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Hyperbolic entire functions with bounded Fatou components
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Abstract. We show that an invariant Fatou component of a hyperbolic transcendental entire
function is a Jordan domain (in fact, a quasidisc) if and only if it contains only finitely
many critical points and no asymptotic curves. We use this theorem to prove criteria for the

boundedness of Fatou components and local connectivity of Julia sets for hyperbolic entire
functions, and give examples that demonstrate that our results are optimal. A particularly strong
dichotomy is obtained in the case of a function with precisely two critical values.
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1. Introduction

Dynamical systems that are hyperbolic (or "Axiom A" in Smale's terminology)
exhibit, in a certain sense, the simplest possible behaviour. (For the formal definition
of hyperbolicity in our context, see Definition 1.1 below.) In any given setting,
understanding hyperbolic systems is the first step on the way to studying more
general types of behaviour. Furthermore, in many one-dimensional situations,
hyperbolic dynamics is either known or believed to be topologically generic (see

e.g. [28,30,31,48]), and hence many systems are indeed hyperbolic.
In the iteration of complex polynomials p: C -> C, the dynamics of hyperbolic

functions has been essentially completely understood since the seminal work of
Douady, Hubbard and Thurston in the 1980s. In particular, these can be classified —
in a variety of ways — using finite combinatorial objects such as "Hubbard trees".

Typically, any qualitative question about the iterative behaviour of the map under
consideration can be answered from this encoding.

*The second author was supported by Polish NCN grant decision DEC-2012/06/M/ST1/00168 as well
as grants 2009SGR-792 and MTM2011-26995-C02-02.

The third author was supported by a Philip Leverhulme Prize.
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In addition to polynomial and rational iteration, the dynamical study of transcendental

entire functions (i.e. non-polynomial holomorphic self-maps of the complex
plane) is currently receiving increased interest, partly due to intriguing connections

with deep aspects of the polynomial theory. (We refer to the introduction of [51 ] for a

short discussion.) However, until recently there were only a small number of specific
cases where hyperbolic behaviour had been understood in detail (cf. [1, 11,52]
and [42, Corollary 9.3]).

Indeed, it turns out that, even restricted to the hyperbolic case, entire functions

can be incredibly diverse: for example, while for many such maps, the Julia sets

are known to contain curves along which the iterates tend to infinity, there are

also (hyperbolic) examples where this is not the case [51]. Similarly, for some

hyperbolic maps there are natural conformal measures in the sense of Sullivan, with
associated invariant measures [33], while for others such measures cannot exist [46].
Nonetheless, it was proved recently [44, Theorems 1.4 and 5.2] that, in any given
family of entire functions, the behaviour of hyperbolic functions can essentially
be described completely, in terms of a certain topological model (which however

depends on the family in question).
A disadvantage of this description is that it is not very explicit. To explain what

we mean by this, and to introduce the main question treated in our article, we first

provide some of the definitions that were deferred above. A point s 6 C is called a

singularity of the inverse function f~x if 5 is either a critical value (the image of a

critical point) or a finite asymptotic value. The latter means that there is a path y to

infinity whose image ends at s\ the curve y is then called an asymptotic curve. The
set of such singularities is denoted by sing(/_1). Then we call

B := {/: C —> C transcendental entire: sing(/_1) is bounded) (1.1)

the Eremenko-Lyubich class (compare [23]).

Definition 1.1 (Hyperbolicity). A transcendental entire function /: C —> C is called

hyperbolic if / e B and furthermore every element of S(f) := sing(/_1) belongs
to the basin of some attracting periodic cycle of /.

Equivalently, f is hyperbolic if and only if the postsingular set

W) := U fJ(smg{f-x))
j> o

is a compact subset of the Fatou set (see Proposition 2.1). Recall that the

Fatou set, F(f), consists of those points whose behaviour under iteration is

stable; more precisely, it contains exactly those points where the family of iterates

(/")«>o is equicontinuous with respect to the spherical metric. The complement

J{f) C \ F(f) is called the Julia set; here the dynamics is unstable.

If a hyperbolic entire function / has an asymptotic value, then it follows
immediately that some (but not necessarily all) connected components of F(f) are
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unbounded, see Figures 1(a) and 1(b). On the other hand, there are also examples
where all Fatou components appear to be bounded Jordan domains; compare
Figures 2(c) and 2(d). Unfortunately, the above mentioned description from [44]
does not allow us to determine when this is the case, and hence the problem remained

open even for rather simple explicit cases such as the cosine family, see below. The

following result gives a complete answer to this question, and hence provides another

step towards the understanding of hyperbolic transcendental entire dynamics.

Figure 1: Two entire functions with asymptotic values and unbounded Fatou

components (the Julia set is drawn in black; Fatou components are in grey and white).
On the left is an exponential map; the Fatou set consists of the basin of an attracting
orbit of period 3. Every Fatou component U is unbounded and dll is not locally
connected. On the right is a function that plays a crucial role in our construction of

Example 1.6. Here there are superattracting fixed points at 0 and —1 (marked with
filled circles), and 0 is an asymptotic value. The basin of 0 is coloured white and

the basin of — 1 is coloured grey — every Fatou component is a Jordan domain, but

all pre-periodic components of the basin of 0 are unbounded, and the Julia set is not

locally connected. Here and in subsequent images, non-periodic critical points (in
this case, the point 1) are marked by asterisks.

Theorem 1.2 (Bounded Fatou components). Let f e B be hyperbolic. Then the

following are equivalent:

(1) every component of F(f is bounded;

(2) / has no asymptotic values and every component of F( f) contains at most

finitely many critical points.
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(a) F{f) connected (b) Unbounded components

(c) Locally connected Julia set (d) Another locally connected Julia set

Figure 2: Julia sets (drawn in dark grey) of some maps in the cosine family,
z i—> a cos(z) + b, illustrating Theorem 1.4 and Corollary I.9.1 (Note that these can

easily be reparametrised as: i-^ sin (a'z+b') for suitable choices of a', b'.) The two

maps in the top row have unbounded Fatou components and their Julia sets are not

locally connected. The maps on the bottom line both have locally connected Julia
sets.

Remark. If either (and hence both) of these conditions are true, then in fact all
Fatou components are bounded quasidiscs, see Corollary 1.11. (A quasidisc is a

Jordan domain that is the image of the open unit disc under some quasiconformal
homeomorphism of the Riemann sphere.)

'The maps 111 Subfigures (a), (c) and (d) have —a b X, with X 3/4, X 4n/3 and X 2.

respectively For (a) and (c) the superattracting fixed point at 0 is the only attracting cycle, while in (d),
there is an additional cycle of period 2 whose basin is shown in light grey. In (b). a 4;/( 1 — cosh 4)
and b 4i — a. There is a unique superattracting cycle 0 i—4i (—>• 0 Points in F(f) are coloured
white and light grey depending on whether they take an even or odd number of iterations to reach the

Fatou component containing 0. Superattracting cycles are indicated by black filled circles: non-periodic
critical points are marked with asterisks.
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Condition (2) of Theorem 1.2 can usually be verified in a straightforward manner
for specific hyperbolic functions. This is especially easy when stng( f~l is finite,

f has no asymptotic values and we know that every Fatou component contains at

most one critical value (for example, because different critical values converge to
different attracting periodic orbits). We shall see (in Proposition 2.9 (1)) that in this
case every component of F( f) contains at most one critical point, and hence we
obtain the following corollary:

Corollary 1.3 (One critical value per component) Let f be a Inperbolic entire
function without asymptotic values. If every component of F( f contains at most
one critical value, then every component of F(f) is bounded.

Maps with two critical values. Let us consider what happens when we restrict
the size of sing( f~x) further. If #sing( f~x) 1, then / must be conjugate to an

exponential map z Xez. This family has been thoroughly studied since the 1980s;

compare e.g. [6,15,23,45] and the references therein. Since exponential maps have

an asymptotic value at 0 and no other singular values, in the hyperbolic case there

are only unbounded Fatou components (see Figure 1(a)).
Cases where #sing(f-1) 2 include for instance the cosine (or sine) maps

z I— sin(r/z+/>), where a. b £ C, a yX with critical values at ± 1 but no asymptotic
values, as well as the family z h» a:ez + b with one critical and one asymptotic
value, among many others (compaie [14,25]). However, the class of entire maps with
two inverse function singularities is far more general than suggested by these simple
examples. Indeed, there exist uncountably many essentially different families of
entire functions with no asymptotic values and exactly two critical values; the same
is true tor functions with two asymptotic values, or one critical and one asymptotic
value. By this we mean that there exists an uncountable collection fF of functions
of this type, such that none of the functions in T can be obtained from another by
pre- and post-composition with plane homeomorphisms. (The existence of such a

collection follows from the classical theory of line complexes; compare for instance
[27, Chapter 7| and also Observation 5.2 below.)

Drasin [201 and Merenkov [34] have constructed maps of this class that have

irregular and arbitrarily fast growth, respectively. More recently, Bishop [12] has

desci ibed a method for consti ucting functions with no asymptotic values, two critical
values and no critical points of degree greater than 4, having essentially arbitrary
prescribed behaviour near infinity. These functions can have dynamical properties
that are very different from those of the simple examples mentioned above. For

example, Bishop shows [12, Section 18] that the above-mentioned example from
[51, Theorem 1.1], where the escaping .set

1(f) := [zeC:/"(r)-»oo|

contains no unbounded continuous curves, can be realised within this class.
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Theorem 1.2 allows us to formulate a striking dichotomy when # sing(/ 1) 2:

Theorem 1.4 (Dichotomy for functions with two critical values). Let f: C —» C
be a transcendental entire function without finite asymptotic values and exactly two
critical values. Assume furthermore that f is hyperbolic, i.e. both critical values
tend to attracting periodic orbits off under iteration. Then either

(1) every connected component U of F(f) is unbounded, and dU is not locally
connected at any finite point, or

(2) every connected component of F(f) is a bounded quasidisc.

In case (1), all critical points of f belong to a single periodic Fatou component.

Here "local connectivity" of a set A" at a point r means that there are arbitrarily
small connected neighbourhoods of z in A'; we do not require these neighbourhoods
to be open. (Sometimes this property is instead referred to as "connected im
kleinen"; compare e.g. [43].) Of course, the boundary of a quasidisc is locally
connected at every point. Hence, for hyperbolic maps with two critical values, there

are two extremely contrasting possibilities for the shape of all Fatou components.
The theorem appears to be new even for hyperbolic maps in the cosine family,

except in the one-dimensional slice z h-» sin(az), where due to symmetry there
is effectively only one free critical value. Here our result implies that all Fatou

components are bounded when / is hyperbolic, except for |a| < 1; this was already
stated by Zhang [56, p. 2, third paragraph], who mentions that it can be proved using
polynomial-like mappings. Some special instances can also implicitly be found

already in [17]. The same statement is established in [16, Prop. 6.3] for all maps
with | Rea| > jt/2, even without the assumption of hyperbolicity; it is conjectured
there that this also holds whenever |a| > 1.

Without further hypotheses, Theorem 1.4 does not hold for larger numbers of
critical values, as shown by the following example (see Figure 3).

Example 1.5 (Unbounded and bounded Fatou components). Define

u — cos y (arcosh2 u + 7T2) z2 — arcosh2 u

u + 1

where u > 1. Then f has no asymptotic values and three critical values 0, 1 and

cu (u — l)/(w + 1). The points 0 and 1 are superattracting fixed points and for
large u (in fact, for u > 2.7981186 the critical value cu and all positive critical
points are contained in the immediate attracting basin of 1. The immediate basin of 0

is a bounded quasidisc while the immediate basin of 1 is unbounded and not locally
connected at any finite point; see Figure 3.

Even when the periodic Fatou components are Jordan domains, it is possible for
some preimage components to be unbounded:
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Example 1.6 (Unbounded preimages of bounded Fatou components). There exists

an entire function /, with three critical values w\, wj, w3 and no asymptotic values,
such that the following hold:

(a) it>i and W2 are superattracting fixed points with immediate basins bounded by
a Jordan curve;

(b) IC3 is contained in the immediate basin of w\;
(c) the preimage of the immediate basin of w\ has an unbounded component.

Figure 3: The function from Example 1.5 (shown here for u 3) has three

critical values and two fixed Fatou components, one of which is a bounded Jordan

domain, while the other is unbounded with non-Jocally-connected boundary. The
fixed points 0 and 1 are superattracting; the basin of 0 is depicted in white, the basin

of 1 in light grey, and the Julia set in darker tones of grey. Non-periodic critical
points are marked by asterisks.

Local connectivity ofJulia sets. A key question in polynomial dynamics is whether
a given Julia set is locally connected. This is known to hold for large classes of
examples, including all hyperbolic maps, and implies a complete description of the

topological dynamics of the map in question (compare (181).

Local connectivity of Julia sets of transcendental entire functions has also been

studied by a number of authors (see e.g. [10,37,40]). This problem is closely
connected to the boundedness of Fatou components, mentioned above. Indeed,
if any component of F( f) is unbounded, then J{ f) cannot be locally connected

(compare [5, Theorem El and Lemma 2.4 below); in particular, hyperbolic functions
with asymptotic values do not have locally connected Julia sets. We may ask whether
the conditions in Theorem 1.2, which describe precisely when all Fatou components
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are bounded, also ensure local connectivity of the Julia set It turns out that this is

not the case

Example 1.7 (Non-locally connected Julia set) There exists an entire function /,
having two critical values 0 and 1 and no other singularities ot the inverse function,
such that the following hold

(a) 0 and 1 are superattracting fixed points,

(b) every Fatou component of / is bounded by a Jordan curve,

(c) the Julia set ot / is not locally connected

The basic idea behind the construction is to use critical points of extremely high
degree to simulate the behaviour of an asymptotic value and create (pre-penodic)
Fatou components of large diameter, compare Figure 5 in Section 5 This suggests
that, to ensure local connectivity, we should require a bound on the multiplicities of
critical points within any one Fatou component Indeed, using a result of Morosawa
(see Theorem 2 5 below), we obtain the following consequence ot Theorem 1 2

Corollary 1.8 (Bounded degree implies local connectivity) Let f e B be

hyperbolic with no asymptotic values Suppose that there is a number N such that

even component of F(f) contains at most N critical points, counting multiplicity
Then J(f) is locally connected

Again, the additional assumption becomes particularly simple when every Fatou

component contains at most one critical value, or when # sing( f~1) 2

Corollary 1.9 (Locally connected Julia sets) Let f be a hyperbolicfunction u itliout
asymptotic values Suppose that

(a) even component of F(f) contains at most one critical value, oi

(b) #sing(/-1) 2 and every component of F(f) is bounded

Assume additionally that the multiplicity of the critical points of f is unifoimly
bounded Then J(f) is locally connected

One interesting consequence ot the preceding discussion is that, in the
transcendental setting, local connectivity does not imply simple topological dynamics
Indeed, the examples of Bishop that were mentioned above have only cntical points
of degree at most 4 and, by precomposing such an example with a linear map, we can

ensure that both critical values are superattracting fixed points Hence Corollary 1 9

applies to these families and therefore the Julia set is locally connected On the other
hand, by the results of [44], the "pathological" behaviour near infinity is preserved
by such a composition In particular, we can find hyperbolic entire functions with
locally connected Julia sets where the escaping set does not contain any curves
to oo, or even (using recent results from [47]) such examples where the Julia set

contains an uncountable collection of pairwise disjoint and dynamically natural

pseudo-arcs (A pseudo arc is a certain hereditarily indecomposable continuum,
cf [38, Exercise 1 23]
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Boundedness of immediate basins. The key step in establishing Theorem 1.2 is to

verify that all periodic Fatou components of the map / are bounded, provided that

condition (2) in the theorem holds. This is achieved by the following result, which
gives a variety of conditions equivalent to the boundedness of a Fatou component.

Theorem 1.10 (Immediate basins of hyperbolic maps). Let f B be a hyperbolic
transcendental entire function, and let D be a periodic Fatou component of f, say

ofperiod p > 1. Then the following are equivalent:

(a) D is a quasidisc;

(b) D is a Jordan domain;

(c) C \ D is locally connected at some finite point ofdD;
(d) D is bounded;

(e) D does not contain a curve to infinity;

(f) the orbit of D contains no asymptotic curves and only finitely many critical
points;

(g) / p: D —> D is a proper map;

(h) for at least two distinct choices of z G D, the set f~p(z H D is finite.

As mentioned, the key new implication here is (f)=Kd); the remaining
equivalences and implications can be obtained by well-established methods, although
some of them appear to be folklore. This part of the proof relies on a result
from [44], which states that hyperbolic maps are uniformly expanding on a suitable

neighbourhood of their Julia sets; see Proposition 2.2 below, and compare also

Theorem C of [49].
We remark that the conclusion of the theorem does not hold if we omit the

requirement that / G B from the definition of hyperbolicity. Indeed, consider

f(z) : ez + z + 1, which is precisely Newton's method for finding roots of
z i-> e~z + 1. Then the singular values of / are precisely the infinitely many
superattracting cycles ak (2k + l)ni (with k G Z), and / has degree two
when restricted to the invariant Fatou component containing a£. However, all these

components are unbounded.

As a consequence of Theorem 1.10, we obtain the result announced after
Theorem 1.2, concerning quasidiscs:

Corollary 1.11 (Bounded components are quasidiscs). Every bounded Fatou

component ofa hyperbolic entire function is a quasidisc.

Remark 1. It is possible for pre-periodic unbounded Fatou components to be

quasidiscs; indeed this is the case for two of the components in Figure 1(b).

Remark 2. This Corollary can also be deduced directly from known results and

methods. Indeed, a theorem of Morosawa [37, Theorem 1] implies that every
bounded Fatou component of a hyperbolic function is a Jordan domain. It is not
difficult to deduce that the boundary must in fact be a quasicircle.
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Bounded Fatou components and local connectivity beyond the hyperbolic
setting. In this article, we consider only hyperbolic functions, and use uniform
expansion estimates to establish our results. There are a number of weaker

hypotheses that will also suffice; here we mention only that all our proofs go through
for entire functions without asymptotic values that are strongly subhyperbolic in the

sense of Mihaljevic-Brandt [36], The theorems on Jordan Fatou components should
extend even more generally, e.g. assuming that the function is geometrically finite
in the sense of [35], and there are no asymptotic values on the boundaries of Fatou

components. (However, in the presence of parabolic points the boundaries will no

longer be quasicircles.) In view of the recent result of Roesch and Yin [50] that

all bounded attracting (and parabolic) Fatou components of polynomials are Jordan

domains, it is plausible that the same always holds also in the entire transcendental

setting, without additional dynamical assumptions on the function / :

Conjecture 1.12. Let f be a transcendental entire function, and let D be an
immediate attracting or parabolic basin. If D is bounded, then D is a Jordan
domain.

Structure of the article. In Section 2, we shall collect the prerequisites required
to prove our theorems. The proof of Theorem 1.10 relies crucially on a uniform
expansion estimate (Proposition 2.2) for hyperbolic entire functions, but we shall

require a number of additional results to deduce our theorems as stated. To keep the

article self contained, to emphasise the elementary nature of our arguments, and to

provide a convenient reference for future studies of hyperbolic functions, we provide
proofs or sketches of proofs where appropriate. We do use results of Heins [29]
and Baker-Weinreich [7] without further comments on their proofs. However, we
emphasise that these are required only to state properties (c) and (h) of Theorem 1.10

in as weak a form as possible, rather than being essential to the remainder of the

proof.

In Section 3, we prove our main result, Theorem 1.10, and deduce the remaining
theorems stated in the introduction in Section 4. Finally, Section 5 is dedicated to the

construction of Examples 1.5, 1.6 and 1.7, using a method of MacLane and Vinberg.
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2. Preliminaries

Notation. As usual, we denote the complex plane by C, and the Riemann sphere

by C. Throughout the article, / will denote a transcendental entire function, usually
belonging to the Eremenko-Lyubich class B as defined in (1.1). Recall from the

introduction that S(f) := sing(/_1) denotes the set of singular values of /.
If A, B c C, the notation A <s B ("A is compactly contained in ß") will mean

that A is bounded and A c B. The interior of a set A C C is denoted by int(A).
We refer to |9] for background on transcendental iteration theory, and to [8] for

background on hyperbolic geometry.

Hyperbolicity and uniform expansion. Hyperbolicity is a key assumption in our
results. We recall here some important properties. While these are well-known, we
are not aware of a suitable reference, and hence provide a detailed proof here for the

reader's convenience.

Proposition 2.1 (Hyperbolic functions). Let f : C -> C be a transcendental entire

function. Then f is hyperbolic ifand only ifV(f) <s F(f).
If f is hyperbolic, then F(f) is a finite union of attracting basins, and every

connected component ofF(f) is simply-connected. Furthermore, there is a compact
set K C F(f) such that f(K) C int(A") and S(f) C int(A'). The set K can be

chosen as the closure of a finite union of pairwise disjoint Jordan domains with

analytic boundaries, no two of which belong to the same Fatou component.

Proof. First suppose that / is hyperbolic. To see that f has only finitely many
attracting basins note that S(f) is compact, and that the Fatou components of /
form an open covering of S(f) by assumption. Hence only finitely many Fatou

components intersect S( /). On the other hand, every periodic cycle of attracting
Fatou components contains at least one singular value by Fatou's Theorem [9,
Theorem 7], so we see that the number of such cycles is finite. It follows, in

particular, that the postsingular set V( f) is compact and contained in the Fatou set.

Every connected component of an attracting basin is simply-connected by the

maximum principle. We next construct the set K. We just proved that there are only
finitely many Fatou components that intersect V( f). To each such component U, we

can associate an analytic Jordan domain D(U) U with V(f)nU C D(U) and

f(D(U)) <s D( /([/)), where f(U) denotes the Fatou component containing f(U).
(Compare [36, Proposition 2.6].) Indeed, we first construct the domains D(U) for
a'l pre-periodic components by induction, beginning with the components having the

largest pre-period. Finally, let p )$> 0 be a sufficiently large constant, and for each

periodic Fatou component, let D(U) be the hyperbolic disc of radius p around the

attracting periodic point in U. Then f{D(U)) D( f(U)) by the Schwarz lemma.

If p was chosen sufficiently large, then D(U) also contains the compact set V{f)r\U
and the image of D( V) for any pre-periodic component V with V( f) D V ^0 and
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f(V) C U. Since, by construction, f(D(U)) d D(f(U)) for all components U of
pre-period greater than 1 that intersect P(f), we see that

K := [J ~D(U)

unv(f)^&
has the required properties.

From now on, assume only that V(f) d F(f), and let U be a component
of F(f). Then U cannot be a Siegel disc, since otherwise we would have

3U C V(f) [9, Theorem 7], and hence V(f) n J(f) ^ 0, which contradicts

our assumption. This implies that all limit functions of the family {<= N}
are constant, possibly infinite. Since / B, we cannot have fn\u oo, by a

result of Eremenko and Lyubich [23, Theorem 1]. Hence there exists a subsequence
of /"\u) which tends to a finite constant a e C. A result of Baker [3, Theorem 2]

implies that a e V(f). By assumption, it follows that a e F(f). This implies
that U can be neither a parabolic nor a wandering domain. It follows that a must
in fact be an attracting periodic point, and U is a component of its attracting basin.
Hence F( f) consists only of attracting basins. In particular, f is hyperbolic, and

the proof is complete.

We remark that Bishop [12] recently proved that the class B contains non-
hyperbolic functions that do have wandering domains. (The orbits of these domains
accumulate both at oo and at some finite points. Wandering domains with the latter

property had been constructed earlier by Eremenko and Lyubich [22, Example 1 ]. but

in their examples it was not clear whether the function could be taken to be in B.)
The key element in our proof of Theorem 1.10 will be the fact that hyperbolic

functions are uniformly expanding, with respect to a suitable conformal metric.

Proposition 2.2 (Uniform expansion for hyperbolic functions [44, Lemma 5.1 J). Let

/: C —» C be a hyperbolic transcendental entire function, and let K be the compact
set from Proposition 2.1. That is, f(K) C int(A') and S(f) C K.

Define IT := C \ K and V := /-1 (IV). Then there is a constant A > 1 such

that

\\F>f{z)\\w > A

for all z G V, where || Df || \y denotes the derivative of f with respect to the

hyperbolic metric of W.

Idea of the proof. For completeness, let us briefly sketch the proof of this fact; we
refer to [44] for details. Since /: V —> IT is a covering map and V c IT, we have

||Df(z)\\w PV\
^

> 1

pw(z)
for all z V. It follows that it suffices to prove

pw{z) o{pv(z))



Vol. 90 (2015) Hyperbolic entire functions with bounded Fatou components 811

By standard estimates, we have

pw{z) 0

while for V it is shown in [44] that

1

log|z|

Pv(z)
0(\Z\).

(This uses the fact that C \ V f~x(K) contains a sequence (wn) with
|tu„ + i | < C \w„ |, for a constant C > 1, together with estimates on the hyperbolic
metric in a multiply-connected domain.) This completes the proof.

Local connectivity. We shall use the following characterisation of local connectivity

for compact subsets of the Riemann sphere.

Lemma 2.3 (LC Criterion [55, Thm. 4.4, Chapter VI]). A compact subset of the

Riemann sphere is locally connected if and only if the following two conditions are
satisfied:

(a) the boundary of each complementary component is locally connected;

(b) for every positive s there are only finitely many complementary components
ofspherical diameter greater than e.

We will apply the result above to study the local connectivity of Julia sets, even

though we consider these to be subsets of C rather than of C. However, it is

well-known that a continuum cannot fail to be locally connected at a single point
[38, Corollary 5.13], Hence it follows that J( f) is locally connected if and only if
J{f) U ]oo] is.

As mentioned in the introduction, a locally connected Julia set cannot have an

unbounded Fatou component [40, Corollary 1.2].

Lemma 2.4 (Local connectivity implies bounded Fatou components). Let f be an
entire transcendental function. If F( f) has an unbounded Fatou component, then

J( f is not locally connected.

Proof. Let U be an unbounded component of F(f). First suppose that there is

some iterated preimage component U of U that is not periodic. It follows that, for
any bounded open set D intersecting the Julia set, there are infinitely many different
unbounded Fatou components (namely iterated preimages of U) that intersect D.
Hence condition (b) of Lemma 2.3 is violated, and J( f) is not locally connected.

If no such component U exists, then U is completely invariant for some iterate

f". It follows that J( f) J(fn) is not locally connected by [5, Corollary 3].

n
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The following result shows that, once we know that all immediate attracting
basins are Jordan, we can already make conclusions about the local connectivity of
the Julia set — provided that there is a bound on the degree of / on any pre-periodic
Fatou component.

Theorem 2.5 (Bounded components and bounded degree imply local connectivity).
Let f e B be hyperbolic with no asymptotic values. Suppose that even immediate

attracting basin of f is a Jordan domain. If there is N such that the degree of
the restriction of f to any Fatou component is bounded by N, then ./( / is locally
connected.

This theorem is due to Morosawa [37, Theorem 2]. We note, however, that the

statement in [37] overlooked the assumption on the degree of preimages of Fatou

components. Our Examples 1.6 and 1.7 show that this assumption is necessary.
A more general statement (which includes the corrected hypotheses) can be found

in [10, Theorem 4]. For convenience, let us show how the result can be obtained
from Proposition 2.2.

Proof of Theorem 2.5. We only need to establish part (b) of Lemma 2.3. By
Proposition 2.1, all components of F( f are simply-connected. Hence, if U and V

are Fatou components with f(U) C V and V fl S(f) 0, then f\U -* V is

bijective. Since S(f) is compactly contained in the Fatou set, only a finite number k

of Fatou components intersect the singular set.

Let U be a pre-periodic Fatou component, say of pre-period n, and let V — f " (U)
be the first periodic Fatou component on the orbit of U. The assumption implies that
the degree of f"\U —» V is bounded by Nk. Hence — using that V is a Jordan

domain — the boundary dU covers dV at most Nk times when mapped under f".
Let W and X be as in Proposition 2.2. We can cover dV by, say, M simply-connected
hyperbolic discs (with respect to the hyperbolic metric of IT). Since / has only
finitely many periodic Fatou components, the number M is bounded independently
of U. Let r be the maximal hyperbolic diameter of these discs. Proposition 2.2

implies that we can cover dU by Nk M hyperbolic discs of diameter r/X". Thus
the hyperbolic diameter of U in W is bounded by NkMr/Xn, which tends to zero

exponentially as n tends to infinity. Furthermore, for a given //, the Fatou components
of pre-period n can only accumulate at infinity (by the open mapping theorem),
and hence only finitely many of them have spherical diameter greater than a given
number e > 0. This establishes property (b) of Lemma 2.3, and completes the

proof.

Remark. Alternatively, we could use distortion principles for maps of bounded

degree to see that every Fatou component U contains an open disc of size comparable
to the diameter of U. Again, this implies (b) in Lemma 2.3.

In order to state some of our results concerning local connectivity of Fatou

component boundaries, we shall use the following theorem, which is due to Baker
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and Weinreich [7]. We remark that this result is not central to our arguments, but
rather allows us to state some conclusions (e.g. in Theorem 1.4) more strongly than

would otherwise be possible.

Theorem 2.6 (Boundaries of periodic Fatou components). Let f be a transcendental
entire function, and suppose that U is an unbounded periodic component of F( f)
such that j"\u does not tend to infinity. Then C \U is not locally connected at any
finite point ofdU.

Proof. Baker and Weinreich proved that, under these assumptions, the impression
of every prime end of U contains oo. Equivalently, if <p: D —»• U is a conformal map
(which exists by the Riemann mapping theorem) and zo e 3D, then there exists a

sequence e D such that zn z0 and ip(zn) —> oo.

Now suppose, by contradiction, that some point in 3U has a bounded connected

neighbourhood K in C \ U, which we may assume to be compact and full. Let

ro £ 3D such that the radial limit of <p at zq exists and belongs to the relative interior
of K in C \ U. There is a small round disc D around r0 such that the Euclidean

length of y := <^(B (T 3D) is sufficiently short to ensure that both endpoints of y
are in K, and that K U y does not separate tp(0) from oo. (This follows from a

well-known application of the length-area principle — see e.g. |41, Proposition 2.2],
which strictly speaking applies only to bounded domains, but whose proof yields the

desired result in the unbounded case upon replacing Euclidean length and area with
their spherical analogues.) It follows that (p(D HD) is contained in the bounded

complementary component of K U y, which is a contradiction to the above result

by Baker and Weinreich. (Alternatively, we may additionally assume that the prime
end corresponding to Zq is symmetric, as the set of asymmetric prime ends is at most
countable [41, Proposition 2.211. By [ 13, Corollary 1], the corresponding impression
is contained in K — a contradiction.)

Finally, we shall require a number of facts concerning the mapping behaviour of
entire functions on preimages of simply-connected domains. While these results are

certainly not new, we are again not aware of a convenient reference and therefore
include the proofs. In our arguments, we shall use the following simple lemma.

Lemma 2.7 (Coverings of doubly-connected domains). Let A. B c C be domains
and let f: B —> A be a covering map. Suppose that A is doubly-connected. Then

either B is doubly-connected and f is a proper mapping, or B is simply-connected
(and f is a universal cover, of infinite degree).

Proof. The fundamental group of A is isomorphic to Z. The fundamental group of B
is thus isomorphic to a subgroup of Z. As the only subgroups of Z are the trivial one
and the groups kZ with k > 1, the conclusion follows easily.
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Proposition 2.8 (Mapping of simply-connected sets). Let f be an entire function,
let D C C be a simply-connected domain, and let D be a component of f~x (D).
Then either

(a) / : I) D is a proper map (and hence has finite degree), or

(b) /-1 (u;) H D is infinite for every w e D, with at most one exception.

In case (b), either D contains an asymptotic curve corresponding to an asymptotic
value in D, or D contains infinitely many critical points.

Proof. A theorem by Heins [29, Theorem 4'] implies that either (b) holds, or the

number of preimages of w e D in D (counting multiplicity) is finite and constant
in D. It is elementary to see that the latter is equivalent to (a).

To prove the final statement, it is sufficient to consider the case where f:D->D
has no asymptotic values in D and only finitely many critical values (otherwise, there
is nothing to show). This implies that this map is an infinite branched covering;
i.e. every point zo 6 D has a simply-connected neighbourhood U such that every
component U of f~x(U) fl D is mapped as a finite covering, branched at most

over z0.
Such a map must have infinitely many critical points. This essentially follows

from the Riemann-Hurwitz formula — which is usually stated only for proper maps,
but whose proof goes through also in this case. For completeness, let us indicate an

alternative proof of our claim. Let cq ,cm be the distinct critical values in D. We

join them to a further point a e D by simple arcs rj xm which do not intersect

except in their common endpoint a. Set T r, and T := f~l(T) PiD. Now

D \ T is doubly-connected and f:D\T D \ T is a covering of infinite degree.

By Lemma 2.7 this map must be a universal covering, and thus every component T'
of T is unbounded. Since / is a branched covering map, T consists of infinitely
many preimages of T, joined together only at critical points. This proves that D
contains infinitely many critical points.

In our applications, the function f will always be hyperbolic, and hence the set

of singular values stays away from the boundary of D. In this case, we can say more:

Proposition 2.9 (Preimages of sets with non-singular boundary). Let f, D and D
be as in Proposition 2.8, and assume additionally that D (T S(f) is compact.

(1) IfHD ft S(f) < 1, then D contains at most one critical point of f.
(2) If S(f) C D, then D f~x(D).
(3) In case (a) of Proposition 2.8, if D is a bounded Jordan domain (resp. qua-

sidisc) such that <)D fl S( f) — 0, then D is also a bounded Jordan domain

(resp. quasidisc).

(4) In case (b) of Proposition 2.8, the point oo is accessible from D.
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Proof. Set SD := S(f)D D. lf#SD 1, then f:D\ f~l(SD) -> D \ SD
is conformally equivalent to an unramified covering of the punctured unit disc. By
Lemma 2.7, it follows that D contains at most one critical point. We have proved (1).

Now let U c D be simply-connected such that So C U (<= D. Set

U := (U) fl D. By the maximum principle, every component of U is simply-
connected We will show that (7 is connected. Indeed, let z, w e U, and lety" C D
be a smooth arc connecting z and w. Set y f(y). Since So has a positive distance
from 9(7, the curve y contains at most finitely pieces that connect So to 9(7. By
cutting the curve at one point in each of these pieces, we may divide it into finitely
many segments, some that may intersect S( f but are contained in (7, and some that

may leave U but do not intersect S(f). We construct a new curve y' e U which
equals y in those segments contained in (7 but is only homotopic to y in D \ S(f),
relative to the endpoints, in the remaining pieces. These homotopies can be lifted to
D \ f~x (S( f since f is a covering there, resulting in a curve y7 C U connecting
z and w. Hence U is connected. In particular, this proves (2) (replacing D by C and
U by D).

For the remainder of the proof, let us require additionally that (7 is a bounded
Jordan domain with (7 d D. Then A := D \ U is doubly-connected. Consider
the set A := f~x(A) D D. On every component of A, the restriction of / is a

holomorphic covering map, since So C (7. By Lemma 2.7, the components of A

are either doubly- or simply-connected.
Suppose first that A has a doubly-connected component. Since U is connected

and simply-connected, it follows that A is connected, and that U is bounded. As

j\A - A has finite degree, it follows that we are in case (a) of Proposition 2.8.

Hence f: D ^ D is a proper map. If, additionally, D is a bounded Jordan domain
whose boundary is disjoint from S(f), then we can apply Proposition 2.8 to a

slightly larger Jordan disc D' without additional singular values, so the restriction
of / to the preimage of D' containing D is still proper. Then, /: 3D 3D is a

finite degree covering map, which proves that 3D is indeed a Jordan domain. Of
course the property of being a quasicircle is preserved under a conformal covering
map. This establishes (3).

Now suppose that every component V of A is simply-connected. Then

/: V —>• A is a universal covering, and hence has infinite degree. The preimage
of any simple non-contractible closed curve in A under this covering is a Jordan

arc in A tending to infinity in both directions, and hence oo is accessible from D,
proving (4).

Remark 1. In (3), to conclude that D is bounded, it is enough to assume that 3D
has exactly two complementary components, rather than that 3D is a Jordan curve.
Indeed, this follows from the onginal statement, since we can surround D by a

Jordan curve y such that the Jordan domain W bounded by y does not contain any
singular values other than those already in D. The claim then follows from the

Proposition as stated.
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Remark 2. In the case when f.D^D is proper but D is unbounded, we do not
know whether oo is always accessible from D. Indeed, this is an open question even
when D D is an unbounded Siegel disc of an exponential map. Also compare the

question in [4, p. 439,11. 8-9],

3. Periodic Fatou components

Proofof Theorem 1.10. Let / B be hyperbolic, and let D be an immediate

attracting basin of /', say of period p. By passing to an iterate, we may assume
without loss of generality that p — 1. Recall that D is simply-connected (by the

maximum principle).
Clearly (a)=i>(b)=>(c), as any quasidisc is Jordan, and the complement of any

Jordan domain is locally connected at every point. On the other hand, if C \ D is

locally connected at any finite point of 3D, then D is bounded by Theorem 2.6. So

(c) implies (d).

Clearly, if D is bounded, then D cannot contain a curve to oo, and hence

(d)=>(e).
Since / is hyperbolic, S(f) (T D is compact and we may apply Proposition

2.9 (4) to conclude that, if D does not contain a curve to infinity, then

alternative (a) of Proposition 2.8 holds. This in turn implies that D contains only
finitely many critical points and no asymptotic values, and, again by Proposition 2.8,
this is in turn implies that /D —» D is a proper map. Hence (e)=>(f)=Kg). Since

any proper map has finite degree, we have (g)=>(h).
It remains to prove (h)=Ka). So suppose that at least two points in D each have

at most finitely many preintages in D. We must show that 3D is a quasicircle. We

shall first prove that 3D is a bounded curve. In the rational case, this argument goes
back to Fatou [26, p. 83]; compare [53, Chapter 5, Section 5], and using the uniform
expansion from Proposition 2.2, the proof goes through essentially verbatim.

To provide the details, let Co D be a bounded Jordan domain with analytic
boundary such that / (C/o) C Co and S(f) (T D C Co; such a domain exists by
Proposition 2.1. By Proposition 2.8, f.D —>• D is a proper map of some degree
d > \. Forn > 1, set C„ := /~"(C0) (T D. Then D {jUn.

__
Now, due to the choice of U0, we see that fn:D\Un —> A := D \ C0 is a

finite-degree covering map (of degree d") over the doubly-connected domain A. By
Lemma 2.7, the domain D\Un is also doubly-connected, and hence U„ is connected

for all n. Furthermore, by Proposition 2.9 (3), applied to Un and Co, we see that

each Un is a Jordan domain. Hence f:3Un+i — 3Un is topologically a r/-fold
covering over a circle for every n > 0.

We claim that we can find a diffeomorphism

<p: W ^ D \ Co. W := {: e C; l/e < |c| < 1},
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such that

f((p{z)) (p(zd) when e~x^d < \z\ < 1. (3.1)

Indeed, since /: dUi —» dUo is a J-fold covering, we can define ip on the circles

{In J~| —l}and{ln|z| — 1/r/} so that the functional relation (3.1) is satisfied.

By interpolation, we extend <p to a diffeomorphism

{z C: — 1 < log |^| <-l/d} -> A0 := U\ \Th.

Consider the annuli A„ Un+\ \ Un. Since each /: An+\ —^ is a rZ-fold

covering map of annuli, we can inductively lift (p to a map

{r g C\-d~n < In |r| < -d~{n+l) j -> An,

and our initial choice of <p ensures that this lift can be taken to extend the original
map continuously. This completes the construction of (p.

Now let & e M and n > 0, and consider the curve

Y„t§ := <p{{ea+l&: -d~n <a < -d~{n + x)}).

By the functional relation (3.1), is the image of the arc yo,i? d" under some
branch of f~n. Recall from Proposition 2.2 that

\\Df(z)\\w>\ (3.2)

whenever z,f(z) K, where K is the compact set from Proposition 2.1,
W C \ K, and A > 1 is a suitable constant.

Since D \ Uq C W, it follows that

Zw(Yn,&) < A-~"£w(yo,»-d») maxlw(y j).
Thus, for n > 0, the functions

ct„:R/Z - D on(t) <p (e~d~"+27Tit) g dUn

form a Cauchy sequence in the hyperbolic metric of H7 as /? —> oo. Hence there

exists a limit function an a which is the continuous extension of <p to the unit
circle. It follows that dD is indeed a continuous closed curve. Furthermore, since D
is bounded and forward-invariant, we have int(D) int(D) by MonteFs theorem.
Hence 3D is a Jordan curve.

To see that 3D is a quasicircle, we again use the expanding property (3.2) of /
to find a Jordan neighbourhood Ü2 of D such that f:Q —»• f(Q) is a branched

covering map of degree d with £2 C ,/(£2). We can now apply the Douady-Hubbard
straightening theorem [19, Theorem 1, p. 296] to see that /|n is quasiconformally
conjugate to a hyperbolic polynomial of degree d with an attracting fixed point
whose immediate basin contains all the critical values. Such a basin is completely
invariant under the polynomial and its boundary is a quasicircle; hence dD has the

same properties.
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Remark. Alternatively, to avoid the use of the straightening theorem, it is possible to

verify the geometric definition of quasicircles directly This definition requires that

the diameter of any arc of 3D is comparable to the distance between its endpoints
That condition is trivially satisfied on big scales, and we can transfer it to arbitrarily
small scales using univalent iterates (We thank Mario Bonk for this observation

4. Bounded Fatou components and local connectivity of Julia sets

We now deduce the remaining theorems stated in the intioduction. using Theorem

1 10

Proofof Corollary 1 11 Let / be hyperbolic By Theorem 1 10, any bounded

periodic component of F(f) is a quasidisc Now, if U is any bounded Fatou

component, then clearly U contains only finitely many critical points and no

asymptotic curves Hence / U —> f(U) is a proper map by Proposition 2 8, and

if f(U) is a quasidisc, then U is also a quasidisc by part (3) of Proposition 2 9

Hence, by induction every bounded Fatou component of f is a quasidisc, as

claimed

Proofof Theorem 1 2 Let / e B be hyperbolic If j has no asymptotic values
and every Fatou component contains at most finitely many critical points, then every
periodic Fatou component is a bounded quasidisc by Theorem 1 10 Moreover, by
Proposition 2 8 and pait (3) of Proposition 2 9, if U is any Fatou component of f,
then f U f(U) is a proper map, and if f(U) is a bounded quasidisc, then so

is U By induction on the pre-penod of U, it follows all Fatou components are
indeed bounded quasidiscs

On the other hand, if f has an asymptotic value, this value belongs to the Fatou

set by hyperbolicity Hence / has an unbounded Fatou component Finally if
some Fatou component U contains infinitely many critical points, these can only
accumulate at infinity and therefore U is unbounded

Proof of Corollary 1 3 Let f be hyperbolic with no asymptotic values, and assume
that every Fatou component contains at most one critical value By Proposition

2 9 (1), it follows that each Fatou component also contains at most one

(possibly high order) critical point Thus every Fatou component is bounded by
Theorem 1 2

Proof of Theorem 1 4 Suppose that f is hyperbolic without asymptotic values, and

with exactly two critical values Assume first that both critical values belong to the

same Fatou component D Then D0 /_1(D) is connected by Proposition 2 9 (2)
and unbounded by the Casorati-Weierstrass theorem Thus D0 is an unbounded

component of F(f) that contains all critical points of / By Fatou's theorem [9,
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Theorem 7], each cycle of attracting periodic components of F(f) must contain
a critical point, and hence D0 is periodic. By Theorem 2.6, dDo is not locally
connected at any point.

Moreover, if U is any component of F( f), then, by Proposition 2.1, there exists
a minimal number k such that fk(U) D0. Since oo is accessible from Do by
Proposition 2 9 (4), this implies that oo is accessible from every Fatou component,
including D. In particular, all these components are unbounded. In order to prove
that d(J is not locally connected at any finite point, we shall show that fk maps d(J

homeomorphically to 9D0. Indeed, let T CD be an arc to infinity that contains
both critical values. By the choice of k, we know that fJ (U) is disjoint from D for

j 1.. ,k, since D has no preimage components apart from D0. Thus there is

a branch of f~l on C \ T that maps fk(U) to fk~i(U) homeomorphically, and

hence we have established case (1) of Theorem 1.4.

Assume now that the critical values are not both in the same Fatou component.
Then every Fatou component contains at most one of them By Corollaries 1.3

and 111, case (2) of Theorem 1.4 is satished.

Proof of Corollary 1.8. Let f e B be hyperbolic with no asymptotic values, let
N e N, and suppose that every Fatou component U of / contains at most N cutical
points (counting multiplicity). By Theorem 1 2, every Fatou component U is a

bounded quasidisc, and the restriction / :U —> f(U) is a proper map (see the proof
of Corollary 1 11). By the Riemann-Hurwitz formula, the degree of this restriction
is bounded by N + 1, since all components are simply-connected. Thus J(f) is

locally connected by Theorem 2.5.

Proof of Corollary 1.9. If (a) is satisfied, every Fatou component is bounded by
Corollary 1.3 By hypothesis, the multiplicity of the critical points is uniformly
bounded, and hence we may apply Corollary 1.8 and conclude that J( f) is locally
connected. In case (b), it was shown in the proof ot Theorem 1.4, that every Fatou

component of / contains at most one critical value, and thus the conclusion follows
from case (a).

5. Examples with non-locally connected Julia sets

Verification of the properties ofExample 1.5. It is elementary to check that / has

no asymptotic values and the three stated critical values, and that all critical points
of f are real. (This also follows from the more general discussion that follows
below) By considering the graph of the restriction of / to the real axis, it is easy
to check that 0 and 1 are fixed, and that there is a unique repelling fixed point pu
m the interval (0, 1) (see Figure 3). In particular, the immediate basin of 0 contains
no other critical points, and hence is a Jordan domain by Theorem 1.10. If u is
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chosen such that cu > pu, then the immediate basin of 1 contains all positive critical

points, and is hence unbounded, and its boundary is not locally connected at any
finite point by Theorem 2.6. It can be venhed numerically that this is the case for

u> 2 7981186

The Maclane-Vinberg method. We shall now construct Examples 1 6 and 1 7,

of certain hyperbolic functions with non-locally connected Julia sets. We will use

a general method to construct real entire functions with a preassigned sequence of
critical values We follow Eremenko and Sodin [21] in the description of the method

They credit Maclane [32] for this method and Vinberg [54] for a modern exposition
thereof Another discussion of the construction can be found in [24]

Let c (cn)nez be a sequence satisfying (—l)"c„ > 0 tor all neZ and let

Q, £2(£) C\ |^J{x + uiw — oo < x < log [c„|},
/lZ

where we set {x 4- inn — oo < x < log |c„|} 0 if cn =0 We assume that not
all cn are equal to 0, so that £2 ^ C Then there exists a conformal map ip mapping
the lower half-plane IHT {zeCImz<0] onto £2(c) such that Re ip{i\) —»• +oo
as y —> —oo Since 3f2(c) is locally connected, the map ip extends continuously to R
by the Caratheodory-Torhorst Theorem [41, Theorem 2 1 ], we denote this extension
also by <p The real axis then corresponds to the slits {x + inn —oo < x < log |c„|]
under the map ip As these slits are mapped onto the real axis by the exponential
function, we deduce from the Schwarz Reflection Principle [2, Chapter 6] that the

map g given by g(z) exp <p(z) extends to an entire function
Note that ip and g are not uniquely determined by c, as precomposing with a map

z i—> ciz + b where a. be R and a > 0 leads to a function with the same properties
If Co 0, c± i — 1 and cn c-n for all n (which will be the case in our examples),
we can choose ip such that {// t < 0} is mapped onto R and <p(±l) ±tn With
this normalisation, g g- is uniquely determined by c A key observation is that <p,

and hence g, depend continuously on the sequence c, with respect to the product
topology on sequences

It turns out that the functions g obtained this way belong to the Laguerre—Polya
class LP, which consists of all entire functions that are locally uniform limits of real

polynomials with only real zeros. Conversely, all functions in the class LP can be

obtained by this procedure (we shall not use this fact) Hence we shall refer to the

function g as a Laguerre-Polya function for the sequence £ We refer to [39, §11 9]
for a discussion of the class LP. A number of arguments in our proofs could be

carried out by using general results for the Laguerre-Pölya class, but we prefer to

argue directly from the definition of g.

Initial observations and examples. If there exists N e N such that c„ 0 for
n > N, then g(x) —> 0 as x —> oo Similarly, g(x) —> 0 as x —> —oo if there
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exists N £ N such that cn 0 for n < —N. A simple example is ip(z) —z2 and

g(z) exp(—z2) which corresponds to Co 1 and cn 0 for all n 7^ 0. If f is the

function from Example 1.5, then 1 — f is a Laguerre-Pölya function, corresponding
to c0 1, cn 0 if n is odd and c„ 2/(w + 1) for n even and nonzero.

Another example, which will recur in our proofs, is given by c± i — 1 and c„
0 for |«| 1. In this case the domain £2(r) is given by £2o C\{.v ± ijf.x < 0}.
Denote the corresponding Laguerre-Pölya function (normalised as above) by go

g~, then

go(z) exp <p0(z) —z2 exp(—z2 + 1)

is precisely the function from Figure 1 (b).

The critical values of a Laguerre-Pölya function g are precisely the cn, except
that 0 is a critical value only if q 0 for some I £ Z for which there exist k,m £ Z
with k < I < m, Ck 7^ 0 and cm 7^ 0. Moreover, there are critical points tjn with
g(£„) cn such that for all n £ Z, and g has no further critical points
(since <p and exp have no critical points). The limit lirn^oo g(x) exists if and only
if lim„^.oo cn 0, and in this case lim^^oo g(-v) 0. An analogous remark applies
to the limit lim^-^-oo g(x).

Figure 4: Sketch of a Laguerre-Pölya function g on the real line, with the choices

Co 0, c±\ —1, c±4 c±5 c±6 0 and cn — c-n for all 11 £ N.

Consequently we may normalise so that £±1 ±1 and fo 0. We also have

multiple critical points £4 £5 and £_4 f_5 £_6.

We mention that the construction can be modified if c„ is not defined for all
n £ Z, but only for n < N or for n > M. We can think of this as a limit case, where

|cjy+i I 00 or \cm- 11 oc, and obtain a function g with lirn^oo |g(.v)| 00 or
lim^^—oo Ig(jc) I 00, respectively. We shall not need these considerations.

If lim„^+00 c„ 0 or limn-^-oo cn — 0, then 0 is an asymptotic value of g. The

following shows that the converse also holds.

Lemma 5.1. Let g be a Lciguerre-Polya function and suppose that g has an

asymptotic value a £ C. Then a 0 and

lim g(x) =0 or lim g(x) 0.
x—>00 x—>—oo

(5.1)
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Proof. Let a C, and let D be a small disc around a. If a 7^ 0, we may assume that
0 <£ D. Then every connected component of exp_1(D) is bounded and intersects at

most one of the lines in the complement of £2. Thus every component of

<^_I(exp-1 (Z))) g~l(D) n HT

is bounded and its closure intersects the real line in at most one interval. It follows
(by also considering the preimage of D, the reflection of D in the real axis) that every
connected component of g~l (D) is bounded, and hence a is not an asymptotic value.

If a 0, then exp_1(£>) is a left half-plane, and hence unbounded. However,
unless the conclusion of the lemma is satisfied, we have

C := min lim inf \cn |. lim inf \cn | > 0.
yn—>-+oo n->—oo J

So we can assume that the radius of D was chosen smaller than C. Then

every component of exp_I(D) (T £2 has bounded imaginary parts, and again every
connected component of g~l (D) fUHI- is bounded. Since g~l(D) is symmetric with

respect to the real axis, we are done.

We remark that, in particular, the Maclane-Vinberg method allows us to construct

uncountably many functions with two critical values that differ from each other in an

essential manner.

Observation 5.2 (Topologically inequivalent functions). Let A C {2.4,6 00}
be nonempty. Then there exists an entire function f'.C -> C with sing(/_l)
{0. 1} such that f has only simple critical points over 1, and such that A is precisely
the set of local degrees of the preimages of 0. (Here we take 00 e A to mean that f
has an asymptotic value over 0.)

Functions corresponding to different choices of A cannot be obtained from one
another by pre- and post-composition with plane homeomorphisms.

Proof. Let B c 2Z be a set of even integers with 0 e B such that the length of every
segment of consecutive integers in Z\ B belongs to the set A. and such that for every
element of A there is a segment of this length. The desired function is obtained from
the Maclane-Vinberg method by choosing cn 1 for 11 e B and cn 0 otherwise.
The final claim follows from the fact that the order of a critical point is preserved
under pre- and post-composition with plane homeomorphisms.

Non-Iocally connected Julia sets of Laguerre-Pölya functions. We are now ready
to construct the desired examples.

Construction of Example 1.6. Let 0 < 8 < 1. Define {cn)n<=z by cn =0 if n is

even, e±i —1 and cn — S if n is odd and |/;| > 3. Let g§ '= gc be the

corresponding Laguerre-Pölya function. Recall that <p maps {if.t < 0} to M and
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<p{± 1) ±i7i. Denoting by ($„)nez the sequence of critical points, with tjn < tjn + i
and g(£n) cn, we then have £o 0 and ±1 so that ga(0) 0 and

g,s(±l) c±i —1. Moreover, gg is an even function. The case <5 0, with
go(z) —z2 exp(—z2+1), was already considered in our description of the method.

By continuity of the Maclane-Vinberg method, we have

lim gs(z) g0(z) —z2 exp(—z2 + 1),
<5^0

locally uniformly for z e C. Now gg(z) and go have superattracting fixed points
at 0 and —1. Hence we can choose <5 sufficiently small to ensure that —<5 is in the

immediate basin of 0 for the map gg.
The function gg has no asymptotic values by Lemma 5.1, and the only critical

points are the Since g(l) —1, we also see that 1 is not in the basin of 0. As
the immediate attracting basins of 0 and —1 are simply-connected and symmetric
with respect to the real axis, this implies that £0 0 is the only critical point in the

immediate basin of 0 and £_i — 1 is the only critical point in the immediate basin

of —1. Since all three critical values tend to 0 or —1 under iteration, gg is hyperbolic.
Hence, by Theorem 1.10, the immediate attracting basins of 0 and —1 are bounded

by Jordan curves. By assumption, —8 is contained in the immediate attracting basin

of 0. Using again that this immediate basin is simply-connected and symmetric with
respect to the real axis, we see that it actually contains the interval [—<5,0]. Now
f([^2-Oo)) C [0,5] which implies that [J2,oo) is contained in a component of the

preimage of the immediate basin of 0. We conclude that g satisfies the conclusion
with w\ 0, W2 — 1 and IU3 —8.

Construction of Example 1.7. Recall that our goal is to construct a hyperbolic
function with critical values 0 and 1 and no asymptotic values such that every Fatou

component is a Jordan domain, but the Julia set is not locally connected, ft will
be slightly more convenient to normalise such that the critical values are 0 and — 1

instead (conjugation by z i-> — z yields the original normalisation).
We begin by outlining the construction, which is based on the idea that a critical

point of sufficiently high degree can be used to approximate the behaviour of an

asymptotic tract. Indeed, suppose that we start with the Laguerre-Pölya function g0
from the introduction to this section (where c± 1 — 1 and cn 0 if ]//| 7^ 1). The

super-attracting point 0 is an asymptotic value for go, and since /(go) intersects the

unit disc, there is an unbounded Fatou component of go that intersects the unit circle
T] ;= {-; I — I 1 J. Let us modify the sequence c by introducing the additional nonzero

points c±n — 1, for some large integer N By continuity of the Maclane-
Vinberg method, the corresponding function g 1 is close to g0, but has an additional

pair of critical points of degree N — 1. It follows (see below for details) that gi
can be chosen to have a bonneted Fatou component that intersects both T1 and

F2 := {z: Iz| 2}. As gi still has an asymptotic value over 0, we can repeat the
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procedure and create a function g2 that has two Fatou components both intersecting
Ti and T2. Continuing inductively, in the limit we obtain a function g that has no

asymptotic values by Lemma 5.1, but has infinitely many Fatou components that
intersect both f i and T2- Then J(g) is not locally connected by Lemma 2.3.

Figure 5: Illustration of the construction of Example 1.7. Shown are the Julia set

and the graph of the function g2 that would arise from the choice of N\ =5 and

N2 25. Note the large size of the Fatou components containing high-degree
critical points. For the actual construction of Example 1.7 the sequence (N^) has to

grow much more rapidly than indicated by the above values of Ni and N2.

To provide the necessary details, let N_ (Nk)k>o be a (rapidly) increasing

sequence of odd positive integers with N0 \. We define sequences (depending
on NJ by

K — 1 if |n| (Vfc for some 0 < k < K
n 10 otherwise.

and their limit c c(N_),

—1 if \n\ — Nk for some k > 0

0 otherwise.

Let gK g~K and g g/g := g- be the corresponding Laguerre-Polya functions.
(See Figure 5.)

The superattracting fixed points 0 and —1 are the only critical values of gn and

of g. As in the construction of Example 1.6, we find that their immediate attracting
basins are bounded by Jordan curves. By Lemma 5.1, g has no asymptotic values,
and hence every Fatou component of g is a bounded Jordan domain (Theorem 1.4).
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If (^n)nez is> again the sequence of critical points of g, then g(£±jvA) —1 and

g(f„) when n ^ \N/C | for all k. In particular, %Nk +1 • • • %Nk + ]-i for all k.
Let 0 770 < Ii < 12 < be the sequence of non-negative preimages of 0; that
is i)k — %Nk-1- Also let U(rjk) be the Fatou component of g containing rjk- Then

g(U(r]k)) U{0) for k > 0. Our goal is to show that we can choose the sequence
N_ (inductively) so that there is a sequence (dk) of Jordan arcs connecting Tj and

r2 and a sequence (nik) of positive integers such that gmk (ak) C U(r]k) and hence

gmk + l(dk) C (7(0) for all k. As all ak are in different Fatou components, this will
complete the proof.

In order to dehne the above sequences, let >]/(,k, for 0 < A. < K, denote the

critical point of gK that corresponds to and let Ufc(riK,k) be the component of
F(gK) that contains r\K,k- We shall construct N_, (o^) and (nik) inductively such

that g^A (ak) C U(r]K,k) f°r K > k. The construction will be such that we also

have gmk (ak) C U(r)k) f°r all k.
Suppose that No Nr.a 1 dK and m 1 ma have already been chosen.

for some K > 0. As we let Nk+i —» 00, the continuity of the Maclane-Vinberg
method yields that gL —> gK for L > K + 1 and g —> gK, regardless of the choices
of N[ for / > K + 1. (Here the convergence gi —> gK as Nk+ 1 —>• 00 is uniformly
in L.) Hence, by choosing Nk+i large, we can achieve that g^A (dk) C U(rit,k) for
L > K + 1, as well as gmk (dk C U(r]k for A' 1 K. Recall that g/rf-v) —» 0

as .v —» 00, so there is A >0 such that [A. 00) is contained in the basin of attraction
of 0 (for gk)- Since 0 and —1 are superattracting fixed points of gK, the Julia set

J (gK) intersects the unit disc O. It follows that there is wk+ 1 > 0 and a connected

component of gA-"?A + l ([A, 00)) that connects a point in D to 00. Let cr^+i be a

piece of this curve that connects Ti to T2.

Since gL -> gK as Nk+1 —» 00, we have t]l,k+\ 00 as Nk+i — 00,

uniformly in L, as well as r]K+\ —> 00 Hence, if Nk+i is chosen sufficiently large,
then g"lK + '(dK+1) C U(y]l,k+\) a°d g'"A + l (dK+i) C U(rjK+,). This completes
the inductive construction of Example 1.7.

In both Example 1.6 and Example 1.7, we constructed a function having two
superattracting cycles, at 0 and at —1. Recall that, in both cases, local connectivity
of the Julia set failed due to the preimage components of the immediate basin of 0.

The role of the fixed point at —1, and its preimages, was to separate 0 from all its

preimages, and hence ensure that the immediate basins of attraction are bounded.
We remark that it is possible to modify the constructions to create a map having

only a single superattracting fixed point. This is achieved by normalizing our maps g
so that ± 1 are mapped not to — 1, but to the first negative preimage of 0. This ensures
that g has a repelling fixed point between 0 and — 1, and the remainder of the proofs
goes through as before.
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