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Knots in lattice homology

Peter Ozsväth, Andräs I. Stipsicz and Zoltän Szabö

Abstract. Assume that TVo is a tree with vertex set Yert(rl;0) {vo, v\,..., vn}, and with
an integral framing (weight) attached to each vertex except vo. Assume furthermore that the
intersection matrix of G TVo — {ro} is negative definite. We dehne a hltration on the chain
complex Computing the lattice homology of G and show how to use this Information in Computing
lattice homology groups of a negative definite graph we get by attaching some framing to vo.
As a simple application we produce new families of graphs which have arbitrarily many bad
vertices for which the lattice homology groups are isomorphic to the corresponding Heegaard
Floer homology groups.

Mathematics Subject Classification (2010). 57R, 57M.

Keywords. Lattice homology, Heegaard Floer homology, knot Floer homology.

1. Introduction

It is an eminent problem in low dimensional topology to find simple computational
schemes for the recently defined invariants (e.g. Heegaard Floer and Monopole Floer
homologies) of 3- and 4-manifolds. In particular, the minus-version HF- of Heegaard
Floer homology is of central importance. In [8] a computational scheme for the HF"
groups was presented, which is rather hard to implement in practice. This result
was preceded by a more practical way of determining these invariants for those 3-

manifolds which can be presented as boundary of a plumbing of spheres along a

negative definite tree which has at most one "bad" vertex [21]. The idea of [21] was

subsequently extended by Nemethi [9], and in [10] a new invariant, lattice homology
was proposed. It has been conjectured that lattice homology determines the Heegaard
Floer groups when the underlying 3-manifold is given by a negative definite plumbing
of spheres along a tree. Common features have been verified for both invariants. (For
example, both theories satisfy a surgery exact triangle; see [19] for the Heegaard Floer
setting, and [2], [12] for lattice homology.) Moreover, there is a spectral sequence
which connects the two invariants. (See [17].) For further related results see [11],
[13].
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In the present work we extend these similarities by introducing filtrations on lat-
tice homologies induced by vertices, mimicking the ideas of knot Floer homologies
developed in the Heegaard Floer context in [22], [26]. This information then can
be conveniently used to determine the lattice homology of the graph when the dis-

tinguished Vertex is equipped with some framing; this is analogous to the surgery
formulae in Heegaard Floer theory, cf. [24].

In more concrete terms, suppose that TVo is a given tree (or forest), with each vertex
v in Vert(ruo) — v0 equipped with a framing (or weight) mv e Z. Let G denote the

tree (or forest) we get by deleting vo and the edges emanating from it. Suppose that G

is negative definite. We will dehne the master complex MCFoo(ri;0) of TVo, which
is a hltration on the chain complex dehning the lattice homology of G equipped with
a specific map, and will show

Theorem 1.1. The master complex MCF 00 (ruo) determines the lattice homology of
all negative definite framed trees (orforests) we getfrom rU() hy attaching framings

to Vq.

By identifying the filternd chain homotopy type of the resulting master complex
with the knot Floer homology of the corresponding knot in the plumbed 3-manifold,
this method allows us to show that certain graphs have identical lattice and Heegaard
Floer homologies. Recall that for a negative definite tree (or forest) G on the vertex
set Vert(G), the vertex v e Vert(G) is a bad vertex if mv+dv > 0, where mv denotes

the framing attached to v while dv is the valency or degree of v (the number of edges

emanating from v). A vertex is good if it is not bad, that is, mv + dv < 0. Now a

connected sum formula for knot lattice homology (given in Subsection 4.1) enables

us to extend the identification of lattice homology with Heegaard Floer homology
to new families of graphs, including some with arbitrarily many bad vertices. As an

example, we show

Theorem 1.2. Consider the plumbing graph ofFigure 1 on 3n + 1 vertices, with the

framing ofvo an integer at most —6n — 1. Then the lattice homology ofthe graph is

isomorphic to the Heegaard Floer homology HF- ofthe 3-manifold defined by the

plumbing.

Remark 1.3. Notice that the graph of Figure 1 on 3n + 1 vertices (after we attach

a framing —m < —6n — 1 to the central vertex i>0) has n bad vertices. The case of
n 2 in the theorem was already proved by Nemethi, cf. Example 4.4.1 of [10], see

also [13] for related results. For a more general result along similar lines, see [18].

The paper is organized as follows. In Section 2 we review the basics of lattice
homology for negative definite graphs. In Sections 3 and 4 we introduce the knot
filtration on the lattice chain complex of the background graph, describe the master
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Figure 1. The plumbing graph of the n-fold connected sum of the (right-handed) trefoil
knot in S3. The valency of the central vertex vo is assumed to be n e N, and each edge
emanating from i?o connects it to a vertex with framing (—1). Furthermore these (—l)-vertices
are connected to a (—2)- and a (—3)-framed leaf of the graph. Regarding vo as a circle in
the plumbed 3-manifold defined by the rest of the graph, it can be identified with the n-fold
connected sum of the trefoil knot in S3.

complex and verify the connected sum formula. In Section 5 we show how to apply
this information to determine the lattice homology of graphs we get by attaching
various framings to the distinguished point i>o. In particular, we prove Theorem 1.1.

In Section 6 we determine the knot filtration in one specific example, and verify
Theorem 1.2.

Notation. Suppose that T is a tree (or forest), and G is the same graph equipped with
framings, i.e., we attach integers to the vertices of T. The plumbing of disk bundles

over spheres defined by G will be denoted by Xq and its boundary 3-manifold is Yq
Let Mg denote the incidence matrix associated to G (with framings in the diagonal).
This matrix presents the intersection form of Xq in the basis provided by the vertices
of the plumbing graph.

Suppose that TVo is a plumbing tree (or forest) with a distinguished vertex v0
which is left unframed (but all other vertices of TVo are framed). Let G denote the

plumbing graph we get by deleting the vertex vo (and all the edges adjacent to it).
We will always assume that the plumbing trees/forests we work with are negative
definite.

Remark 1.4. We can regard the unknot defined by vo in the plumbing picture as a

(not necessarily trivial) knot in the plumbed 3-manifold Tg.
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program ADT and by the Institute for Advanced Study. ZSz was supported by NSF

grants DMS-0603940, DMS-0704053 and DMS-1006006. The present work is part
of the authors' activities within CAST, a Research Network Program of the European
Science Foundation.
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2. Review of lattice homology

Lattice homology was introduced by Nemethi in [10] (cf. also [11], [12], [13]). In this
section we review the basic notions and concepts of this theory. Our main purpose is

to set up notations which will be used in the rest of the paper.
Following [10], for a given negative definite plumbing tree G we dehne a Z-graded

combinatorial chain complex (CF°°(G), 3) (and then a subcomplex (CF~(G), 3) of
it), which is a module over the ring of Laurent polynomials F [U~l, U] (and over the

polynomial ring F [[/], respectively), where F Z/2Z.
Dehne Char(G) as the set of characteristic cohomology elements of H2(XG; Z),

that is,

Char(G) {K: H2(XG\ Z) -> Z | for all* G H2(XG\Z) : K(x) jc-jcmod2}.

The lattice chain complex CF°°(G) is freely generated over F [f/-1, U] by the

product Char(G) x P(Vert(G)), that is, by elements [K, E] where K e Char(G) c
H2(Xg ; Z) and E C Vert(G). We introduce a Z-grading on this complex, called
the 6-grading, which is dehned on the generator [K, E] as the number of elements in
E. To dehne the boundary map of the chain complex, we proceed as follows. Given
a subset I C E, we dehne the G-weight f ([K, /]) as the quantity

2f([K,I])=(!>(")) + !>)•(!>)• (2-1)
VEl VEl VEl

Remark 2.1. Using the fact that G is negative dehnite, the integer /([K, /]) can be

easily shown to be equal to

VEl

where u* G H2{XG, Lg; Z) denotes the Poincare dual of the class v g H2(Xg;Z)
corresponding to the Vertex v G Vert(G). This form of /(AT, /) immediately implies,
for example, the following useful identity: if I C E then

f([K, /])-/([-*-£ 2 - /]) f([K, E}). (2.2)
ueE

We define the minimal G-weight g([K, E]) of [ E] by the formula

g([K, E]) min {f([K,/])| C E}.

The quantities AV([K, E]) and BV([K, E]) are dehned as follows:

Av{[K,E]) g([K,E-v\) and BV([K, E]) mm{f([K, I]) \ v e I C E}.



Vol. 89 (2014) Knots in lattice homology 787

A simple argument shows that

BV([K, E]) (^(U)2+i:2) + g([K v]). (2.3)

It follows trivially from the definition that

minima*, E]), BV([K,£])}E]).

Consider

av[K,E] Av([K,E])-g([K,E]) and bv[K, E] BV([K,E]) - g([K,E]).

and define the boundary map d: CF00(G) CF°°(G) by the formula

d[K, E]Uav[K'E] 0 [K, E-v]+ Ubv[K'E] 0 [K — v],
veE veE

on a generator [K, E] and extend this map U-equivariantly to the terms UJ' ® [K, E]
and then linearly to CF°°(G). Notice that av [K, E], bv [K, E] are both nonnegative
integers, and min{av[K, E],bv[K, E]} 0 follows directly form the definitions. It
is obvious that the boundary map decreases the <5-grading by one. Furthermore, it is

a simple exercise to show that

Lemma 2.2. The map d is a boundary map, that is, 32 0.

Proofi The proof boils down to matching the exponents of the U-factors in front of
various terms in 32[K, E] for a given generator [K, E], This idea leads us to four
equations to check. One of them, for example, relates the two U-powers in front of
the two appearances [K,E — v \ — V2] in 32[K, E], We claim that

aVl [K, E] + aV2 [K, E -v 1] aV2 [K, E] + aVl [K, E - v2\ (2.4)

holds, therefore (over F) the two terms cancel each other. Writing out the definitions
of the terms in (2.4) we get

g([K, E - Vl]) - g([K, E]) + g([K, E-v 1 - v2]) ~ g([K, E - v,])
g([K, E - v2]) ~ g([K, E]) + g([K, E-v 1 - v2]) - g([K, E - v2]),

which trivially holds. The remaining three cases to check are:

aVl[K, E] + bV2[K, E - v 1] bV2[K, E] + aVl [K + lv2, E - v2\,

bVl [K, E] + aV2[K + 2v\,E - Vl] aVl[K, E] + bVl [K, E - v2\, (2.5)

and finally

bVl [K, E] + bV2[K + 2vi E-Vl\ bV2[K, E] + bVl [K + 2v%,E- v2].

Using the definition of Bv given in (2.3), the equations reduce to similar equalities
as in the first case.
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Remark 2.3. In [10] the theory is set up over Z; for simplicity in the present paper
we use the coefficients from the field F Z/2Z of two elements.

2.1. Connected sums. Suppose that the plumbing forest G is the union of G\ and

G2, with no edges connecting any vertex of G\ to any vertex of G2. (In other words,
Gi and G2 are both unions of components of G.) It is a simple topological fact that
in this case Yq decomposes as the connected sum of the two 3-manifolds Yq1 and

Yq2. Correspondingly, the F[I/_1, I/]-module CF°°(G) decomposes as the tensor

product
CF°°(G) ^ CF°°(Gi) ®nu-ifU] CF°°(G2), (2.6)

and the defmition of the boundary map 3 shows that this decomposition holds on the
chain complex level as well.

2.2. Spinc structures and the /-map. Dehne an equivalence relation for the gen-
erators of the chain complex CF°°(G) as follows: we say that [K, E\ and [K\ E']
are equivalent if K — K' e 2H2(Xq, Tg; Z). Since the boundary map respects this

equivalence relation, the chain complex splits according to this relation.
It is easy to see that (since Xq is simply-connected) a characteristic cohomology

class K e H2(Xg',%) uniquely determines a spinc structure on Xq. By restricting
this structure to the boundary 3-manifold Yq we conclude that K naturally induces

a spinc structure sk on Yq- Two classes K, K' induce the same spinc structure
on Yq if and only if they are equivalent in the above sense (that is, K — K' e
2H2(Xq, Tg; Z)). Therefore the Splitting of the chain complex CF°°(G) described
above is parametrized by the spinc structures of Yq :

CF 00 (G) J2 CF°°(G, s),

seSpinc(F(7)

where CF°°(G, s) is spanned by those pairs [K, E] for which sk s.

Consider now the map

J[K, E] [- K -
veE

and extend it G-equivariantly (and linearly) to CF°°(G). Obviously J provides an

involution on CF°°(G), and a simple calculation shows the following:

Lemma 2.4. The J -map is a chain map, that is, J o 3 3 o /.
Proof The two compositions can be easily determined as

(Jod)[K,E] (uav[K'E]<8) [-K-2u*,E-vJj
veE ueE—v

+ (ubv[K'E] 0 [ - 2w*, u])
veE ueE
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and

(doJ)[K,E] (uav[-K-j:^E2u*'E] 0 [-K- J22u*>E ~v])
veE ueE

+ 52 (ubv[-K-ZueE2u*,E]q|~_ K_2u*,E-vJj.
veE ueE—v

The fact that J is a chain map, then follows from the two identities

av[K,E] bv[-K-J22u*>E~\ and a„[ — — ^
ueE ueE

(2.7)
In turn, these identities easily follow from the identity of (2.2), concluding the proof
of the lemma.

The /-map obviously respects the Splitting of CF°°(G) according to spinc struc-
tures. In fact, the spinc structures represented by K and —K are 'conjugate' to
each other as spinc structures on Yq (cf. [19]), inducing the spinc structures s,s e
Spinc(7G)> respectively. The J -map therefore is just the manifestation of the conju-
gation involution of spinc structures on the chain complex level. Indeed, J provides
an isomorphism between the two subcomplexes CF°°(G, s) and CF°°(G, s).

2.3. Gradings. The lattice chain complex CF°°(G) admits a Maslov grading: for
a generator [K, E] and je Z dehne gr (UJ (g) [K, E]) by the formula

gr(U> 0 [K, E]) -2j + 2g([K,E\)|Vert(G)|).

Recall that K2 is dehned as the Square of nK divided by n2, where nK e
H2{Xq Tg;Z), hence it admits a cup Square. (Here we use the fact that G is

negative dehnite, hence det Mq ^ 0, so the restriction of any cohomology class

from Xq to its boundary Yq is torsion.) The grading gr(G7 (g) [K, E]) is a rational
number (rather than an integer).

Lemma 2.5. The boundary map decreases the Maslov grading by one.

Proof. We proceed separately for the two types of components of the boundary map.
After obvious simplihcations we get that

gr( Uj0[K, E]) - gr( UjUav{K'E] ®[K,E- u])

2 g([K,E\) + \E\ +2 av[K,E]- E-v])-\E-v\,
which, according to the dehnition of av[K, E], is equal to 1. Similarly,

gr(UJ 0 [K, E]) - gr(UJ Ubv[K'E] u]) 1

follows from the same simplihcations and Equation (2.3).
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It is not hard to see that the /-map preserves the Maslov grading. Indeed,

gr ([K,E])-gr(J[K, E])

gr ([K, E]) - gr([ - - £ 2t>*. *])
veE

2 g([K, E}) - 2g ([ - K -2v*,£])+ \{K2-(- K£ 2v*)2).
veE veE

Using the identity of (2.2) and the alternative definition of /(K, E), it follows that
the above difference is equal to zero.

Recall that the cardinality \E\ for a generator [K, E] of CF~(G) gives the 8-

grading, which decomposes each CF~(G, s) as

CF-(G,s) ®£=0CF^(G,S),

where n |Vert(G)|. It is easy to see that the differential 3 decreases 3-grading by
one.

2.4. Definition of the lattice homology. We dehne the lattice homology groups
as follows. Consider (CF°°(G),3), and let (CF~(G),3) denote the subcomplex
generated by those generators UJ' (g) [K, E] for which j > 0 (and equipped with the
differential restricted to the subspace). Setting U — 0 in this subcomplex we get the

complex (CF(G), 3). Obviously all these chain complexes split according to spinc
structures and admit a Maslov grading, 3-grading and a /-map.

Definition 2.6. Dehne the lattice homology MF00(G) as the homology of the chain

complex (CF°°(G), 3). The homology of the subcomplex CF~(G) (with the bound-

ary map 3 restricted to it) will be denoted by MF~(G), while the homology of
(CF(G), 3) isMF(G).

Since the chain complex CF~(G) (and similarly, CF°°(G) and CF(G)) splits
according to spinc structures, so does its homology, giving the decomposition

HF-(G) ®seSpinc(yG) HF~(G, s).

The 3-grading then decomposes MF~(G, s) further as

HF-(G,s) ©J=0HF^(G,s),

where n |Vert(G)|. The Maslov grading provides an additional Q-grading on

MF~(G, s), but we reserve the subscript MF^(G, s) for the 3-grading.
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Remark 2.7. The embedding i: CF~(G) -> CF°°(G) can be used to dehne a

quotient complex CF + (G) (with the differential inherited from this construction)
which hts into the short exact sequence

0 -> CF~(G) -> CF°°(G) -> CF + (G) -> 0.

The homology of this quotient complex will be denoted by MF + (G). The same

Splittings as before (according to spinc structures, the <5-grading and Maslov grading)
apply to this theory is well. The short exact sequence above then induces a long exact

sequence on the various homologies.
In a similar manner, CF~(G) and CF (G) can be also connected by a short exact

sequence:

0 -> CF ~(G)CF~(G->CF(G) -> 0,

where the hrst map is multiplication by U. This short exact sequence then induces a

long exact sequence on homologies connecting MF~(G) and MF (G):

HF~(G) HF~(G) -» HFg(G) -» HF~_X -» •••

The homology group MF~(G) is obviously an F[I/]-module. In the next result

we describe an algebraic property these particular modules satisfy.

Theorem 2.8 (Nemethi, [10]). Suppose that G is a negative definite plumbing tree
and s is a spinc structure on Yq. Then the homology MF~ (G, s) is afinitely generated
F [U]-module of the form

HF"(G,s) F[C]©0^!-,
i

where the modules Ai are cyclic modules of the form F [U]/ (Un). Furthermore the

F [U]-factor is in MFq (G,s).

Corollary 2.9. The F[U 1, U]-module HF°°(G,s) HF^°(G,s) is isomorphic to
¥[U~\U].

Proof By the Universal Coefficient Theorem we get that there is a short exact

sequence

0 - HF~(G, s) <8>F[t/] F[G-1, U-HF~(G,s)

^ Tor(HF~_1(G,s),F[G_1, G]) - 0.

Since

Tor(F[G],F[G_1, U])Tor(F[G]/(G"),F[G_1, 0
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and

(¥[U]/(Un)) ®F[[/] F[£/_1, 0,

while F [U] ^ [U~l, C/] F [U~l, [/], the claim obviously follows. By
Theorem 2.8 the Single F[C/]-factor is in HFq (G, s), hence we get that MF°°(G, s)

HF§°(G,s).

Definition 2.10. Let

eF"d(G,s) c HF"(G,s)
denote the kernet of the map i* : MF~(G, s) -> MF°°(G, s) induced by the embed-

dingz: CF~(G,s) -> CF°°(G,s). This group is finite dimensional as a vector space
over F and is called the reduced lattice homology of (G, s).

2.5. Examples. We conclude this section by working out a simple example which
will be useful in our later discussions.

Example 2.11. Suppose that the tree G has a Single Vertex v with framing —1. The
chain complex CF°°(G) is generated over F [U~l, U] by the elements

{[2n + 1, {v}], [2n + 1, 0] | n e Z},

where a characteristic vector on G is denoted by its value 2n + 1 on v. The boundary
map on [2/i + 1,0] [2n + 1] is given by 3 [2n + 1] 0 and by

3[2n + 1, {v}]
I [2n + 1] + Un (g) [2n — 1] if n > 0,
I U~n ® [2n + 1] + [2n - 1] if n < 0.

These formulae also describe the chain complexes CF (G) and CF (G) (generated
over F [U] and over F). Let us consider the map F from CF°°(G) to the subcomplex
F[t/-\G]([-1]) c CF°°(G) generated by the element [-1], defined as

F([2n + l,E])(° i
if£ {u},

]U2n^+^0[-1] if£ 0.

This map provides a chain homotopy equivalence between CF°°(G) and F [U~l, U]
(the latter equipped with the differential 3 0), as shown by the chain homotopy

H([2n + 1 ,E])
0 if E — {i;} or n — —1,

E?=0 USi ® [2(n -i) + l,v] if E 0 and n > 0,

Xir=o
2

® [2(w + *' + 1) + 1, v] if E 0 and w < -1,

where= 0 and^- s;_i -\-bv[2(n — i — l) — l,v] \i(2n + 1 — i), r0 0 and

ri r;_i + av[2(« + 0 + 1, v] — ^i(2n + 1 + i). In conclusion, the homology
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MF°°(G) (and similarly MF~(G) and HF(G)) is generated by the class of [—1]

over F[I/_1, U] (and over F[C7] and F, respectively). In particular, HFZ~(G) 0

for i > 0.

Recall that for the disjoint union G G\ U G2 of two trees/forests the chain

complex of G (and therefore the lattice homology of G) splits as the tensor product
of the lattice homologies of G\ and G2 (over the coefficient ring of the chosen theory).
As a quick corollary we get

Corollary 2.12. Suppose that G G\ U G2 where G2 is the graph encountered in
Example 2.11. ThenM¥~(G) HF_(Gi). (Similar Statements hold for the other
versions of the theory.)

Proof By the connected sum formula (Equation (2.6)), and by the computation in
Example 2.11 we get that

HF-(G) ^ HF~(Gi) <8>F[cr] HF"(G2) HF"(Gi) (g)F[c/] F[U] ^ HF"(Gi),

verifying the Statement.

3. The knot flltration on lattice homology

Denote the vertices of the tree TVo by V Vert(ruo) {vo, v\,..., vn}. Assume
that each Vj with j > 0 is equipped with a framing mj e Z, but leave the Vertex vo
unframed. In the followingwe will assume that G TVq—vo is negative definite. The

reason for this assumption is that for more general graphs lattice homology provides

groups isomorphic to the corresponding Heegaard Floer homology groups only after

completion; in particular after allowing infinite sums in the chain complex. For such

elements, however, the definition of any filtration requires more care. To avoid these

technical difficulties, here we restrict ourselves to the negative definite case.

For a framing mo G Z on i;0 denote the framed graph we get from TVo by
GVo GUo(mo). (We will always assume that mo is chosen in such a way that

GVo(mo) is also negative definite.) Fet £ e H2(XgVo',Q) be a homology class

satisfying

n

^ v0 + ^2aJ ' VJ (w^ere aj G Q)> and Vj • £ 0 (for all j > 0). (3.1)
7 1

Notice that since G TVo — v0 is assumed to be negative definite, the class £
exists and is unique. In the next two sections we will follow the Convention that
characteristic classes on G and subsets of V — {u0} will be denoted by K and E
respectively, while the characteristic classes on GVo and subsets of V will be denoted

by L and //, respectively.
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Lemma 3.1. Let us fix a generator [K, E] e Char(G) x F(V — Vq) ofthe lattice
chain complex CF°°(G) ofG. There is a unique element L L[k,e] ^ Char(GUo)
with the properties thatfor He E U {vo},

• L\g K, and

• aVo[L, He] bVo[L, HE\ 0.

Proofi The equality aVo[L,Hß] bVo[L,H£] is, by definition, equivalent to
AVo([L, He]) BV0([L, HE]). By its definition AVo([L, HE]) g([^, E]) is in-
dependent of L(v0) (and of the framing m0 vq of ü0), white since L(vj)
for j > 0, by Equation (2.3)

2 BV0([L,He])L(v0) + vg + 2g([K + 2v*0, E]).

The identity 2AVo([L, He]) 2BVo([L, He]) then uniquely specifies L(v0):

L(v0)-vi + 2g([K, E]) - 2g([K + E])

-uo + min(y]^(0 + (y]w)
vel vel

Yce (E K(v) + (E v^ + 2vo ' (E»))-
vel vel vel

Since K is characteristic, both minima are even, and therefore L(i;0) vq (mod 2),
implying that L is also characteristic.

Definition 3.2. We define thq Alexander grading A([K, E]) of a generator [K, E] of
CF°°(G) by the formula

/lp,£])q(L(S) + S2)eQ,

where L L\k,e\ is the extension of K found in Lemma 3.1 and £ is the (rational)
homology element in //* (Xqvq ; Q) associated to v0 in Equation (3.1). (In the above

formula we regard L e H2(XgVo',%) as a cohomology class with rational coeffi-
cients.) Notice that since vj • £ 0 for all j > 0, the above expression is equal to

^(L(£) + vo • £). We extend this grading to expressions of the form t/7 <g> [K, E]
with j e Z by

A{Uj ® [K, E]) -j + A([K, E]).

In the definition above we fixed a framing m0onvo, and it is easy to see that both
the values of L(vo) and of £2 vo • £ depend on this choice.

Lemma 3.3. The value A([K, E]) is independent of the choice of the framing
vi ofv0.
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Proofi By the identities of Lemma 3.1 it is readily visible that L(v0) (and hence

L(X)) changes by — 1 if v% is replaced by v% + 1. Since X2 changes exactly as v%

does, the sum L(ü0) + X2 (and hence \ (L(X) + X2)) does not depend on the chosen

framing vq on u0.

Since X is not an integral homology class, there is no reason to expect that

A([K, E]) is an integer in general. On the other hand, it is easy to see that if K, K'
represent the same spinc structure then A{[K, E]) — A([Kf, E']) is an integer: if
K' K + 2y* (with y £ H2(XG;Z)) then

A([K, E\) - A([K', E'\) ~ 0) e Z

since y • X 0 and both T\k,e\ and L[k\e;] are characteristic cohomology classes.

Definition 3.4. For each spinc structure s of G there is a rational number is e [0,1)
with the property that mod 1 the Alexander grading A([K, E]) for a pair [K, E] with
sjv s is congruent to is.

Remark 3.5. For a rational homology sphere Y and a knot K C Y the Alexander
grading defined in Heegaard Floer homology is generally not an integer. On the
other hand, for a fixed spinc structure s all generators representing s have Alexander
gradings which differ by integers. Therefore the mod 1 residue of the Alexander
grading of a generator is an invariant of the spinc structure, giving rise to a similar
rational number in [0,1) in Heegaard Floer homology as is defined above in the lattice
homology context.

Definition 3.6. The Alexander grading A of generators naturally defines a filtration
{!Fi} on the chain complex CF°°(G) (which we will still denote by A and will call
the Alexander filtration) as follows: an dement x e CF°°(G) is in ^ if every
component of x (when written in the F-basis UJ' (8) [K, E]) has Alexander grading
at most i. Intersecting the above filtration with the subcomplex CF~(G) we get
the Alexander filtration A on CF~(G). Similarly, the definition provides Alexander
filtrations on the chain complexes CF (G) and CF + (G).

Equipped with the Alexander filtration, now (CF°°(G),3) is a filtered chain

complex, as the next lemma shows.

Lemma 3.7. The chain complex CF°°(G) {and similarly, CF~(G) and CF(G))
equipped with the Alexanderfiltration A is a filtered chain complex, that is, ifx £ 7^
then dx £

Proofi We need to show that for a generator [K, E] the inequality A(d[K, E]) <
A([K, E]) holds. Recall that 3[K, E] is the sum of two types of elements. In the
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following we will deal with these two types separately, and verify a slightly stronger
Statement for these components.

Let us first consider the component of the boundary of the shape of jjav\.K,E] ^
[K, E — v] for some v e E. We claim that in this case

A([K, E]) - A{Uav[K'E] ®[K,E- v]) =av[K + E] (3.2)

holds, obviously implying that the Alexander grading of this boundary component
is not greater than that of [K, E], To verify the identity of (3.2), write £ as v0 +
Ylj=1 aj ' vj >

and note that twice the left-hand side of Equation (3.2) is equal to

n

K(Y.ar vj) + L[K,E](vo) + S2 + 2 V])- 2 E])
7 1

n

~ K{^2,aj ' VJ') ~ L[K,E-V](VO) ~ £2,
7 1

which, after the simple cancellations and the extensions found in Lemma 3.1, is equal
to

2g([K, E]) - 2g([K + 2vS, E]) + 2g([K, E - v])

- 2g([K, E]) - 2g([K, E-v]) + 2g([K + 2v^E - v].

After further cancellations, this expression gives 2av[K + 2vq, E], verifying Equation

(3.2). Since av > 0, Equation (3.2) concludes the argument in this case.

Next we compare the Alexander grading of the term Ubv (g) [K + 2v *, E — v]
to A([K, E]). Now we claim that

A([K, E}) - A(Ubv[K>E] ®[K + 2v*,E - u]) bv[K + 2v%,E]. (3.3)

As before, after substituting the defining formulae into the terms of twice the left-hand
side of (3.3) we get

n

K(XsarVj)+ L[KtE](vo)+ S2 + 2 E] - 2g([K, E])
7 1

n

- (K +2u*)(y^o/ • v7) - L[k+2v*,E-v](vo) ~ £2.

j=i
From the fact that v*(E) 0 we get that 2u*(^"=1 aj • Vj) —2v • vo, hence by
considering the form of Bv given in (2.3) we get that this term is equal to

2 g([K,E]) - 2g([K+ 2u*, £]) + 2 g([K+2 u]) + K(v)

- 2g([K, E]) - 2g([K +2v*,E-u])+ 2g([K + 2v* + 2v*0,E- u]),
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and this expression is obviously equal to 2b v [K + 2v^, E]. Once again, since bv > 0,
the Statement of the lemma follows.

Definition 3.8. We define the filtered chain complex (CF°°(G), 3, A) (and similarly
(CF~(G), 3, Ä) and (CF (G), 3, A)) the filtered lattice chain complex of the Vertex

vo in the graph TVo.

Remark 3.9. Recall that the chain complex CF~(G) splits according to the spinc
structures of the 3-manifold Yq By intersecting the Alexander filtration with the

subcomplexes CF~(G, s) for every spinc structure s, we get a Splitting of the filtered
chain complex according to spinc structures as well. The same remark applies to the

CF°° and CF theories.

Definition 3.10. The knot lattice homology HFK~(rü0) (respectively HFK°°(rü0),
HFK(rV0)) of v0 in the graph ruo is defined as the homology of the graded object
associated to the filtered chain complex (CF~(G), 3, A) (and of (CF°°(G), 3, A),
(CF(G),3,A), respectively). As before, the groups H[FK_(TUo) (and similarly

MFKoo(ri;0) and HFK(rVo)) split according to the spinc structures of Yq, giving
rise to the groups H[FK_(TUo, s) for s e Spmc(Yo).

Let us fix a spinc structure s on Yq The group MFK~ (TVo, s) then splits according
to the Alexander gradings as

©fl IFK-(t„0,m),
and the components MFK~(ri;o, s,a) are further graded by the absolute 3-grading
(originating from the cardinality of the set E for a generator [K, E]) and by the Maslov
grading.

The relation between the Alexander filtration and the /-map is given by the fol-
lowing formula:

Lemma 3.11. A(J[K,E])) -A([K - 2v*, E}).

Proofi Recall that J[K,E] [-K — J2veE E], With the extension L of

-K-ZveE 2v* given by Lemma 3.1, and with the choice 0 we have that

2A(J[K, E]) (-K-J2 2u*)(E - v0) + L(v0) + S2.

veE

Since u*(S) 0, by the definition of L(vo) and the identity of Remark 2.1 this
expression is equal to

- *(£ - v0) + 2v0 J2 v)+ S2 + 2^K'
veE

- 2f[K,E]- 2g[K-2vl E] + -
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With the same argument the identity

2A([K - 2v$,E\) K(E - v0) - 2n*(S - t>0) + L'(v0) + S2

K(E - v0) - S2 + 2 - 2i>*, E] - E]

follows (since vo •E S2 and vfy 0). Now the identity of the lemma follows
from the Observation that f[K, E] — f[K — 2vq, E] — v0 • QZveE v) D

A variant of the /-map, adapted to the distinguished Vertex i>0 G TVo (and to the
filtration given by i>0) is given as follows. Dehne JVQ: CF°°(G) -> CF°°(G) by
the formula

[K,E]i->[ - K -2w* — £"J,

ueE

on a generator [K, E] and extend U-equivariantly and linearly to CF°°(G). It is easy
to see that /^ Id. The result of the previous lemma can be restated as

A(JV0[K, E]) -A[K, El
For the next Statement recall from Definition 3.4 the quantity is associated to a spinc
structure s on G.

Lemma 3.12. The map sending the generator [K, E] e CF°°(G, s) to

Uk~A{[K'E]) JV0[K, E]

is a chain map.

Proof We show hrst that the application of the above map to Uüv ® [K, E — v\
for some v e E is equal to

Vis-A([K,E]). ubv[-K-YlU^E^*-^,E]g,
ueE

The identihcation of JVQ (Uüv ^K® [K, E]) with the above term easily follows from
the Observation that

av[K,E]+is-A([K,E-v]) is-A([K, E])+bv [-(3.4)
ueE

Equation (3.4), however, is a direct consequence of the equality

bv[~ K-J22u* ~2v0'E] av[K + 2vl,E]
UeE

and the dehnitions of the terms describing the Alexander gradings. A similar com-
putation shows the identity for the other type of boundary components (involving the

terms of the shape jjbv[K,E] ^ ^ e _ concluding the proof.
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Examples 3.13. Two examples of the filtered chain complexes associated to certain

graphs can be determined as follows. Since both examples describe the unknot in
*S3, it is not surprising that the filtered chain complexes are filtered chain homotopy
equivalent. (These examples will be used in later arguments.)

• Consider first the graph TVo with two vertices {vo, v}, connected by a Single
edge, and with (—1) as the framing of v. The chain complex of G TVo — vo
has been determined in Example 2.11. A straightforward calculation shows that

A(J2n -|-1])—7t~bl and

A srri f
\n + 1 if n > 0,

A([2n+ 1,M]) l
\ n it n <r i)if /I <0.

This formula then describes the Alexander filtration on CF~(G). (Recall that

A(Ul (g) [K, E}) —j + A([K, E]).) It is easy to see that the chain homotopy
encountered in Example 2.11 respects the Alexander filtration, hence the filtered
lattice chain complex (CF°°(G), Ä) is filtered chain homotopic to F [U~l, U],
generated by the dement g in filtration level 0. In conclusion, HIFK(ruo)
and IFK"^) are both generated by the dement [—1] (over F and F[G],
respectively), and the Alexander and Maslov gradings of the generator are both

equal to 0.

• In the second example consider the graph TfVo on the same two vertices {vo, v},
now with no edges at all. (That is, T^o is given from TVo by erasing the Single

edgeof ruo.) The background graph G (and hence the chain complex CF~(G))
is obviously the same as in the first example, but the Alexander grading A' is

much simpler now: Af([2n + 1]) Af([2n + 1, {v}]) 0 for all n e Z. Once

again, the chain homotopy of Example 2.11 is a filtered chain homotopy, hence

we can apply it to determine the filtered lattice chain complex of TfVo, concluding
that (CF 00 (G), A') is filtered chain homotopic to F [U~l, U] with the generator
in Alexander grading 0. Once again MFK~(r^o) is generated by [—1].

In conclusion, the filtered chain complexes of the two examples are filtered chain

homotopic to each other. The filtered homotopy between the two examples is not a

surprise: the two filtered chain complexes are associated to the unknot U in S3 and

both constructions are motivated by the construction of CFK~(C/).

4. The master complex and the connected sum formula

As we will see in the next section, the filtered chain complexes defined in the previous
section (together with certain maps, to be discussed below) contain all the relevant
Information we need for calculating the lattice homologies of graphs we get by attach-

ing various framings to vq The Alexander filtration A on CF°°(G) can be enhanced
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to a double filtration by considering the double grading

Uj ® [K, E] i-> (-7, A{Uj ® [AT, £])). (4.1)

In fact, this doubly filtered chain complex determines (and is determined by) the
filtered chain complex (CF~(G), Ä). Notice that multiplication by U decreases

Maslov grading by 2, —j by 1 and Alexander grading by 1.

In describing the further structures we need, it is slightly more convenient to
work with CF°°(G), and therefore we will consider the doubly filtered chain complex

above. In the following we will find it convenient to equip CF°°(G) with the

following map.

Definition 4.1. The map N: CF°°(G) -> CF°°(G) is defined by the formula

N(Uj® [K, E]) uisK~AlK>El+j 2v*0,E], (4.2)

Notice that N does not preserve the spinc structure of a given element. Indeed,
if sVQ denotes the spinc structure we get by twisting s with vq (and hence we get

ci(svq) ci(s) + 2i>q), then N maps CF°°(G,s) to CF°°(G,sUo). By choosing
another rational number r (with r iSK mod 1) instead of iSK in the above formula,
we get only multiples of N (multiplied by appropriate monomials of U).

Lemma 4.2. The map N is a chain map, and provides an isomorphism between the

chain complex CF°°(G, s) and CF°°(G, sv*).

Proof. The fact that Af is a chain map follows from the identities

av[K, E] - A([K, E-v])= av[K + 2v%,E] - A([K, E}) (4.3)

and

bv[K, E] - A([K + 2ü*, E-v]) bv[K + 2v%,E] - A([K, E]). (4.4)

These identities follow easily from the definitions of the terms. To show that N is an

isomorphism, let the spinc structure s_v* be denoted by t and consider the map

M(Uj <g> [K, E]) jjA([k—2vq,E])+®[K_2vl,E].

M is also a chain map (as the identities similar to (4.3) and (4.4) show), and M and

N are inverse maps. It follows therefore that N is an isomorphism between chain

complexes.

Notice that N can be written as the composition of the /-map with the map
jjh-A([K,E]) jv^ |-^ considered in Lemma 3.12.
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Definition 4.3. Suppose that for i 1,2 the triples (C/, Aj, j\) are doubly filtered
chain complexes and A;: Q -> C\ are given maps. Thenthemap / : C\ -> C2isan
equivalence of these structures if / is a (doubly) filtered chain homotopy equivalence
commuting with A)-, that is, / o N\ N2 o /.

With this definition at hand, now we can define the master complex of TVo as

follows.

Definition 4.4. Suppose that TVo is given. Consider CF°°(G) with the double fil-
tration (—j, Ä) as above, together with the map N defined in Definition 4.1. The

equivalence class of the resulting structure is the master complex of TVo.

As a simple example, a model for the master complex for each of the two cases

in Example 3.13 can be easily determined: regarding the map Uj ® [K,E] i->

(—j, A(UJ <g)[K, E])) asa map into the plane, (arepresentativeof) the master complex
will have a Z2 term for each coordinate (i,i), and all other terms (and all differentials)
are zero. In addition, the map N in this model is equal to the identity. (Note that in
this case the background 3-manifold is diffeomorphic to F3, hence admits a unique
spinc structure.) In short, the master complex for both cases in Example 3.13 is

F [U~l, [/], with the Alexander grading of UJ' being equal to j and with N id.
Obviously, by fixing a spinc structure s e Spinc(7G) we can consider the part

MCFoo(ri;0, s) of the master complex generated by those elements UJ' (g) [K, E]
which satisfy the constraint sk s. As we noted earlier, N maps components of the

master complex corresponding to various spinc structures into each other.

4.1. The connected sum formula. Suppose that TVo and TfWQ are two graphs with
distinguished vertices vo,wo. Their connected sum is defined in the following:

Definition 4.5. Let TVo and TfWQ be two graphs with distinguished vertices vo and

wo- Their connected sum is the graph obtained by taking the disjoint union of TVo and

T^o, and then identifying the distinguished vertices vo wo- The resulting graph

A(v0 W0) Ty0 #(Vo WQ) rwo

(which will be a tree/forest provided both TVq and T^o were trees/forests) has a

distinguished Vertex vo wo-

Remark 4.6. Notice that this construction gives the connected sum of the two knots

specified by vo and wo in the two 3-manifolds Yq and Yq'.

Recall that for the disjoint graphs G TVo—vo andGr TfWo—wo the chain complex

CF°°(G U G') of their connected sum is simply the tensor product of CF°°(G)
and CF°°(G/) (over F [U~l, [/]). We will denote the Alexander grading/filtration on

CF°°(G) by AV0 and on CF^CG7) by AWo.
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Theorem 4.7. For the Alexander grading A# ofthe generator [K\, Ei] (g) [K2, E2] £

CF°°(G U G') induced by the distinguished Vertex Vo Wo in A(Vq=Wq) we /zave

that
A#{[KX,EX\ ® [^2,^2]) ^0([^i,£iD + dWo([^2,£2]).

Proof For simplicity fix üq 0 and consider XUo and X^ on the respective
sides of the connected sum. By the calculation from Lemma 3.1 it follows that for
the extensions L; of Ki over the distinguished points vo,wo, and extension L over
^0 wo we have

E E\ ue2 (Vo Wo) (Li)El(v0) + (L2)e2(wo)-

Since ^l0=W0 (EVo + Sw0)2 the above equality shows that both
terms of the defming equation of the Alexander grading are additive, concluding the

result.

As a corollary, we can now show that

Theorem 4.8. The master complexes of ruo and r^o determine the master complex
ofthe connected sum A (VQ=WQy

Proof As we saw above, the chain complexes for TVo and r^o determine the chain

complex of A(Vq=Wq) by taking their tensor product. This identity immediately shows

that the j -filtration on the result is determined by the j -filtrations on the components.
The content of Theorem 4.7 is that the Alexander filtration on the connected sum is

also determined by the Alexander filtrations of the pieces. Finally, the map N is built
from the maps J and JVo, which simply add for the connected sum, implying the
result. A minor adjustment is needed in the last Step: if is and are the rational
numbers determined by Definition 3.4 for the spinc structures s and s', then for s # s/

we take either their sum (if it is in [0,1)) or is + is/ — 1.

As a simple application of this formula, consider a graph TVo and associate to it
two further graphs as follows. Both graphs are obtained by adding a further dement
e to Vert(ri;o), equipped with the framing (—1). We can proceed in the following
two ways:

(1) Construct T+ by adding an edge connecting e and v0 to TVo.

(2) Define by simply adding e (with the fixed framing (—1)) without adding

any extra edge.

For a pictorial presentation of the two graphs, see Figure 2. It is easy to see that T +

is the connected sum of TVo and the first example in 3.13, while r^o is the connected

sum of TVo and the second example of 3.13. Since the master complexes of the two
graphs of Example 3.13 coincide, we conclude that
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Corollary 4.9. The master complexes MCF°°(T+) and MCF°°(r^o) are equal.

Infact, both master complexes are equal to MCF°°(ri;o).

Proof Both master complexes are the tensor product (over F [U~l, U]) of the master

complex of TVo and of F [U~l, U], concludmg the argument.

>o
vn

Figure 2 The two graphs T (on the left) and T (on the right) derived from a given
graph TV0. The framing of e is (—1) in both cases, and vo is the distinguished vertex (henee
admits no framing and is denoted by a hollow circle) in both graphs

5. Surgery along knots

A formula for Computing the lattice homology for the graph GVo (we get from TVo

by attachmg appropnate framing to i>o) can be derived from the knowledge of the

master complex of TVo, accordmg to the followmg result:

Theorem 5.1. The master complex MCF°°(ri;o) of ruo determines the lattice
homology of the result of the graph obtained by marking Vo with any integer n £ Z, for
which the resulting graph is negative definite.

In order to venfy this result, first we descnbe the cham complex Computing lattice

homology as a mappmg cone of related objects. As before, consider the tree TVo m
which each vertex except i>o is equipped with a framing. The plumbmg graph G is
then given by deletmg i>0 from TVo. Let GVo GVo(n) denote the plumbmg graph
we get from TVo by attachmg the frammg n e Z to i>o. Suppose that for the chosen n

the graph GVo is negative definite. Our immediate aim is to present the cham complex
CF~(GVo) as a mappmg cone of related objects. These related objects then will be

remterpreted m terms of the master complex MCF°°(ri;o).
Consider the two-step filtration on CF~(GVo) where the filtration level of UJ (8)

[L, H] is 1 or 0 accordmg to whether i>0 is m H or vq is not m H. Denotmg the
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elements with filtration at most 0 by B, we get a short exact sequence

0 —>- B —>- CF (GVo) —>- KD —>- 0.

Explicitly, B is generated (over F [[/]) by pairs [L, H] with v0 $ H, white a nontrivial
element in D can be represented by (linear combinations of) terms G7' ® [L, H] where

vo e H. Indeed, the quotient complex D can be identified with the complex (T, 3t),
where T is generated over ¥[U] by those elements [L, H] of Char(G) x P(F) for
which vo G H, and

dj[L,H]= Uav[L'H]®[L,H-v] +
veH—vo veH—vo

Notice that there are two obvious maps 81,82'- T -> B: For a generator [L, H] of T
(with vq e H) consider

3i [L, H] Uavo^L'H^®[L,H-v0], d2[=(5.1)
It follows from d2 0 that both maps 0i,<+ T B are chain maps. It is easy to
see that

Lemma 5.2. The mapping cone of(T, B, 8\ + 82) is chain homotopy equivalent to
the chain complex CF-(GUo (/?))) Computing the lattice homology HIF_(GUo(fl)) of
the result ofn-surgery on Vo•

Next we identify the above terms using the Alexander filtration on CF°°(G)
induced by vo. We will use the class £ characterized in Equation (3.1).

Definition 5.3. Consider the subcomplex Bi clc C¥~(GVo) generated by [L, H]
where ^(L(£) + £2) i e Q. (Recall that since [L, H] is in B, the set H does

not contain v0. Also, as before, we regard L e H2(Xgvq ; Z) as a cohomology class

with rational coefficients.) Since v* (£) vj • £ 0 for all j ^ 0, it follows that

Bi is, indeed, a subcomplex of B for any rational i, and obviously ®z Gq Bi B.

Proposition 5.4. There is an isomorphism cp: Bf -> Bf +1.

Proof Define the map cp by sending a generator [L, H] of Bi to [V, H] where

i/( )=ji<»») + 2 1U=o,

Since vo $ H, it follows that /([L, H]) /([Lf, H]) (where / is defined in Equation

(2.1)), hence the resulting map is an isomorphism between the chain complexes
and 2?i+i.
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Proposition 5.5. The sum B ®0</<i Bi ^ isomorphic to CF (G).

Proofi Consider the map F': B —> C F ~ (G) induced by the forgetful map F' defined
as [L, 77] i-> [L\g,H]. It is easy to see that (since H does not contain vo) the map
F' is a chain map. Indeed, F' is an isomorphism: one needs to check only that every
element [L\q, H] admits auniquelift to [L, H] e B\ with 0 < i < 1. Thecondition
^(L(X!) + S2) |L(vo) + ^(L|g)(S — vo) + \Yj2 e [0,1) uniquely characterizes

the value of \L(vo) by the fact that L(vo) mod 2.

Remark 5.6. Obviously, the same argument shows that for any r e Q the sum

®r<;<r+i Bi is isomorphic to CF~(G).

The above Statement admits a spinc-refined version as follows. Notice first that

if we fix a spinc structure t on the 3-manifold Ygv we get after the surgery, and also

fix z, then there is a unique spinc structure s on Yq induced by (t, i). Indeed, if the

cohomology class L satisfies sl t and ^(L(X!) + S2) i, and V is another

representative of t, then
n

L' L + J22n'vi-
i =0

In order for Lf to be also in Bi, however, the coefficient no of in the above sum
must be equal to zero, hence L\q and L'\q represent the same spinc structure on Yq.
We will denote this restriction by (t, i)\g- Then the above isomorphism F' provides

Lemma 5.7. Let Bi (t) be the subcomplex of Bi generated by those pairs for which
L represents the spirf structure t. The map F' provides an isomorphism between

Bi (t) and CF~(G, (t, OIgO-

Proof By the above discussion it is clear that F' maps 2?/(t) to CF~(G, (t, OIgO-
The map is injective, hence to show the isomorphism we only need to verify that F'
is onto. Obviously LfE) + X!2 2i and L\g K determines L(T0), and it is not
hard to see that for the resulting cohomology class t.

In conclusion, the complexes B, 2?/(t) and B ®/e[0,i) Bi can be recovered
from CF~(G), and hence from the master complex.

The complex T also admits a decomposition into ®/gq G where the generator

[L, H] with v0 g H belongs to 7} if |(L(X!) + S2) i e Q. Notice that the map
di defined in (5.1) maps 7} into Bi cl, while when we apply 82 to 7}, we get a map
pointing to £;+v*(e) C B.

Recall that in the definitions of Bi and 7} we used the fixed framing attached to
the vertex ü0. In the following we show that the result will be actually independent
of this choice. To formulate the result, suppose that for the fixed framing — n the

complex B B (n) splits as ®z- Bi (n) (and similarly, T =T(ri) splits as ®z- 7} n)).
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Lemma 5.8. The chain complexes Bj(n) and Bj(n + 1) (and similarly Tj(n) and

Ti(n + 1)) are isomorphic.

Proof Consider the map t: Bi(n) -> Bi(n + 1) which sends the generator [L, H]
to [Z/, ZZ] where L'(vj) L(vj) for all j > 0 and Z/(v0) L(vo) — 1. Notice
that by changing the framing on i>0 from n to n + 1 we increase X!2 by 1. Since

Z/(X) L(X) — 1, and the above map t is invertible, the claim follows. Since the

function / we used in the definition of the boundary map takes the same value for
[L, H] as for [Z/, ZZ], the map t is, indeed, a chain map between the chain complexes.
The reasoning for the map t': T\ (n) -> T\ (n + 1) is similar.

Our next goal is to reformulate T (and its Splitting as ®zGq 7/) in terms of
the master complex MCFoo(ri;0). As before, recall that for a spinc structure t on

YgVq and i we have a restricted spinc structure s (M)|g on 7g- Consider the

subcomplex S/(s) S/((t, z')Ig) C CF°°(G,s) generated by the elements

{UJ ® [K,E] e CF~(G,s) | -j < 0,A(UJ ® [K,E]) < i}.

Lemma 5.9. For a spinc structure t the chain complex T\ (t) and the subcomplex
Si ((t, i) |g) are isomorphic as chain complexes.

Proof. Dehne the map F Ff: Tj(t) —S/((t, 01g) on the generator [L, H] by
the formula

F([L, H]) Ua^L'H] 0 [L|g> h Vo]

The exponent of U in this expression is obviously nonnegative and the spinc structure
of the image is equal to (M)|g- Therefore, in order to show that F([L,H]) e
Si ((t, i) |g), we need only to verify that

A(F([L, H]))< i i(L(S) + S2). (5.2)

In fact, we claim that

1(L(£) + £2) - A(ya"o<lL>H» ® [L\g, H - Uo]) bV0[L, H]. (5.3)

By substituting the dehnitions of the various terms in the left hand side of this equation
(after multiplying it by 2), and applying the obvious simplihcations we get

L(vo) + 2 g([L,H-vo]- 2 H}) + w2

- 2g([L\a, H - wo]) + 2g([L\a + 2v*0, H - w0]).

Since g([L|G,ZZ — v0]) g([L,H — i>0]), this expression is clearly equal to
2bVo[L, ZZ],concludingtheargument. Since^Uo[L, ZZ] is nonnegative, Equation (5.3)
immediately implies Inequality (5.2).
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Finally, a simple argument shows that F is a chain map: The two necessary
identities

aVo[L, 77] + av[L\G, H - v0\ av[L, 77] + aVo[L, 77 - v]

and

aUo[L, 77] + Z?v[L|g, H -v0\ bv[L, 77] + aUo[L + 2ü*,77 - u]

are reformulations of Equations (2.4) and (2.5) (together with the Observation that

/(L|G,7) /(L,7)once v0 I).
Next we show that F is an isomorphism. For [K, E] on G there is a unique

extension [L,77] on GVo with [L|g,77 — ü0] [K,E] and ^(L(E) + E2) i,
hence the injectivity of F easily follows. To show that F is onto, fix an element C/7 (8)

[K,E] e S/((t,0|G) andconsider [L,H] e 7/(t) with F([L,//]) Ua*o[L>H] ®
[7f, 7?]. If aUo[E, 77] 0 then f/7 (8) [L, 77] maps to f/7 (8) [K, E] under T7. In
case aUo[E, 77] > 0 then bVo[L, 77] 0 and so by the identity of (5.3) we get
that A(Uavo^L'H] (8) [K, E]) i. Therefore A(U^ (8) [7f, 7?]) < i implies that

j > aVo[L,H], hence jjJ-av0[L,H] ^ [X?//] js jn ^.(t) and maps under F to
UJ' (8) [K, E], concluding the proof.

The subcomplexes of T admit a certain symmetry, induced by the 7-map.

Lemma 5.10. The J -map induces an isomorphism Ji between the chain complexes
Ti and T-i. This isomorphism intertwines the maps 8\ and 82; more precisely 82 on
T\ is equal to 7o 8\ o 7; (and 8\ onTf is equal to 7o 92 0 7/).

Proof Recall the definition 7[L, 77] [—L — Y.veH H] of the 7-map on the
chain complex CF~(GVo). Applying it to the complex Ti, we claim that we get a

chain complex isomorphism 7/: Ti -> T-i: from the fact (—L — J2veH 2v*)(E)
—L(E) — 2vo • E (since vo £ 77 and for all other V( we have that Vi • E 0) together
with the Observation that E2 vo • E, it follows that

1((-L - £ 2u*)(S) + £2) 1(-L(£) - £2) -I(L(S) + S2).
veH

This equation shows that 7/ maps Ti to TL/. The claim 82 Jfl 0 8\ o J{ (where
82 is taken on Ti while 8\ on T-i) then simply follows from the identities of (2.7) in
Lemma 2.4.

The same idea as above shows that

Lemma 5.11. The restriction of 7 to Bi provides an isomorphism Bi -> B_i+V*^
ofchain complexes.
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Proof Indeed, if v0 $ H, then (—L — J^veH 2v*)(£) —L(S), hence

1((-L - 2u*)(S) + s2) l("L(s) + S2) + s2> + s2'
veH

and H2 v*(E).

Next we identify the two maps 3i and d2 of the mapping cone (T, E, d\ + 82) in
the filtered lattice chain complex context. Notice that S( (s) is naturally a subcomplex
of CF~(G, s); let the inclusion S( (s) C CF~(G, s) be denoted by rj\. It is obvious
from the definitions that for the maps F', F of Proposition 5.5 and Lemma 5.9

F'(d1[L,H]) m(F([L,H])).

The subcomplex Si (s) admits a further natural embedding into the complex Vi (s)
which is generated by the elements {UJ ® [K,E] \ A(UJ <g> [K,E]) < /} in
CF°°(G,s). (Vi(s) is the subcomplex of CF°°(G,s) when we regard this latter
as an F[C/]-module.) Recall that sVo denotes the spinc structure we get from s by
twisting it with

Proposition 5.12. The subcomplex V\ (s) is isomorphic to CF~(G, sUo).

Proof. Consider the map Ul~hN from Definition 4.1 mapping from CF°°(G, s) to
CF°°(G, sUo). It is easy to see that this map provides an isomorphism between Vi (s)
and CF~(G, sUo), since

0 N(Uk 0 [K, £"])) i+k- A([K, E])

is nonnegative if and only if i>— k +A({K, E]) A(Uk 0 [K, E]).

Define now rj2: S/(s) CF_(G,sUo) as the composition of the embedding
Si (s) —Vi (s) with the map Ul~hN. With this definition in place the identity

rj2 o F F' o d2

easily follows:

(TJ 2oF)[L, H] ljav0[L,H}+i-A{[L\G,H-v0]) Wo],

(F' o d2) [E, H]Ub*o[L+ 2v%I -
and the two right-hand side terms are equal by the identity of (5.3). Now we are in
the position to turn to the proof of the main result of this section, Theorem 5.1.
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Proofof Theorem 5.1. Fix the framing n of v0 in such a way that GVo GVo(n)
is a negative definite plumbing graph. Fix a spinc structure t on YqVo Our goal is

now to determine the chain complex C¥~(GVo, t) from the master complex of TVo.

As we discussed earlier in this section, it is sufficient to recover the subcomplexes
Ti (t), Bf (t) (for i e {q + n • ü2 | n e N} for an appropriate q e Q) and the maps
di: Ti(t) Bl (t) and d2: 7/(t) ßi+u*(s)(t)-

Identify 7}(t) with the subcomplex S/((t, z)Ig) and Bf(t) with CF~(G, (t, z)Ig)
(both as subcomplexes of CF°°(G, (t, 01g)) by the maps F and F'. As we showed

earlier, the natural embedding of S/((t, z)Ig) C CF~(G, (t, 01g) can play the role
of 3i, white the embedding S/((t, z)Ig) TG ((t, 0 Ig) composed with U1~1(U)1g N
plays the role of d2 in this model. These subcomplexes and maps are all determined

by CF°°(G), the two filtrations and the map N on it. Since by its definition the

master complex of TVo equals this collection of data, the theorem is proved.

5.1. Computation of the master complex. When Computing the homology
MF~(GVo(n)) from (©S/, CF~(G), rj\,rj2) we can first take the homolo-
gies H*(Si) and MF~(G) and consider the maps //*(?7i) and H*(rj2) induced by

rji, rj2 on these smaller complexes. This method provides more manageable chain

complexes to work with, but it also loses some Information: the resulting homology
will be isomorphic to the homology of the original mapping cone only as a vector

space over F, and not necessarily as a module over the ring F [U]. Nevertheless,
sometimes this partial information can be applied very conveniently.

As an example, we show how to recover (in favorable situations, like the one
considered in Section 6 or in [18]) the knot lattice homology MFK(ri;o) from the

homologies of Si. Let us consider the following iterated mapping cone. First consider
the mapping cones Q of (Si, Si + \, Vf) for i n, n—1, and then consider the mapping
cone D(n) of (Cn, Cn-\, (0/ + i, 0/)). (For a schematic picture of the chain complex,
see Figure 3.) In the next lemma we will still need to use the complexes S\ rather
than their homologies.

Figure 3. The iterated mapping cone D(n) on the S( 's. The maps are defined as 0/, with
appropriate choices of i on the left, and the homomorphisms induced by these maps on the right.
When taking homologies first, we might need to encounter a nontrivial map indicated by the
dashed arrow.
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Lemma 5.13. The homology H*(D(n)) is isomorphic to EIFK(rUo,«).

Proof Factoring Sn+i with the image of \j/n : Sn -> Sn+\ wecomputethe homology
of the horizontal strip in the master complex with A n + 1 and nonnegative U-
power (i.e., j > 0). Similarly, with the help of tyn-1: Sn-i -> Sn we get the

homology of the horizontal strip with A — n and nonnegative U-power. The iterated

mapping cone in the Statement maps the upper strip into the lower one by multiplying
it by U, localizing the computation to one coordinate with A — n and vanishing
U-power. The homology of this complex is by definition the knot lattice homology

1WK(rV0,ri).

Unfortunately, if we first take the homologies of the complexes Si and then form
the mapping cones in the above discussion, we might get different homology. The

reason is that when taking homologies of the S( we might need to consider a diagonal

map, asindicatedby thedashedarrowofFigure3. Under favorable circumstances (eg.
in Section 6 and in [18]), however, the diagonal map can be determined to be zero, and

in those cases HIFK(ruo) can be computed from the homologies of Si (and the maps
induced by 0/, ^ on these homologies). From the knowledge of HIFK(ruo, n) we
can recover the nontrivial groups in the master complex: multiplication by Un simply
translates HIFK(rUo) (located on the y-axis) with the vectors (n, n) (n e Z). In some

special cases appropriate ad hoc arguments help us to reconstruct the differentials
and the map N on the master complex (which do not follow from the computation
of HFI(rU0)), getting MCFoo(ri;0) back from //*(£;) and the maps //*(4>;) and

//*(0;). Such simple calculations are carried out in detail in [18].
Remember also that first taking the homology and then the mapping cone causes

some information loss: the result will coincide with the homology of the mapping
cone as a vector space over F, but not necessarily as an F[I/]-module. The vector

space underlying the F[I/]-module MF" is already an interesting invariant of the

graph. The module structure can be reconstructed by considering the mapping cones
with coefficient rings F [U]/(Un) for every n e N, cf. [17], Lemma 4.12.

6. An example: the right-handed trefoil knot

In this section we give an explicit computation of the filtered lattice chain complex
(introduced in Section 3) for the right-handed trefoil knot in S3. It is a Standard

fact that this knot can be given by the plumbing diagram TVo of Figure 4. Notice
that in this example the background manifold is diffeomorphic to F3, hence admits
a unique spinc structure, and therefore we do not need to record it. (Related explicit
computations can be found in [13].)

Using the results of [9], [10] first we will determine //* (7)) and //* (B) when the

framing vq —7 is fixed on ü0.
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-2 -1 -3

Figure 4. The plumbing tree TVo describing the right-handed trefoil knot in S 3. Interpreting
the graph as a plumbing tree, the repeated blow-down of the (—1)-, (—2)- and (—3)-framed
vertices turn the circle corresponding to vo into the right-handed trefoil knot.

Proposition 6.1. Suppose that ruo is given by the diagram of Figure 4. Then

//* (B) ^F[t/].

Proof The graph G TVo — vo is negative definite with one bad Vertex, hence
the result of [10] (cf. also [9]) applies and shows that the lattice homology of it is

isomorphic to the Heegaard Floer homology of the 3-manifold Yq defined by the

plumbing. Since G presents S3 as a 3-manifold and //*(£) ^ HF~(G), the claim
follows.

Consequently the lattice homology group HF~(G) HFq (G) H^{B) is

generated by a Single element, and it has to be a linear combination of elements of the

form [K, E] with E 0 (since the entire homology of a negative definite graph with
at most one bad Vertex is supported in this level). The generator has Maslov grading
0, which by the definition of the grading means that \ {K2 + 3) 0, i.e., K2 —3.

There are exactly 8 such cohomology classes on G, and it is easy to verify that these

are all homologous to each other (when thought of as cycles in lattice homology), so

any one of them can represent the generator of HF~(G) F [[/]. By denoting the

vertex of G with framing —i by v\ (i 1,2, 3), we define the vector K as

Simple calculation shows that K2 —3, hence [K, 0] generates MF (G). We will
need one further computational fact for the group MF~(G):

Lemma 6.2. The element [Kf, 0] e CF~(G) given by (K'(v i), K'(v2), Kfv^))
(1, 0,1) is homologous to U <g> [K, 0], where K is given by (6.1) above.

Proof Consider the element

x [(1,0,1), {Vi}] + [(-1,2, 3), {v3}] + [(1,2,-3), {Di}] + [(—1,4, —1), {v2}].

(K(Vl),K(v2),K(v3)) (-1,0,1). (6.1)

It is an easy computation to show that dx [(1,0,1), 0] + U (8) [(1,0, —1), 0]. Since
both [K, 0] and [(1,0, —1), 0] generate MF~(G), the proof is complete.
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Before calculating //*(7)), we determine the maps //*(31), //*(32): //*(/;) ->
H*(B) on certain elements. To this end, for j e Z consider the elements Lj e

H2(XgVq ; Z) (with framing i>q —7 attached to i>o) defined as

(Ljiv^LjiviXLjiv&Ljivo)) (-1,0,1,2+ 1).

Since S v0 + 6wi + 3r>2 + 2d3, by the choice —7 we get £2 —1. This

impliesthat 2(Ly (S) + S2) / — 2, hence the element {ij0}] is in 7)-2. Simple
calculation shows that

and

10 if 3 > 0,

I "(i — 3) if 7 — 3 < 0

r n < n \j~3if 7 — 3 > 0,
bV(.[Lj,{w0}]t0 7

[0 if 7 — 3 < 0.

With notations aj aVo([Lj, {t>o}]) and bj bVo([Lj, {i>o}]) we conclude that

(with the Conventions for K and Kf above, and with the identification of B with
CF~(G))

3i [Lj, {w0}] UaJ 0 K and d2[Lj, {w0}] UbJ 0 K',

and the latter element (according to Lemma 6.2) is homologous to UbJ+l 0 K.
This shows that for j > 3 the homology class of //*(7)_2) represented by the
element [Lj, {^o}] maps under (3i, 32) to ((—1,0,1), G7-2 (g) (—1,0,1)) e MF~(G) x
MF~(G). Applying the /-symmetry we can then determine the (3i, 32)-image
of J[Lj,{vo}] e T2-j (j > 3) as well. (Notice that although J[Lj,{vo}] and

[L-j+4, {i;o}] are both elements of 71(y_2), they are not necessarily homologous.)
For 7=2 the class [L2, {i;o}] £ To maps to (G (g) (—1,0,1), U <g) (—1,0,1)). Now
we are in the position to determine the homologies //*(7}), as well as the maps on
them. Notice first that since G represents S3, the Alexander gradings are all integer
valued, hence we have a nontrivial complex T\ for each i e Z.

Proposition 6.3. The homology //*(7}) is isomorphic to F[G].

Proofi Notice first that //*(G) cannot have any nontrivial G-torsion: since 3i, 32

map to H*(B) F[G], such part of the homology stays in the kernel of 3i and

32, hence would give nontrivial homology in HIF^(GUo) (supported in \E\ 1).

This, however, contradicts the fact that for negative definite graphs with at most one
bad vertex we have that HIF^(GUo) 0 [10], [21]. If i >0 and //*(G) is not
cyclic, then (by the /-symmetry) the same applies to //* (T_/). Consider the surgery
coefficient n with the property that d2 on T\ and 3i on T-\ point to the same B. Then

H*(Ti) 0 H*(T-i) -> H*(B) 0 H*(B) 0 H*(B) will have nontrivial kernel, once
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again producing nontrivial elements in MF (GVo (n)), a group which vanishes for any
(negative enough) surgery on ü0. Therefore if i ^ 0, the group //* (7/) is cyclic with
trivial U-torsion, consequently isomorphic to F[[/]. For the same reason, 77* (7o)
can have at most two generators, and if it has two generators, then the two maps d\
and 02 have different elements in their kernel. Suppose that 77* (To) is not cyclic. In
this case (for the choice —7) the U — 1 homology can be easily computed and

shown to be zero, contradicting the fact that in the Single spinc structure on YqVo(~1)
this homology is equal to F. This last argument then implies that H*(T0) ¥[U]
and concludes the proof of the proposition.

Now our earlier computations of the maps show that for i > 0 the map d\

maps [L/+2,{i>o}] e T\ into the generator of HF~(G), hence [Li+2,{vo}\ gen-
erates 77*(7}). Furthermore, this reasoning shows that 3i is an isomorphism and

the map 02: F/*(7}) -> HF~(G) is multiplication by Ul. By the /-symmetry this

computation also determines the maps 3i, 32 on all 77* (7/) with i ^ 0. On T0 the
Situation is slightly more complicated: both maps 3i, 82 take [L2, {^0}] to G-times
the generator of HF~(G). This can happen in two ways. Either [L2, {^0}] generates
H*(T0) (and the maps 3i, 82 are both multiplications by G), or the cycle [L2, {^0}]
is homologous to one of the form G ® g, where g can be represented by a sum
of generators (of the form [7/, {t>o}]), each of Maslov grading two greater than the
Maslov grading of [L2, Thus, our aim is to show that there are no generators
in the requisite Maslov grading.

Specifically, we have that

gr[L2,{w0}] -1,

while

gr [K,{i;0}]2 g[K,{w0}]+ 1 + + 4),

which in turn can be 1 only if K2 —4 and g[K, {^o}] 0; K2 —4 implies that

K(vo) < 5, while g[K, {i;o}] 0 implies that K(v0) > 7, a contradiction.
We have therefore identified the mapping cone (®z- 7/*(7;),

77* di + 32)). For a schematic picture of the maps, see Figure 5.

HJT2) HJTJ HJT0) HJTj) HJT2)

y y y ^^^yy ^^x y ^^^x /
HJB) HJB) HJB) HJB) HJB) HJB)

Figure 5. The schematic diagram of the homology groups of of 77* (7?) and the

maps between them. All homologies are isomorphic to F [U], and the maps are all multiplication
by some power of U (as indicated in the diagram). The sequence of homologies continue in
both directions to =boc.
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We are now ready to describe the master complex of TVo. We Start by determining
the groups on the line 7=0 — equivalently, we compute HFK(ruo). For this

computation, the formula of Lemma 5.13 turns out to be rather useful. Indeed, since

//* (Tf) F [[/], there is no diagonal map in the mapping cone of Figure 3.

The map -> //*(T/ + i) can be determined from the fact that

composing it with the map //*(T/ + i) -> H*{B) we get //*(Ti) -> H*{B). Since

d\: H*{Ti) -> H*{B) is an isomorphism for i > 1, so are all the maps
Using the same principle for i 0 (and noticing that //* (To) -> //* (B) is multipli-
cation by U) we get that //*(4>0) is also multiplication by U. Repeating the same

argument it follows that //* (VP-i) is an isomorphism, while //* (Vf/) is multiplication
by U for all i < —2. The iterated mapping cone construction of Lemma 5.13 shows

that the group HFK(ruo, n) vanishes if the two maps //* (4>„) and //* (4>w_i) are the

same, and the group HFK(ruo, n) is isomorphic to F is the two maps above differ.
(For similar computations see [18].) The computation of the maps //*(4>;) above
shows that

Lemma 6.4. For ruo given by Figure 4 the knot lattice group MFK(ri;o, n) is
isomorphic to F for n —1, 0,1 and vanishes otherwise.

Indeed, with the Convention used in Equation 6.1, the group MFK(ri;o, 1) can be

represented by
X! [(-1,0,1), 0],

while the group MFK(ri;o, — 1) by

x_! [(-1,O,-1),0].

It is straightforward to determine the Alexander gradings of these elements, and

requires only a little more work to show that these two generators are not boundaries of
elements of the same Alexander grading. A quick computation gives that the Maslov
grading of x\ is 0, while the Maslov grading of x-\ is —2. Since the homology of the

elements with 7=0 gives F in Maslov grading 0 (as the MF-invariant of F3), we
conclude that the generator xo of the group MFK(ruo, 0) F must be of Maslov
grading —1. Furthermore, x_i is one of the components of 3x0.

Similarly, since the homology along the line A 0 is also F (supported in Maslov
grading 0), it is generated by U~l (8) x_i and therefore there is a nontrivial map from
x0 to U (8) xi. Furthermore, this picture is translated by multiplications by all powers
of [/, providing nontrivial maps on the master complex. There is no more nontrivial

map by simple Maslov grading argument. The filtered chain complex CF°°(rvo)
is then described by Figure 6. (By Convention, a solid dot symbolizes F, while an

arrow Stands for a nontrivial map between the two 1-dimensional vector spaces.)

Furthermore, as the map N is U-equivariant, it is equal to the identity. Comparing
this result with [24] we get that
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Figure 6. The schematic diagram of the master complex MCF°°(rVo). As usual, nontrivial
groups are denoted by dots, while nontrivial maps between them are symbolized by arrows.

Proposition 6.5. The master complex of ruo determined above is filtered chain

homotopic to the master complex of the right-handed trefoil knot in Heegaard Floer
homology (as it is given in [22]). Consequently the filtered lattice chain complex of
the right-handed trefoil (given by Figure 4) is filtered chain homotopy equivalent to
the filtered knot Floer chain complex of the same knot.

Remark 6.6. Essentially the same argument extends to the family of graphs {TVo (n) \

n e N} we get by modifying the graph TVo of Figure 4 by attaching a string of (n — 1)

vertices, each with framing (—2) to the (—3)-framed Vertex of TVo. The resulting knot
can be easily shown to be the (2,2n + 1) torus knot. A straightforward adaptation of
the argument above provides an identifications of the filtered chain homotopy types of
the master complexes (in lattice homology) of these knots with the master complexes
in knot Floer homology.

As an application, consider the connected sum of n trefoil knots. (For a plumbing
diagram, see Figure 1.)

Proofof Theorem 1.2. According to Proposition 6.5, together with the connected sum
formula for lattice homology and the Künneth formula for knot Floer homology, we
get that the two filtered chain complexes for vo in Figure 1 (the filtered lattice chain

complex and the knot Floer chain complex) are filtered chain homotopic to each other.

(See Figure 7 for the master complex we get in the n 2 case.) Equip the Vertex

vo of Figure 1 with framing mo < —6n — 1. Then the corresponding 3-manifold is

(mo + 6/i)-surgery on the n-fold connected sum of trefoil knots in S3. Since the

master complex determines the chain complex of the surgery in the same manner in
the two theories, the lattice homology of this graph is isomorphic to the Heegaard
Floer homology of the corresponding 3-manifold.
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Figure 7. The master complex for the knot T # T (where T is the right-handed trefoil knot).

Remark 6.7. Notice that this graph has exactly n bad vertices, therefore the above

result provides further evidence to the conjectured isomorphism of lattice and Hee-

gaard Floer homologies. (For related results also see [13].) More generally, the
identification of the master complexes of knots in S3 (in fact in any Yq which is an

L-space) is given in [18].
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