sm(jrj/k) for some
\ <j <k-l. Then, the lemma follows from short computations.

Proofof Theorem 1.9. Let K be a convex body, and B be the largest ball contained
in K. Since the radius of B is r(K), Corollary 6.6 and Lemma 6.9 imply
P-p(K) > iip(B) 4/-(AT).

Suppose that p.p(K) 4r(K), and let y be the shortest periodic billiard trajectory

in K. Then, y e V{K) C V+(K) c V+(B), and length(y) 4r(K) pP(B)
Then, Lemma 6.7 shows that y e V(B) up to parallel displacement. By Lemma
6.9, y is a bouncing ball orbit. In parlicualr, y is orthogonal to 3K at bouncing
points. Thus, K is contained in a slab of thickness length(y)/2 2r(K). Hence

width(/Q 2r(K).
Suppose that width(Tf) 2r(K). Then, K is contained in a slab S of

thickness 2r(K). Let y be a bouncing ball orbit on S, i.e., y is the shortest

orbit that touches both connected components of 35. Then, it is easy to see that

y e V+(S) C V+(K). Thus, pP(K) p+P{K) < length(y) 4r(K).
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