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Abstract. The aim of this paper is to investigate Bernstein-type properties of horospheres of the

hyperbolic Space HF7 +1. Our approach is based on the use of appropriate generalized maximum
principles in order to obtain new characterization results of such horospheres. Furthermore, by
supposing a linear dependence between support functions naturally attached to a hypersurface,
we also establish a Classification theorem concerning horospheres and hyperbolic cylinders of
HFI + 1.
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1. Introduction

In the theory of isometric immersions, the study of Bernstein-type properties concerning

complete hypersurfaces of the hyperbolic space Mn+1 constitutes an important
theme. In this research branch, do Carmo and Lawson [9] have used the well know
Alexandrov's reflexion method to show that any complete hypersurface properly em-
bedded with constant mean curvature in HI77+1 with a Single point at the asymptotic
boundary is a horosphere. Moreover, they also observed that the Statement is no
longer true if we replace embedded by immersed. Later on, Alias and Dajczer [2]
have proved that a surface properly immersed in HI3 with constant mean curvature
—1 < H < 1 and contained in a slab (that is, the region between two horospheres
that share the same point in the asymptotic boundary) must be, in fact, a horosphere.

In [8], the second author and Caminha have studied complete vertical graphs of
constant mean curvature in Wn+1. Under appropriate restrictions on the values of
the mean curvature and the growth of the height function, they used a generalized
maximum principle due to Akutagawa [1] to establish necessary conditions for the
existence of such a graph. Moreover, in H3, they proved that such a graph must be

a horosphere. In [7], by extending a technique of Yau [21], the second author jointly
with Camargo and Caminha obtained rigidity results concerning to the horospheres of
Mn+1, without the assumption of the constancy of the mean curvature. Proceeding,
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they also treated the case of the higher order mean curvatures. More recently, the
authors [3] generalized the results of [8] to the context of warped products obeying an

appropriate convergence condition. Moreover, in [5], they obtained characterizations
theorems of the totally umbilical hypersurfaces of HIW+1 under natural restrictions on
their Lorentz Gauss mapping.

Here, motivated by these works described above, we treat the following question:
under what reasonable geometric restrictions must a complete hypersurface immersed
in the hyperbolic space be a horosphere

In order to obtain satisfactory answers for such question, in Section 3 of this

paper we apply some appropriate generalized maximum principles which enable

us to establish suitable rigidity theorems related to the horospheres of Hw+1. In
our approach, an important point is the understanding of the geometry of support
functions naturally attached to a hypersurface of EP+1, as well as, the study of the
behavior of the corresponding Lorentz Gauss mapping.

Finally, in Section 4, we characterize horospheres and hyperbolic cylinders as the

only complete hypersurfaces with constant mean curvature of EP+1 whose support
functions determined by a nonzero null vector are linearly related. We point out
that such characterization result deals with the case that was not contemplated in
Theorem 4.1 of [5].

2. Preliminaries

In order to obtain our first results, it will be convenient to consider the hyperbolic
space as a hyperquadric of the Minkowski space Lw+2. So, we will represent by
ILn+2 vector SpaCe Rw+2 endowed with the Lorentz metric

n +1

(v,w) -vn+2wn+2.
i 1

and the hyperbolic space will be identified with

H"+1 {pL"+2; (p1, > 1}

equipped with the Riemannian induced metric from hn+2. In this setting horospheres,
hyperspheres and spheres can be obtained intersecting EP+1 with affine hyperplanes
of Lw+2. For example, as it has been observed by Lopez and Montiel in [13], any
horosphere of HIW+1 is given by

Lt {peMn+1; {p,a) r}, (2.1)

where a e hn+2 is a nonzero null vector, that is, (a,a) 0, and r is a positive
number. When one fixes that vector a and moves r e M+ one obtains a foliation of
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jjw+i by means of horospheres having the same point at the infinity. It is easy to see

that

l(p) -p--a (2.2)
X

is a unit normal field on Lx with respect to which the horosphere has constant mean
curvature 1.

Now, let \j/ : -> EP+1 c Lw+2 be an orientable hypersurface immersed into
the hyperbolic space. We will denote by A the shape Operator of with respect
to a globally defined unit normal vector field N. In order to set up the notation, let
us represent by V°,V and V the Levi-Civita connections of Lw+2, Mw+1 and TA,
respectively. Then the Gauss and Weingarten formulas for Tn in HIW+1 are given,
respectively, by

W°XY VXY + {AX, Y)N + {X, Y)f
and

AX -VXN -X°xN,

for all tangent vector fields X, Y e 36(£).
By fixing an arbitrary vector a e Lw+2, we will consider two support functions,

fa {N,a) andla (i/s,a)9 naturally attachedtotheimmersion^: Tn -> EP+1 C
Lw+2. It is immediate to verify that

V/a aT and V fa —A{aJ),

where aT e 36(£) denotes the tangential component of a along the immersion x//,

that is,

aT a - faN + laf. (2.3)

For 0 < r < n and p G Tn, let Sr(p) denote the r-th elementary Symmetrie
function on the eigenvalues of Ap; in this way one gets n smooth functions Sr : Tn ->
R, such that

n

det(?/ — A) Sktn~k,
k=0

where So 1 by Convention. If p e Tn and {e^} is a basis of TPT formed by
eigenvectors of Ap, with corresponding eigenvalues {A^}, one immediately sees that

Sr ö> (Ai, Xn),

where o> G R[Xi,..., Xn\ is the r-th elementary Symmetrie polynomial on the
indeterminates X\,... ,Xn.

Also, we define the r-th mean curvature Hr of Tn, 0 < r < n, by (nr)Hr Sr.
We observe that H0 1, while H\ is the usual mean curvature H of For
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0 < r < n, one defines the r-th Newton transformation Pr on by setting P0 /
(the identity Operator) and, for 1 < r < n, via the recurrence relation

Pr SrI — APr—\.

On the other hand, given / e C°°(£), for each 0 < r < n, the second order
differential Operator Lr is defined as follows:

Lrf tr(PrHess/).

When r 0, L0 is nothing but the Laplacian Operator A. Moreover, for a smooth
function cp: R -> R and / e C°°(£), it follows from the properties of the Hessian
that

Lr(<p o f) (p'(f)Lr(f)+ <p"(f){PrVf, V/).
Based on the ideas of Reilly [18], Rosenberg in [19] showed the following

Lemma 2.1. Let x: Mw+1 be a orientable hypersurface immersed in the

hyperbolic space 1. Then, for the supportfunctions fa and la previously defined,
we have

Lrla (r + l)^r+i fa (fl ~ r)Srla (2.4)

and

Lrfa -(Srfr+1 - (r + 2)Sr+2)fa1 - (WSr+1,aT). (2.5)

In order to obtain some of our results, we will also need the well known generalized
maximum principle of Omori-Yau [17], [20].

Lemma 2.2. Let Hn denote an n-dimensional complete Riemannian manifold having
Ricci curvature boundedfrom below. Then, for any C2 function u : R with

sups u < +oo, there exists a sequence ofpoints {pk)k>\ in ^n satisfying the

following properties:

(i) u(pk) > u* -
(ii) \Vu\(pk) < p and

(iii) Au(pk) < p
for all k > 1.

3. Uniqueness results in the hyperbolic space

Along this work, we will always suppose that all considered hypersurfaces are
orientable and connect. The next lemma plays an essential role along this work.
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Lemma 3.1. Let Mw+1 be a hypersurface immersed in Mw+1 with mean
curvature —1 < H < 1. Then the function 1% is subharmonic, for all nonzero null
vector a £ Lw+2.

Proof. From Lemma 2.1 we obtain that

A l2 2nHfala+ 2m/2 + 2|V/Ö|2.

Now, by a direct computation, it is easy to verify that

A l2an(fa + Hlaf + n(l2- f2)+ 1 - H2)l2 + (3.1)

Finally, using that a is a nonzero null vector, we have from (2.3) that

l2a-fa2 \Vla\2.

Thus, from (3.1), we get

^= n{fa + Hla) + n(l — Z/2)/^ + (n + 2) |V/a|2. (3.2)

Therefore, from our restriction on //, we conclude that l2 is a subharmonic function
on

We recall that the Gauss mapping TV of a hypersurface ^En of Mn+1 ^ hn+2 can
be regarded as a map N: Y*n S"+1, where S"+1 denotes the (n + l)-dimensional
unitary de Sitter space, that is,

§«+1 {p e Ln+2;{p,p) 1}.

In this setting, N is called the Lorentz Gauss mapping of In a dual context,
given a spacelike hypersurface of Snx + 1 Lw+2 (that is, a hypersurface of Snx + 1

whose induced metric is a Riemannian metric), its Gauss mapping TV can be thought
of as a map N: Y/1 —> Mn+1; so, N is said the hyperbolic Gauss mapping of

In [16], Montiel have proved that if a complete spacelike hypersurface in the
de Sitter space S"+1 with constant mean curvature H > 1 is such that the image
of its hyperbolic Gauss mapping is contained in the closure of the interior domain
enclosed by a horosphere, then its mean curvature is, in fact, equal to 1. When n — 2,

this implies that X)2 is also an umbilical surface and the image of its hyperbolic Gauss

mapping is exactly a horosphere. On the other hand, from (2.2) we have that the

image of the Lorentz Gauss mapping of the horospheres of Mw+1 are the following
hypersurfaces of S"+1:

X,T {p e S"+1; (p,a) r},

for some nonzero null vector a £ Lw+2, which are totally umbilical hypersurfaces
of S"+1, isometric to the Euclidean space Rn and with mean curvature H2 1

(cf. [14]). In this sense, we will call dCT a hyperplane of S"+1.
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Motivated by this previous discussion, we will State our first result. In what
follows, we say that a hypersurface Xw is under a horosphere Lx ofWn+1 <^1Ln+2
determinated by a nonzero null vector a e Lw+2, when its corresponding support
function la satisfies la < r. Moreover, in this same context, we say that the image of
the Lorentz Gauss mapping of X" is under a plane £x of S"+1 Lw+2, when its

corresponding support function fa satisfies fa < r.

Theorem 3.2. Let / : X2 -> H3 be a complete surface with non-negative Gaussian

curvature and under a horosphere Lx o/M3, with (not necessarily constant) mean
curvature H satisfying If the image of its Lorentz Gauss mapping is

under aplane £\x\~e of S\,for some s E (0, |r |), and contained in the closure ofthe
interior domain enclosed by a plane £ß,for some ß > 0, then X2 is a horosphere.

Proof Consider a e hn+2 the nonzero null vector that determines the horosphere

L\x\ in H3 and the planes £,ß and £\x\~e in S3. The hypothesis on the Lorentz Gauss

mapping of X!2 assure us that ß < fa < \r \ — e. Using equation (2.3), we also have

|V/a|2 + /a2 /2, (3.3)

from which we conclude that l2 > ß2 and thus either la > ß or la < —ß on X2.

By the hypothesis on the mean curvature //, we have from Lemma 3.1 that l2 is

a subharmonic function. Now, suppose that la > ß on X2. Since X2 is under a

horosphere Lr, we obtain that ß <la< x and thus /2 is a bounded subharmonic function.
However, a classical result due to A. Huber [11] assures that complete surfaces of
nonnegative Gaussian curvature must be parabolic. Therefore, la is constant on X2,
that is, X2 is a horosphere of H3. Let us consider the case that la < —ß, and suppose
that r > 0. Thus, la < 0 < r and, since X2 is under the horosphere Lr, we must have

by continuity that either /2 < r2 or l2 > r2 on X2. Suppose that l2 > r2. Since la is

bounded from above, we have from Omori-Yau maximum principle (cf. Lemma 2.2)
that there exists a sequence of points {pk}k>i in such that limla{pk) supla
and \Vla\(pk) < 1/k, for all k > 1. Therefore, from equation (3.3) we conclude
that

lim fa(Pk) > t2,
k^oo

and this gives us a contradiction, since f2 < (|r| — e)2 < r2 on X2. The previous
argument guarantees that l2 < r2 and from this we can apply once more the result
of A. Huber to conclude that X2 is a horosphere of H3. Finally, if r < 0, since by
hypothesis la < r < 0, we get that l2 > r2 and, hence, we can reason as before to
assure again that X2 is a horosphere of M3.

Now, we apply once more Huber's result [11], which was quoted along the proof
of Theorem 3.2, to obtain the following
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Theorem 3.3. Let xf: X2 -> H3 bea complete surface immersed in a slab of H3 with
nonnegative Gaussian curvature. If the (not necessarily constant) mean curvature
H ofYi2 satisfies — then X2 is a horosphere.

Proofi Let us assume that the X2 is contained in a slab of H3. From this, we have

that there exists a nonzero null vector a e L3 and positive constants and %2 such

that the support function la {i/r,a) satisfies < la{p) < t2, for all p e X2.

Now, from the Lemma 3.1 we have that l2 is a bounded subharmonic function on
X!2. Thus, we are in position to use again Huber's result [11] to conclude that la is a

constant function on X2, that is, X2 is a horosphere of H3.

In the paper [21], Yau obtained the following version of Stokes' Theorem on an

n-dimensional, complete noncompact Riemannian manifold X": ifco E £2W_1(X) is

an (n — \)-dijferential form on Xw, then there exists a sequence Bi ofdomains on X"
such that Bi C 5/ + X" Uz>1 Bi and

By applying this result to <o where / : X" -> R is a smooth function, V/
denotes its gradient and / the contraction in the direction of V/, Yau established

an extension of H. Hopfs theorem on a complete noncompact Riemannian manifold.
In what follows, <561(X) denotes the space of Lebesgue integrable functions on Xw.

Lemma 3.4 (Corollary on page 660 of [21]). Let X" be an n-dimensional, complete
Riemannian manifold and let f : X" -> R be a smooth function. If f is a subharmonic

(or superharmonic) function with |V/| E <561(X), then f must actually be

harmonic.

In [2], Alias and Dajczer studied complete surfaces properly immersed in a slab

of H3. Using the warped structure of H3, they obtained a Bernstein-type result for
the case of constant mean curvature — \<H< \ (cf. Theorem 1 of [2]). Now, with
a new approach, we are able to give an extension of such result.

Theorem 3.5. Let Mn+1 be a complete hypersurface immersed in a slab

of Mw+1 determined by the nonzero null vector a E hn+2 with (not necessarily
constant) mean curvature —l<H<l.If\aT\e <561(X) then X" is a horosphere.

Proof. From Lemma 3.1 we conclude that l2 is a subharmonic function on Xw. On
the other hand, observing that Vla aT and |V/2| 2\la\\Vla \ is integrable on Xw,

we have from Lemma 3.4 that l2 is a harmonic function. Now, using the equation
(3.2) we have that | Vla \2 0 on X" therefore la is constant and this shows that X"
is a horosphere of Mn+1.
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The following lemma is known as the tangency principle in the hyperbolic space,
which is a celebrated geometric consequence of the classical Hopf's maximum
principle (cf. [9] for details and definitions; see also Theorem 3.1 of [6]).

Lemma 3.6. Let Y" and Y1^ be complete hypersurfaces immersed in Mw+1 with
mean curvature H\ and H2, respectively. In a neighbourhood ofa common tangent
point, ifwe have that Y" lies above Y% and H\ < H2, then Y" and Y% must coincide
on such neighbourhood.

In order to establish our next result, it will be convenient to leave the hyperquadric
model of EP+1 that we have utilized before and consider its half-space model, that
is, EP+1 {(x\,..., xn+\) e Rw+1; xn+\ > 0} endowed with the complete metric

)M„+i -^—{dx\-\ 1-dx„+1). Inthissetting, given a hypersurface i/f: Yn ->
xn +1

EP+1, we dehne the normal angle 6 of Yn as being the smooth function 6: Yn ^
[0,7r] given by

cos 0 {N,en+i)Un+i.

The following result is an extension of Theorem 5.2 of [8] and Theorem 3.3

of [12].

Theorem 3.7. Let \f/ : Yn -> Mw+1 be a complete hypersurface which lies under a

horosphere ofWn+1 and with {not necessary constant) mean curvature— 1 < H < 1.

Ifthe normal angle 6 ofYn satisfies | cos 9\ > supE \H\, then Yn is a horosphere.

Proof Let us consider a complete hypersurface Yn immersed with mean curvature

\H\ < 1 in Mw+1, and such that it lies under a horosphere L. This means that Yn is

included in the open component of the region Mn+1 — L where the mean curvature
vector of L points. Without lost of generality, we can consider L the hyperplane
{x e Mn+1; xn+\ 1}. Then, since we are supposing that Yn lies under L, we have

that Yn C {x g Un+1;xn+1 > 1}.

Now, let Hq sups \H\. Suppose, by contradiction, that H0 < 1 and consider
the family of equidistant hypersurfaces with a given common axis of rotation, having
constant mean curvature H0 and such that their corresponding mean curvature vector
is pointing up, Coming from the infinity {x e Mw+1;xw+i 0}. By a rigid motion of
this family, we arrive until the first contact point of Yn with one of such equidistant
hypersurfaces, which occurs in some common interior point of both hypersurfaces.
Consequently, from Lemma 3.6, we have that Yn must be one of these equidistant
hypersurfaces. But equidistant hypersurfaces do not lie under a horosphere. So, we
arrive at a contradiction and, hence, H0 1. Therefore, we use the hypothesis

| cos 6\ > Ho to conclude that cos 6 ±1 on that is, Yn is a horosphere of
IF+1.
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Remark 3.8. As observed in Remark 5.5 of [4], our restriction on the normal angle
6 of the hypersurface Ew in Theorem 3.7 is motivated by the gradient estimate (19)
of [13].

4. Hypersurfaces in HP+1 satisfying la — Xfa

Our purpose in this last section, is to classify the complete hypersurfaces of Mn+1 ^
Lw+2 whose support functions la and fa, with respect to some fixed nonzero null
vector a e Lw+2, are linearly related. In this setting, from (2.2) we observe that
the support functions of a horosphere Lx of EP+1 satisfy la —fa, where a is the

nonzero null vector which defines such horosphere. Furthermore, since the
horospheres Lt foliate all hyperbolic space EP"1"1, for any hypersurface Ew immersed in
Hw+1 we have from (2.1) that its support function la has strict sign. Proceeding, we
get the following result.

Theorem 4.1. Let HIW+1 be a complete hypersurface immersed in a slab
ofW1+1 determined by a nonzero null vector a E Lw+2. Suppose that la Xfa,
for some smooth function X: Ew -> R, and that the (not necessarily constant) mean
curvature H ofTtn satisfies ^ > — 1. Suppose that one of the following conditions
is satisfied:

(a) n 2 and the Gaussian curvature of E2 is non-negative.

Then, Y*n is a horosphere.

Proof Initially, from the causal character of a, we observe that the function X has

strict sign on IP. From Lemma 2.1 and hypothesis on support functions of 5P, we
have that

Since X)71 is contained in a slab of +1 determined by a, we have that /2 is a bounded
subharmonic function on E".

We observe that if E2 has non-negative Gaussian curvature, by a result due to A.
Huber [11], we have that la is constant.

Now, suppose that | aT\ e dCx(E), then V/2 has integrable norm on Ew. Thus,
from equation (4.1), we conclude, from Lemma 3.4, that l2 is harmonic and therefore

we have | Vla \2 0, hence we conclude that la is constant.
To finish the proof, we note that from the definition of laf\fla r on a complete

hypersurface Ew, then E" C LT. Therefore, by completeness, we must have

(b) |aT| e^VE).

(4.1)

E" LT.
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Now, we consider an integer k satisfying 0 < k < n. Let us define the smooth
function F: Mw+1 -> R by

F(p) P21+--- + pt+v

where p (p\,..., pn+2). For p > 0, let F~l (p2). It is not difficult to see

that is a complete orientable constant mean curvature hypersurface immersed in
EP+1. If p (p1,..., p«+2) is a point of E" then, by considering the Standard

immersions Sk(p) R^+1 and Mn~k(^/l + p2) ^ Lw_fc+1, we get

s* s^(p) x un-k(-s/i + p2) if+1.

Moreover, we have that

N(p) -tJ^tCP) // + (4.2)
|VF| p y 1 ~l~

defines a Gauss mapping for where v(p) (pi,..., Pk+i, 0,..., 0), and the

Weingarten Operator A of Ew with respect to N has the following principal curvatures:

Vi + p2,Ai • • • kk and Ajc+i — —
p V1 + P2

Furthermore, from (4.2) we easily verify that

_ Vi +P2
La — Ja >

P

where /a and /a are the support functions of Ew with respect the nonzero null vector
a (0 1,1) GLn+2.

In [5], the authors have studied complete constant mean curvature hypersurfaces
TJ1 immersed in HIW+1 assuming that the support functions of Ew satisfy the linear
dependence relation la Xfa, for some unitary timelike or spacelike vector a e
Ln+2 and some real number A, showing that the is either a totally umbilical
hypersurface or a hyperbolic cylinder.

Motivated by the previous discussion, now we are able to deal with the case that

was not contemplated in Theorem 4.1 of [5]. More precisely, we have the following

Theorem 4.2. Let Mn+1 be a complete hypersurface immersed in Mn+1

with constant mean curvature H. Ifla Xfa, for some nonzero null vector a E Lw+2

and some constant X E R, then Hn is either a horosphere or isometric to a hyperbolic
cylinder §k(p) x Mn~k(^/l + p2).
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Proofi Suppose that a is a nonzero null vector in Lw+2 such that la Xfa for some
real number X. Then, using once more that the support function la has strict sign on

we have X ^ 0. Observe that Ala XAfa. Now, by Lemma 2.1 we conclude,
from the previous equality, that

1
9 (X 1 \ n^ 2S' + {-2+ü)s' + r

on This equality shows that S2 is also a constant function on Repeating the

previous argument for the Operator L\ we have from formulas (2.4) and (2.5) that

2S2fa + (n- \)laSx -X(S1S2 - 3S3)fa - 2XS2la.

Now, using that A ^ 0, we obtain from above equality, after a straightforward com-
putation, that

s3 7-s + ^ ~ ^ St+ -SiS2 + —s2.
3A 3 3 3

on Y<n. As before, we conclude that £3 is constant on Iterating this argument
we show that Sr is a constant function on for all r and from this, by a elemen-

tary algebraic argument, we have that all the principal curvatures of are constant.
Therefore, taking into account the Classification of isoparametric hypersurfaces of
EP+1 due to E. Cartan [10], we conclude that is either a totally umbilical hyper-
surface or isometric to a hyperbolic cylinder §k(p) x + p2). In the case
that is a totally umbilical hypersurface, from the description of the foliations of
Mn+1 due to Montiel in Example 3 of Section 4 of [15] and taking into account the
causal character of the vector a, we see that must be a horosphere.
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