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Riemann surfaces and totally real tori

Julien Duval and Damien Gayet

Abstract. Given a totally real torus unknotted in the unit sphere S3 of C2, we prove the

following alternative: either the torus is rationally convex and there exists a Alling of the torus
by holomorphic discs, or its rational hull contains a holomorphic annulus or a pair ofholomorphic
discs.
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Introduction

In this paper we address the following question: given a totally real torus in C2, does

there always exist a compact Riemann surface in C2 with boundary in (or simply
attached to) the torus?

Recall that (closed connected) surfaces in C2 are totally real if they are never
tangent to a complex line. The only orientable ones are tori. Special cases are

Lagrangian tori, those on which the Standard Kahler form of C2 vanishes.

Our question is motivated by geometric function theory (see [15] for background).
Given a compact set K in C2, its polynomial hull K is defined as

K {z in C2/\P(z)\ < ||P ||a: for every polynomial P}.

The set K is polynomially convex if K — K. In this case K satisfies Runge theorem.
Note that any compact Riemann surface attached to K is contained in K. It is therefore

tempting to explain the presence of a non trivial hull by Riemann surfaces, at least for
nice sets like orientable surfaces (they are not polynomially convex for homological
reasons). But quite often a complex tangency of a surface locally gives birth to small

holomorphic discs attached to it. Thus the very first global problem arises with totally
real orientable surfaces, namely tori.

Note that, in the definitions above, instead of polynomials we could as well work
with rational functions without poles on K. This gives rise to the notions of rational
hull and rational convexity. Again an obstruction to rational convexity is the presence
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of a compact Riemann surface C attached to K with the additional restriction that
dC bounds in K.

Here is a bit of history around our question. In 1985 Gromov [10] gave a positive
answer for Lagrangian tori, constructing holomorphic discs attached to them. In
1996 by the same method Alexander [1] exhibited for every totally real torus a proper
holomorphic disc with all its boundary except one point in the torus. Later on [2] he

gave examples of totally real tori without holomorphic discs with füll boundary in
them, but still admitting holomorphic annuli attached to them.

In the present work we focus1 on tori in the unit sphere S3 of C2. They are
unknotted if they are isotopic to the Standard torus in S3. We prove the following

Theorem. Let T be a totally real torus unknotted in S3. Then either T is rationally
convex and bounds a solid torus foliated by holomorphic discs in the unit ball B,
or its rational hull contains a holomorphic annulus or a pair of holomorphic discs
attached to T.

The solid torus is called a filling of T which is said in this case fillable. The
Standard torus is an example of the first Situation, while the second is illustrated by
the following

Example (compare with [2]). Consider the conjugate Hopf fibration

TT: S3 C C2 -> S2 C C x R, (z, w) i-> (2zw, \z\2 — \w\2).

Remark that the fibers of tt are circles. Denote by Ty the preimage by tt of an
embedded closed curve y in S2. Then Ty is an unknotted torus in S3, totally real

if the projection of y on C is immersed. Choose this projection as a figure eight
which avoids the origin. It follows (see [2]) that every compact Riemann surface
with boundary in Ty is in a über of the polynomial p(z,w) 2zw. But Ty does

not separate p~l{a) except if a is the double point of the figure eight. We then get
only one holomorphic annulus attached to T. If on the other hand the figure eight
intersects itself at the origin we get instead a pair of holomorphic discs attached to T.

The proof of the theorem relies on the technique of filling spheres by holomorphic
discs due to Bedford and Klingenberg [5] and Kruzhilin [12] (see also Eliashberg
[8]). This is where the restriction to S3 enters. The spheres come into the picture
as approximations of a lift of the torus in a suitable covering. More precisely take

a totally real unknotted torus T in S3. It divides S3 in two solid tori. In the same

manner its hull T separates the unit ball B in two pseudoconvex components. At least

one of them has a universal covering which unwinds the corresponding solid torus.
Push T slightly in this good component, building a sequence of tori Tn converging

1 following [13] which by the way seems uncorrect (see our example)
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toward T. We therefore get as a lift of Tn a periodic cylinder sitting in a pseudoconvex
boundary. Approximate it by a sphere Sn containing say 2n periods of the cylinder.

We are now in position to apply the technique of Alling. It provides a sequence
of balls bounded by Sn and foliated by holomorphic discs. Single out one of these

discs passing through the equator of Sn and call An its projection downstairs. The
alternative reads as follows: either the area of An remains bounded, or not.

In the former case (the rationally convex case) we check that the tori Tn are fillable
for large n, and that their Allings converge in some sense to a Alling of T. This relies

on Gromov compactness theorem.
In the latter (the non rationally convex case) we rather look at the limit of An in

terms of currents. Dehne U as the limit of the normalized currents of integration on
An. Then U is a positive current such that d U bounds in T. Therefore the support
of U is contained in the rational hull of T Moreover a dividing process of U shows

that it can be written as an integral of currents of integration over Riemann surfaces.

Finally we apply Ahlfors theory of covering surfaces to prove that these Riemann
surfaces are holomorphic discs or annuli.

Before entering the details of the proof, we collect some background. In the

sequel a limit of a sequence often occurs up to extracting a subsequence, even if not
explicitly mentioned. Pseudoconvex domains are also sometimes confused with their
closure.

1. Background

a) Filling spheres. Recall the central result of [12] (see also [5]).

Theorem. Let Q be a bounded strictly pseudoconvex domain in C2 and S a sphere
in 3 £2. Suppose that the complex tangencies of S are elliptic or hyperbolic points.
Then S bounds a unique ball H in £2 foliated by holomorphic discs.

This ball I] is called thq filling of S. The complex tangencies of S are the points
where S is tangent to a complex line. Being of elliptic or hyperbolic type (see [5], [12]
for the deAnition) is a generic condition. It can be achieved by a small perturbation
localized near the complex points.

The picture looks as follows. Take a sphere in R3 endowed with its height function,
which is Morse if the sphere is generic. Elliptic points correspond to local maxima
and minima of the height, while hyperbolic points translate in saddle points. By
Morse theory we have e — h 2 where e and h are respectively the number of
elliptic and hyperbolic points. The Alling corresponds to the ball bounded by the

sphere foliated by the level sets of the height. Therefore all the holomorphic discs

of the Alling are smooth up to the boundary except those touching a hyperbolic point
which have corners.
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Another way to describe the complex points of S is via its characteristicfoliation.
This is the foliation generated by the characteristic line field 7c 3 £2 H TS where

7c 3 £2 is the complex part of TdQ. It is Singular precisely at the complex points
of iS, elliptic points corresponding to foci and hyperbolic to saddle points. The
characteristic foliation gives a control on the discs of the filling, in the sense that their
boundaries are always transversal to it. This comes from Hopf lemma which asserts

that a holomorphic disc contained in £2 is transversal to 3 £2.

Here are further properties of the filling. First every compact Riemann surface
in £2 attached to S is contained in X. Next X is the envelope of holomorphy of
S. Hence X is contained in any pseudoconvex domain containing S. Finally if we
divide out the sphere S into two half spheres by an equator, at least one of them can
be partially filled in the sense of [8]: the surface swept by the boundaries of the discs

in X contained in the half sphere reaches the equator.
In the sequel we will apply this technique of filling to a sphere in 3 £2 where £2 is

the universal covering of a pseudoconvex domain £2 which is strictly pseudoconvex
where the sphere projects down. The reader can check that all the arguments of [5],
[12] apply mutatis mutandis.

b) Geometrie funetion theory. We will use the following facts concerning polyno-
mial convexity (see [15] for this paragraph). Let K be a compact set in S3 separating
the sphere in finitely many components, then its polynomial hull K divides B in the

same number of components. Moreover by Rossi local maximum principle these

components are pseudoconvex domains. We will also rely on the theorem by Alexander

describing the polynomial hull of a curve of finite length (with finitely many
components): it is a Riemann surface attached to the curve.

We move on to rational convexity. The rational hull r(K) of a compact set K
in C2 is geometrically defined as the set of points z such that any algebraic curve
passing through z meets K. If K C P where P is a rational polyhedron, then the

algebraic curves can be replaced by analytic curves in P. The usual obstruetion to
rational convexity is the presence of a compact Riemann surface with boundary in
K with the additional restriction that this boundary bounds in K. In our theorem
(second Situation) the holomorphic annulus or the pair of holomorphic discs will
satisfy this condition and therefore be part of r(T). As for the first Situation we have

the following

Lemma. Afillable totally real torus in S3 is rationally convex.

Proof. Call T the torus and 0 its filling. We first prove that 0 is rationally convex. By
Rossi local maximum principle and the Runge property of B it is enough to construct
through any point near 0 in the ball B an analytic curve in B (smooth up to S3)

avoiding 0. We produce them by stability of the filling of T (see [4] for a similar
Situation). Foliate a neighborhood of T in S3 by tori, then the Allings of these tori
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foliate a neighborhood of 0 in B. Therefore the corresponding holomorphic discs

fill out this neighborhood and avoid T if they are not in 0. At this stage r(T) C 0.
We now prove that r(T) T. According to the first Step 0 is a decreasing limit

of rational polyhedrons. It is then enough to construct through any point z of 0 \ T
an analytic curve in a neighborhood of 0 avoiding T. Take through z a real closed

curve in 0 \ T transversal to the holomorphic discs, parametrized by the unit circle.
Extend this parametrization as a smooth map / from a thin round annulus in such a

way that 3/ vanishes to infinite order along the unit circle. By solving an adequate
3-equation perturb now / into a holomorphic map. This map parametrizes a thin
holomorphic annulus still passing through z and intersecting 0 near the initial curve,
hence avoiding T.

Finally let us recall the analogue in terms of currents of the usual obstructions to
polynomial or rational convexity [7]. Let K a compact set in C2 and U a positive 1,1-

current with compact support. If supp(dU) C K then supp(C/) C K. If moreover
dU dV where V is a current supported by K, then supp(C/) C r(K).

c) Ahlfors currents. They are the local version of the currents built from an entire

curve in complex hyperbolicity. In our context a current U is an Ahlfors current
if U — fim^l, where [Aw] are currents of Integration over holomorphic discs

An of area an contained in B whose boundary sits mainly in S3. Precisely, one
has length(3A„ \ S3) o(an). Hence U is a positive 1,1-current with compact
support such that supp(d U) C SThe following lemma (compare with [6]) will be

important for the non rationally convex case.

Lemma. Let U be an Ahlfors current whose support is an analytic curve in B. Then
each irreducible component of this curve is a holomorphic disc or annulus.

Proof It relies on Ahlfors theory of covering surfaces [14] under the form of the

following

Isoperimetric inequality. Let E be a compact connected Riemann surface with
boundary, ofnegative Euler characteristic. Then there is a constant c such that for
any holomorphic disc f : D -> E we have area(/(Z))) < c length(/(3D) \ 3E).

Here area and length are computed by means of a given metric on E, taking into
account multiplicities.

As in [6] we proceed by contradiction. Let C be a component of the analytic
curve which is neither a disc nor an annulus. Then there exists a figure eight e in C
such that any component of C \ e meets 3C. In particular e is polynomially convex
[15]. We may suppose moreover that e avoids the singularities of C. Thickening e

slightly in C we get a disc with two holes E. Identify now a polynomially convex
neighborhood V of e to E x d where d is a small disc. Call tt the projection of V
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on E. Recall that the current U comes from a sequence of discs (An). Shrinking d a

bit we may suppose that length(A„ D {E x 3d)) o(an). This uses the fact that U \ v
does not Charge V \ E and the coarea formula. Now, as V is polynomially convex,
An fl V consists in a union of discs 8n by the maximum principle. By construction
the boundaries of 8n sit mainly in 3E x d We infer that area(7r(A„ D V)) o(an)
by applying the isoperimetric inequality to the maps 8n —> E and summing up.
This contradicts the fact that U charges E.

Remark. Suppose we have an annulus A among the components of the analytic
curve. Then the discs An approximating U satisfy the following additional property:
they cannot avoid (for large n) a fixed analytic curve C in B meeting A. Indeed

if not we could work out the previous argument in the complement of C, replacing
everywhere the polynomial convexity by the convexity with respect to the algebra M
of meromorphic functions in B with poles on C. We would find a M-convex figure
eight in the punctured annulus A\C and proceed as above to reach a contradiction.

We enter now the proof of the theorem.

2. The set up

Let T be an unknotted totally real torus T in S3. It divides S3 into two solid tori
cox (diffeomorphic to S1 x D2) and its polynomial hull T separates B into two
pseudoconvex domains containing cox in their closure (§1 b)).

Lemma. For one ofthese domains the map H\ (cox, Z) —H\(QX,Z) is injective.

Proof. If not, let yx be a generator of H\ (cox, Z). Note first that y\ and 72 are linked
in S3, and next that the linking number of two disjoint cycles in S3 can be computed
as the intersection number of the chains they bound in B. Now by assumption nx yx

bounds a chain in Qx for some integer nx. But and £22 being disjoint this shows

that n\y\ and /i2y2 (hence y\ and y2) are not linked in S3. Contradiction.
Let us call simply Q this good side and co the corresponding solid torus. We push

slightly T inside co, creating a sequence of tori Tn approximating T.
Consider the universal covering p: Q ^ Q. Because 7t\(co) 7ti(Q) is injective,

all the components of p~1(co) are diffeomorphic to 1 x Z)2. Fix one of them
and call it co. Then Tn lifts to a cylinder Tn (diffeomorphic tolxS1) inside co. Let

r be the automorphism of Q induced by the action of a generator of 7t\{co). It acts

on co as a translation on the factor R and Tn is invariant under this action.
Construct the sphere Sn approximating the cylinder Tn as follows. Pick a disc D

in co (diffeomorphic to * x D2). Its boundary is a meridian of T. Deform D slightly
in Dn with boundary in Tn. Choose a lift Dn of Dn in co. The curves x±n{dDn)
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bound an annulus An in Tn. The sphere Sn is obtained by smoothing the sphere
with corners r~n{Dn) U Än U rn{Dn). Note that the complex points of Sn can be
made generic after a perturbation localized near the caps r±n(Dn). By construction
Sn projects down to the interior of co where Q is strictly pseudoconvex. Hence the

technics of §1 a) apply. Denote by the Alling of Sn in Q. Now the equator 3Dn
divides Sn into two half spheres S„. At least one of them, say S~, has a partial
Alling. This means that we may Single out a disc An of touching the equator and

whose boundary is entirely contained in S~. Put An p{An).
The alternative reads as follows: either the area an of An remains bounded or not.

In the former case we will verify by Gromov compactness theorem that T is Allable.
This is the rationally convex case. In the latter we will consider the Ahlfors current
U lim By construction its support will be in the rational hull of T and, after
a detailed analysis, we will detect holomorphic annuli or discs in it. This is the non
rationally convex case.

In any case we need to control the boundary of An. We know by Hopf lemma that

TdAn is transversal on Tn to the characteristic line Aeld. Actually we have more.
Denote by con the solid torus bounded by Tn in co. Perturb the ball B in a new strictly
convex domain Bn by bumping slightly con out, keeping Tn still in 3Bn. Note that

by construction 3A„ C Bn, so An C Bn by the maximum principle. But tilting the

boundary of the domain along Tn translates in rotating the characteristic line Aeld on
Tn. We infer that T dAn avoids a füll cone Aeld on Tn bounded on one side by the

original characteristic line Aeld. As this can be done uniformly in n, we end up with
T(j)n (dAn nf„) avoiding a cone Aeld on T. Here (j)n is a diffeomorphism between Tn

and T close to identity. We may perturb slightly the characteristic line Aeld of T to
push it inside this cone Aeld, still keeping its name. We summarize this discussion by
saying that yn <pn (dAn D Tn) is uniformly transversal to the characteristic foliation
t? of T. This actually holds for any disc of 5V

It follows that the length ln of yn is controlled by an. For this construct a 1-

form ß on T whose kernel is the characteristic line Aeld and extend it to C2. Then
In < | JYii ß\ <\ fAn dß| + | fdAnnDn ß \ by the uniform transversality and Stokes
theorem. Here < Stands for an estimate up to a multiplicative constant. The Arst

integral on the right is controlled by an. The second one is bounded. Indeed note that
dAn bounds a disc Vn in Sf. Call Vn its projection downstairs. Then | fdA nD ß | <
fdDnnvn Iß + Id„nv„ \dß\ ~ length(i)D) + area(D) by Stokes theorem and the
closeness of Dn and Z). We end up with an estimate of the form ln < C(1 + an).

Conversely an is controlled by ln in the same way. Indeed recall that an — fA co

where co is the Standard Kähler form of C2. Write X for a primitive of co. Then

ün ~ IdAn ^ ~ ^ + fdAnnDn ^ ^ Stokes theorem and, as before, the last integral
is bounded.
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The rationally convex case

In this case an remains bounded, and so is ln.
We first check that Tn is fillable. By assumption 3 An remains at bounded distance

of the equator of Sn. This means that An is attached to both Sn and r_1 (Sn), hence

belongs to their Allings (§1 a)). In other words both An and r(An) are part of
The discs of interpolating between them project down to the desired filling

@n of Tn. Note that all the discs A'n of Qn have bounded area. Indeed we have

/a' 00
— fAn 00 + frn M ~ an + area(T) by Stokes theorem.

We want now to prove that T is fillable as well. We rely on Gromov compactness
theorem [10] (see also [11]). In our context it reads as follows: given a disc A'n

in 0„, then the sequence (A^) converges (after extracting a subsequence) toward a

finite bunch (with multiplicities) of holomorphic discs A' attached to T. These discs

do not present self-intersections or mutual intersections in the interior of B. This
relies on two facts: intersections of distinct holomorphic curves persist under local
deformation, and the convergence does not show accidents inside the ball. Actually an
accident means an annulus component of A'n in a fixed small ball converging toward
a pair of two discs (its modulus blows up). But all such local components are discs

by the maximum principle. Moreover the discs A', if simple, are embedded inside B
by a knot-theoretic argument [5]. We want to build the filling of T out of these limit
discs. The problem is to exhibit sufficiently many such discs, embedded and disjoint
in the closed ball. The difficulty takes place at their boundaries. We focus on them.

For a sequence (A^) as above call T' U3A' the boundary of its limit. By
Hopf lemma it is a finite union of immersed curves (with multiplicities). Denote

by Sing(T/) the set of multiple points of i.e. its geometric singularities and its

multiple components. Similarly put T for the boundary of the limit of the original
sequence (An) (after the sameextraction). Our first Observation is that Sing(T/) C T.
Indeed locally at least two Strands of 3 A'n converge at a given point of Sing(T/): if ot

is a short piece of the characteristic leaf through this point, it meets (j)n (ßA'n) at least
twice. Here again (j)n is a diffeomorphism between Tn and T close to identity. In
other words a runs from one boundary to the other in the cylinder obtained from T by
cutting out (/)n(dAfn). As 4>n{dAn) is parallel to these boundaries it always intersects

a, and so does T. Shrinking a to the initial point concludes.

In particular at each point q e Tf\T the convergence of (Afn) is good: there exists

a unique simple disc A' through q in the limit such that A'n converges toward A' near

q. Our second Observation is that this disc does not really depend on (Afn). If we
consider another similar sequence (A^) converging after the same extraction, such

that q £ (T'n T") \ T, then Ar A". Indeed ifnot, Ar and A" would be distinct. But
intersections of distinct holomorphic discs attached to a totally real surface and on the

same side of a strictly pseudoconvex boundary persist under local deformation. This

can be seen by reflecting the discs through the surface to get (pseudo)holomorphic
curves in a neighborhood of q and using the positivity of their intersections [16].
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Therefore A'n and A„ would still intersect, contradicting their being part of the same

Alling &n.
According to our previous discussion we focus on T* T \ T where all the

convergences are good. Pick a countable set Q dense in T*. Denote by An^q the disc

of &n passing through (j)~l (q) for q e Q. By extracting once more we may suppose
that all sequences {An^q) converge in Gromov sense. Hence there exists a unique
simple disc Aq through q in lim^oo An^q. We want to extend this construction to
T*.

Pick a point p in T*. Then the component through p of lim^-^ Aq (in Gromov
sense) is well defined. Indeed any component through p in lim^^ Aq appears also as

a limit of discs in &n: consider discs of the form AnkM for some sequence q£ going
to p and nk rapidly growing. Therefore by the observations above this component
is unique and does not depend on any choice. We get a distribution of holomorphic
discs Ap (p e T*) whose boundaries are embedded and disjoint (if distinct) in T*.
It turns out that the same holds in the whole T.

Lemma. The curves 3Ap are embedded and disjoint {ifdistinct).

Proofi We proceed by contradiction. Pick an intersection point s (necessarily in T)
of two different local branches y\ y" of such curves. Note that y' U y" cuts out four
components in T near s, two of which avoiding the characteristic leaf through s. Call
C the union of these two components and put C* C \ T. Now for all p in C*
the curve dAp is canalized by y' and y" through s. Thus we get a whole family of
holomorphic discs Ap attached to T with a common point. On the other hand by the

maximum principle these discs sit in T and even in 3 T as limits of discs in &n C Q.
This will be the contradiction.

Let us make this precise. Recall first that we may associate to an immersed
holomorphic disc A attached to T an even integer, its Maslov index p{A) (see [3] for
background). This index is related to the dimension of the manifold of the holomorphic

discs close to A and attached to T. If p{A) < 0 this manifold is of dimension
0: A does not have any deformation attached to T. If p{A) > 0 it is of positive
dimension p{A) — 1. Moreover if p{A) 2 we get a small 1 -parameter family of
nearby locally disjoint discs attached to T. In particular they cannot pass through a

common point. On the other hand if p{A) > 2 the (at least) 3-parameter family of
nearby discs attached to T fills out a whole neighborhood of A in B. This forbids
A to be in dT. To conclude it remains to exhibit a genuine deformation among the

family A^ passing through s.
What we know already is that Ap is the unique component through p in lim^^ Aq

for p in C*. We would like to really have lim^^ Aq Ap. This will be at least
the case for Ap big enough. For this recall that any holomorphic disc attached to T
cannot be too small. This relies for instance on the existence of a basis of strictly
pseudoconvex neighborhoods of T. Then according to Lelong theorem the area of
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such a disc is bounded from below by some positive constant, say 2c. Now pick p
in C* such that area(A^) > supc* area(A^) — c. As the area is preserved under the

convergence in Gromov sense, we infer that there is no other component but A^ in

lim^^p Aq. This concludes.

At this stage we do have a whole smooth family of disjoint embedded holomorphic
discs attached to T whose boundaries sweep out at least T*. To achieve the Alling it
remains to close this family up on T. This goes along the same lines as before. The
main point is that if p is in T then lim^^ Aq does not present singularities. If it did,
as in the lirst Observation above, all the discs Aq would pass through this Singular
point, contradicting the lemma. We leave the details to the reader.

The non rationally convex case

In this case an blows up. We want to prove that there exists a Riemann surface

(holomorphic annulus or pair of holomorphic discs) attached to T and part of its
rational hull. We look at the limit of An in terms of currents. Consider the
normalized current of integration on An. We get a sequence of positive currents of
mass 1 supported in the unit ball. Up to extracting it converges toward an Ahlfors
current U. Recall that 3 An dVn where Vn is the projection of the disc Vn bounded

by 3A„ in Sn. Note that an is comparable to ln (§2) and so to the maximal number

of sheets of Vn over Tn. Hence converges toward a current V supported on T

such that dV — dU. Therefore supp(U) C r(T) (§1 b)). We have dU — lim ^where yn cpn(dAn D Tn) (§2). As an blows up we may even neglect parts of
yn of bounded length in this limit. To exhibit Riemann surfaces in r(T) we further
investigate the current U. We focus lirst on its boundary.

a)Describingrf[/. We will prove an integral formula of the form d U f^[y]dp(y).
Here ^ is a compact space of Lipschitz curves in T and p a positive measure on it,
supported on closed curves.

This requires an extra discussion of the characteristic foliation U. By Denjoy
theorem [9] any smooth foliation on T can be perturbed in order to get only a finite
number of attracting or repulsive cycles (closed leaves). We may suppose that this
holds true for U as we already perturbed it (§2).

Call c such a characteristic cycle. Observe that the lifts of <pül(c) cannot be
closed in Tn. If it were the case such a lift would divide Sn out into two half spheres,

one of which partially fillable We would thus get a contact between this lift and the

boundary of a disc of the filling contradicting the uniform transversality. Hence

p~l {(j)~l (c)) consists in finitely many periodic curves invariant by a power xq of r.
It follows that the number of intersection points between yn and c is bounded.

Indeed each lift of 0"1 (c) cuts at most once 3 An by transversality and because 3 An
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separates Sn. Consider now thin tubes along the cycles in T. They divide T in a finite
number of annuli. By uniform transversality yn cuts the tubes in a bounded number
of short arcs. We may neglect them for the computation of d U. Hence the relevant

part of yn consists in a bounded number of long arcs contained in the annuli.

The crucial Observation is that these arcs are embedded (up to Splitting them into
two pieces). To prove this we further analyse the Situation upstairs. Call Bn the
ball bounded by the sphere Sn in co and Qn the pseudoconvex domain bounded by
Bn U Tin in £2. Then xq{S~) C Qn for large n. This is where the choice of a half
sphere enters. Hence its partial filling, as part of its envelope of holomorphy (§1 a)),
must also be contained in Qn. To be fully correct this argument requires to push
slightly Sn off Bn in a new sphere Sfn C 33, verify that the partial filling of xq{S~)
is contained in the corresponding pseudoconvex domain Q'n and deform back Sfn to
Sn. In particular we get that xq{An) C Qn. Hence xq{An) remains always on the

same side of Ew, meaning that xq{dAn) crosses dAn always in the same direction
(say entering Vn). Look now at a given lift of 4>~l (A) in Tn where A is one of the
aforementioned annuli. This is a strip invariant by xq. It can be parametrized by
R x [0,1] via a diffeomorphism sending the vertical foliation to the characteristic

one, xq corresponding to the translation by 1. By transversality any component of
3An in the strip is a graph (via the diffeomorphism) with, say, Vn above it. Thus the

component and its image by xq intersect at most once as the latter crosses the former
always bottom up. This allows us to cut the component into two pieces, each of them

disjoint from its image by xq. Therefore these pieces project down to embedded

arcs.

According to this discussion dU is a finite sum of currents of the form lim
an

where an is an embedded are sitting in an annulus A. We are now in position to prove
the integral formula for each such limit. Via the parametrization of the corresponding
strip and thanks to the uniform transversality, an splits up into a union of graphs
of functions from [0,1] to [0,1] which are uniformly Lipschitz. Denote by & the

compact space of graphs y of functions g: [0,1] -> [0,1] such that Lip(g) < C
(for some large C). We have f^[y]d/in(y) where fin is a positive measure
with finite support and bounded mass on Up to extracting ßn converges toward
a positive measure /x on We infer that lim f^[y]d/i(y). Moreover the

support of fi consists in closed curves (graphs of functions g such that g(0) g(l)).
Indeed if the graph of g is in supp(/x) then it is certainly the limit of at least two
successive graphs (of say gn and hn) of an (an blows up). As gn{1) hn{0) we get
g(0) g(l) in the limit.

b) Describing U. We will prove now an integral formula of the form
U f<p Wdv(W). Here 3* is the compact space of positive currents of mass 1

supported in the unit ball and v is a probability measure on it. The point is that

supp(v) consists only in normalized currents of integration on holomorphic discs or
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annuli attached to T (or finite sums of them). This formula comes from a division

process.
We show first that U can be split up into a sum of four positive currents W

of mass at most These currents will be proportional to Ahlfors currents limit
of pieces of An. Precisely W lim ^ where 8n C An, area(<5„) < and

length(3<5„ \ 3A„) o(an). In addition we want 38n D 3A„ connected.

For this, parametrize An by the unit disc via a holomorphic map fn: D -> B
such that the images by fn of the four half discs cut out in D by R or i R have the same

area Denote by X the cross (R D D) U (7R D D). According to the next lemma,

we may pick a generic angle 6 close to j such that length(fn(el°X)) o(an).
The rotated cross el°X divides D out in four quarter discs d. Put 8n fn(d) and

W lim The currents W have all the desired properties. Here is the precise
Statement we used.

Lemma. Let fn: D -> B be a sequence of holomorphic discs (piecewise) smooth

up to 3D. Put an area(fn(D)), ln(ß) length(/w([0, el0])) and suppose that an
blows up. Then ln(ß) o(an)for almost all 6 (up to extracting a subsequence).

Proofi We have ln(ß) /„ || f^(re'e)\\dr < / + fi/2 \\f^(reie)\\dr for some

constant / as || || is uniformly bounded in the disc of radius On the other hand,

let an(9) be the area of the image by fn of the sector between [0,1] and [0, el

Then ^jß-(0) /J \\f„(reie)\\2rdr. By Cauchy-Schwarz inequality (ln(6))2 <
212 + 21n(2)^-(0). Integrating, we get f^71 (ln(6))2d6 < 4nl2 + 21n(2)an, so

lim/027r 0. By Fatou's lemma/02?r lim inf(^P)2(i0 0, which
concludes.

Iterating this process we may write U as a sum of 4k positive currents of mass

at most 2~k proportional to Ahlfors currents Coming from (An). Hence U

fpWdvk(W) where vk is aprobability measure supported on these Ahlfors currents.

By compactness of 3* we may suppose that (v^) converges toward a probability measure

v on P and we get our integral formula U fp Wdv(W). Take now a current
W in the support of v. By construction W is an Ahlfors current as a limit of Ahlfors
currents. We will see below that d W is supported on a curve y C T of finite length
(with finitely many components). Hence supp(lF) C y which by Alexander theorem
(§1 b)) is a Riemann surface. By §1 c) we conclude that W is actually supported in
a finite union of holomorphic discs or annuli attached to T.

Let us describe dW. By construction W lim —w(ku/ where Wc limJ mass(W>) K an

with 8n,k c A„, area(5W)yt) < 2~kan, length(95„)fc \ 9A„) o(an) and d8n,k n 9A„
connected. We use the notations of the previous paragraph. Recall that we had singled
out an annulus A outside thin tubes of the characteristic cycles in T and an arc an
of yn embedded in A. So 38n^ D 3A„ gives rise to a subarc an^ of an. We check
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now that lim is supported in a set converging to a curve of finite length (with
at most two components). This will conclude as dW is a finite sum of such limits.

Indeed an^ is built out of graphs in i/ and we have lim [y]dßk (y) for
a positive measure /x^ < /xon^. Note that we have a partial order on £ given by
a < ß if the corresponding functions satisfy a < b. We may speak of intervals [a, ß]
or ]a, ß[= [a, ß] \ {a, ß}. This order is total on the graphs appearing in an^ (an is

embedded). Denote by rjn^ and Xn^ the lowest and the highest of these graphs By
compactness of i/ we may suppose that r]n,k^n,k converge to r]k,Xk, and that r]k^k
converge to rj,X. By construction supp(/x^) C [rjk,Xk] and, moreover, /x^ /x on

]rjk,Xk[. As the mass of /x^ goes to 0, it follows that /x does not Charge ]rj, X[. Hence

supp{fjik) C [77/^, A/^]\]77, A[ which goes to {rj, X}. This concludes.

c) End of the argument. At this stage we do have compact Riemann surfaces

(holomorphic discs or annuli) attached to T and contained in r{T). We want more.
We are looking for a compact Riemann surface C (holomorphic annulus or a pair of
holomorphic discs) such that dC bounds in T. Here is how we proceed.

Choose a common orientation of the characteristic cycles. Note that the bound-
aries of our Riemann surfaces are parallel to these cycles. They also inherit a natural
orientation from the Riemann surface. We speak of a positive boundary if the two
orientations agree, or negative ifnot. Call positive (negative) an annulus or a disc with
only positive (negative) boundaries, and opposite an annulus or a pair of discs with
opposite boundaries. We are looking for an opposite annulus or a pair of opposite
discs among our Riemann surfaces. Suppose we do not have any.

Recall that d U bounds in T. This implies that our Riemann surfaces cannot be all

positive, or all negative. We have three possibilities left: either the presence among
them of a positive annulus and a negative annulus, or of a positive annulus and a

negative disc, or the converse. By symmetry we may suppose that we have a positive
annulus A+ and a negative Riemann surface (annulus or disc) C~. Observe now that
two disjoint closed curves in T parallel to the characteristic cycles are necessarily
linked in S3. This can be checked for any pair of disjoint curves in the Standard torus,
as soon as they are not meridians (i.e. do not bound a disc in the complement of the
Standard torus).

Hence the boundaries of A+ and C~ are linked. This implies that A+ and C~
intersect inside the unit ball. But by construction A+ is contained in the support of an

Ahlfors current Coming from (An). As A+ intersects C~, before the limit An would
have to intersect C~ (§1 c)). This is impossible as C~ C T and A„C^.

References

[1] H. Alexander, Gromov's method and Bennequin's problem. Invent. Math. 125 (1996),
135-148. Zbl 0853.32003 MR 1389963



312 J. Duval and D. Gayet CMH

[2] H. Alexander, Disks with boundaries in totally real and Lagrangian manifolds. Duke Math.
J. 100 (1999), 131-138. Zbl 0953.32026 MR 1714757

[3] M. Audin and J. Lafontaine (ed.), Holomorphic curves in symplectic geometry Prog. Math.
117, Birkhäuser, Basel 1994. Zbl 0802.53001 MR 1274924

[4] E. Bedford, Stability of the polynomial hull of T2 .Ann. Scuola Norm. Sup. Pisa 8 (1981),
311-315 Zbl 0472.32012 MR 0623939

[5] E. Bedford and W. Klingenberg, On the envelope of holomorphy of a 2-sphere in C2.
J. Amer. Math. Soc. 4 (1991), 623-646. Zbl 0736.32009 MR 1094437

[6] J. Duval, Singularites des courants d'Ahlfors. Ann. Sei. Ecole Norm. Sup. 39 (2006),
527-533. Zbl 1243.32012 MR 2265678

[7] J. Duval and N. Sibony, Polynomial convexity, rational convexity, and currents. Duke Math.
J. 79 (1995), 487-513. Zbl 0838.32006 MR 1344768

[8] Y. Eliashberg, Filling by holomorphic dises and its applications. In Geometry oflow di-
mensional manifolds, London Math. Soc. Lecture Note Ser. 151, Cambridge University
Press, Cambridge 1990, 45-67. Zbl 0731.53036 MR 1171908

[9] C. Godbillon, Dynamical Systems on surfaces. Universitext, Springer, Berlin 1983.

Zbl 0502.58002 MR 0681119

[10] M. Gromov, Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82 (1985),
307-347. Zbl 0592.53025 MR 0809718

[11] S. Ivashkovich and Y. Shevchishin, Reflection principle and /-complex curves with
boundary on totally real immersions. Commun. Contemp. Math. 14 (2002), 65-106.
Zbl 1025.32024 MR 1890078

[12] N. G. Kruzhilin, Two-dimensional spheres on the boundaries of pseudoconvex domains in
C2. Math. USSR-Izv. 39 (1992), 1151-1187. Zbl 0778.32003 MR 1152210

[13] N. G. Kruzhilin, Holomorphic disks with boundaries in totally real tori in C 2. Math. Notes
56 (1994), 1244-1248. Zbl 0842.32011 MR 1330599

[14] R. Nevanlinna, Analytic funetions. Grundlehren Math. Wiss. 162, Springer, Berlin 1970.
Zbl 0199.12501 MR 0279280

[15] E. L. Stout, Polynomial convexity. Prog. Math. 261, Birkhäuser, Boston 2007.
Zbl 1124.32007 MR 2305474

[16] R. Ye, Filling by holomorphic curves in symplectic 4-manifolds. Trans. Amer. Math. Soc.

350 (1998), 213-250. Zbl 0936.53047 MR 1422913

Received November 18, 2011

Julien Duval, Laboratoire de Mathematiques, Universite Paris-Sud, 91405 Orsay cedex,
France

E-mail: julien.duval@math.u-psud.fr

Damien Gayet, Institut Camille Jordan, Universite Claude Bernard, 69622 Villeurbanne
cedex, France

E-mail: gayet@math.univ-lyonl.fr



Comment. Math. Helv. 89 (2014), 313-341
DOI 10.4171/CMH/321

Commentarii Mathematici Helvetici
© Swiss Mathematical Society

On the values of G -functions

Stephane Fischler and Tanguy Rivoal

Ä la memoire de Philippe Flajolet

Abstract. In this paper we study the set G of values at algebraic points of analytic continuations
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multiple zeta values, and values at algebraic points of generalized hypergeometric functions

p+iFp with rational coefficients. Its group of units contains non-zero algebraic numbers, tt,
T(a/h)b and B(x, y) (with a,h e Z such that a/b ^ Z, and x, y e Q such that B(x, y) exists
and is non-zero). We prove that for any £ e G, both Re£ and Im£ can be written as /(1),
where / is a G-function with rational coefficients of which the radius of convergence can be

made arbitrarily large. As an application, we prove that quotients of elements of G D M are

exactly the numbers which can be written as limits of sequences an /bn, where Y^=o an Z'1 and
bn2*1 are G-functions with rational coefficients. This result provides a general setting

for irrationality proofs in the style of Apery for £ (3), and gives answers to questions asked by
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1. Introduction

The purpose of this text is to study the set of values of G-functions at algebraic numbers.

Let us recall the following definition, which essentially goes back to Siegel [30].

Definition 1. A G-function / is a formal power series f(z) Y^=oanzn suchthat
the coefficients an are algebraic numbers and there exists C > 0 such that:

(i) the maximum of the moduli of the conjugates of an is < Cn+1.

(ii) there exists a sequence of integers dn, with \dn \ < Cn+1, such that dnam is an

algebraic integer for all m < n.
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(iii) /(z) satisfies a homogeneous linear differential equation with coefficients in
Q(z).1

Throughout this paper we fix an embedding of Q into C; all algebraic numbers
and all convergent series are considered in C.

G-functions occur frequently in analysis, number theory, geometry and physics:
for example, algebraic functions over Q(z) which are holomorphic at 0, polyloga-
rithms, Gauss' hypergeometric function with rational parameters, are G-functions.
The exponential function is not a G-function but an E'-function (that is, it satisfies the

requirements of Definition 1 if an is replaced with an/n! in the expansion of /(z)).
In Definition 1, condition (i) ensures that any non-polynomial G-function has

finite non-zero radius of convergence at z 0. Condition (iii) implies that in fact
the coefficients an,n > 0, all belong to a same number field. Classical references on
G-functions are the books [1] and [17].

Siegel's goal was to find conditions ensuring that E and G-functions take irrational
or transcendental values at algebraic points: the picture is very well understood for
E'-functions but largely unknown for G-functions. The main tool to study the nature
of values of G-functions is inexplicit Pade-type approximation (see [3], [12], [14],
[22]). In an explicit form, Pade approximation is also behind Apery's celebrated

proof [7] of the irrationality of £(3), and similar results in specific cases (see for
instance [9], [19]).

In this paper, we study the following set.

Definition 2. Let G denote the set of all values /(a), where / is a G-function and

a e Q. More precisely, all values at a of analytic continuations of / are considered,
as soon as they are finite.

This subset of C is a subring (this can be seen as a consequence of Theorem 1

below). It contains Q, and also (see §2.2 for proofs) multiple zeta values, elliptic
integrals, and values at algebraic points of generalized hypergeometric functions

p+\Fp with rational coefficients. Andre proved in [1], p. 123, that the units of the

ring of G-functions are exactly the algebraic functions which are holomorphic and

don't vanish at the origin. The description of the units of G is an interesting open
problem whose Solution is not as simple as for functions, for we show in §2.2 that
the group of units of G contains not only the non-zero algebraic numbers but also tt,
the values of the Gamma function T{a/b)b and that of Euler's Beta function B{x, y)
(with a,b e Z such that a/b $ Z, and x,y e Q such that B(x,y) exists and is

non-zero). On the other hand, there is no explicit interesting number for which we

XA11 differential equations considered in this text are homogeneous and consequently we will no longer
mention the term "homogeneous".
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are able to prove that it is not in G;2 it is likely that e, Euler's constant y, F(a/b)
(with a, b integers such that a/b $ Z) or Liouville numbers do not belong to G.

A conjecture of Bombieri and Dwork predicts a strong relationship between dif-
ferential equations satisfied by G-functions and Picard-Fuchs equations satisfied by
periods of families of algebraic varieties defined over Q. See the precise formulation
given by Andre in [1], p. 7, who proved half of the conjecture in [1], pp. 110-111.
Christol [13] also conjectured that globally bounded G-functions are diagonals of
rational functions, which are known to satisfy Picard-Fuchs equations. This raises

the question of a connection between the set G and the set P of periods considered

by Kontsevich and Zagier [26]; all elements of P we have thought of belong also to
G. However 1/tt is conjectured not to belong to P, so that G is presumably distinct
from P. However, a natural problem is the determination of the link between G and

P[l/jt] (see the discussion at the end of § 2.2).

Our main result is the following.

Theorem 1. A complex number £ belongs to G if, and only if, its real and imaginary
parts can be written as /(1), where f is a G-function with rational coefficients of
which the radius of convergence can be made arbitrarily large.

One of the consequences of this theorem is that the set of values of G-functions

o anzU an G Q at points z e Q inside the disk of convergence (respectively
at points where this series is absolutely convergent, respectively convergent) is equal
to G n M.

The main tool in the proof of Theorem 1 is Andre-Chudnovski-Katz's theorem
(stated as Theorem 6 in §4.1 below), which provides for any G-function / and any
£ e Q a local basis (gi,..., gß) of Solutions around £ of a minimal differential
equation satisfied by /. Expanding an analytic continuation of / in this basis yields
connection constants m\,..., wß E C such that f(z) mj 8j (z)- As a steP

towards Theorem 1, we prove the following result which is of independent interest:

Theorem 2. The connection constants m\,..., tuß belong to G.

We would like to emphasize that analytic continuation (and its properties en-

compassed in Andre-Chudnovski-Katz's theorem) is the main tool in our approach.
As the referee pointed out to us, it would be interesting to find a connection with
other methods used in similar contexts, including Debes-Zannier's [15] or Euler's
for accelerating convergent series; however we did not find any. For instance, Euler's
binomial transform E«>0(—1)"«« E«>o is involu-
tive and therefore it cannot be used to obtain series with arbitrarily large radius of
convergence.

2Since the set G is countable, there are complex numbers outside G but the real difßculty is to exhibit such a

number by an effective process leading to an analytic expression like a series or an integral for example.



316 S. Fischler and T. Rivoal CMH

As an application of Theorem 1, we answer questions asked in [28], p. 351,
where the second author introduced the notion of rational G-approximations to a

real number. This corresponds to assertion (ii) in the next result, which provides a

characterization of numbers admitting rational G-approximations.
Given a subring A of C, we denote by Frac(A) the field of fractions of A, namely

the subfield of C consisting in all elements £/£' with £, £' G A, ^ / 0.

Theorem 3. Let ^ Gl*. Thefollowing Statements are equivalent:

(i) We have £ e Frac(G) D R Frac(G PI R).

(ii) There exist two sequences (an)n>o and (bn)n>o of rational numbers such that
the series anzn and YlnLo ^nzU are G-functions, bn ^ 0 for any n large
enough and lim/7^+00 an /bn

(iii) For any R > 1 there exist two G-functions A(z) anzn and B(z)
bnzn, with rational coefßcients and radius ofconvergence 1, such that

A(z) — £B(z) has radius ofconvergence > R.

Remark. When £ e G, we can take hn — 1 in (ii). However, it is not clear to us

if this is also the case for other elements £ e Frac(G), in particular because it is

doubtful that G itself is a field.

Apery has proved [7] that £(3) $ Q by constructing sequences (an)n>0 and

(bn)n>o essentially as in (iii), such that bn e Z and lcm(l, 2,..., n)3an e Z. Since

£(3) Li3(l) (where the polylogarithms defined by Liy(z) Yln^i 7FzU> s —

are G-functions), we have £(3) e G. Theorem 3 provides a general setting for such

irrationality proofs and one may wonder if, given a real irrational number £ e Frac (G),
there exists a proof a laApery that £ is irrational. In particular, this would be a strategy
to prove the following conjecture (see §7.2 below):

Conjecture 1. No £ e Frac(G) can be a Liouville number.

Our approach does not yield (at least for now) any actual result towards this
conjecture, because the denominators of the coefficients of the G-functions we construct

grow too fast. It would be interesting to control them in some way.

The paper is organized as follows. We introduce some notation in §2.1, and State

slight generalizations of Theorems 1 and 3, namely Theorems 4 and 5. We prove in
§2.2 that the numbers mentioned above actually belong to G. Then we Start proving
Theorems 4 and 5 by gathering some lemmas in §§2.3 and 2.4. In §3, we prove that
the conclusion of Theorem 1 holds for algebraic numbers and their logarithms. In §4,

we review some classical results concerning the properties of differential equations
satisfied by G-functions (namely Theorem 6, due to Andre, Chudnovski and Katz).
We also prove in this section that connection constants belong to G, and the conclusion
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of Theorem 1 holds for them (see Theorem 7). This result, along with the analytic
continuation properties of G-functions deduced from Theorem 6, is used to prove
Theorem 4 in §5. In §6, we present the proof of Theorem 5: the main tool is the
results of Singularity Analysis due to Flajolet and Odlyzko [21], described in details
in the book [20]. Finally, we mention in §7 a few problems suggested by our results:
what can be said about the case of E'-functions and about Diophantine perspectives.

Acknowledgements. We warmly thank Yves Andre, Daniel Bertrand, Frits Beukers,
Gilles Christol, Julien Roques and Michel Waldschmidt for their constructive remarks.
We are also indebted to the referee for his pertinent comments that helped us to
improve this work, in particular those we present in §7.1. Both authors have been

supported by the project HAMOT (ref. ANR 2010-BLAN-0115), and the second
author partially by the project Q-DIFF (ref. ANR 2010-JCJC-010501), of the Agence
Nationale de la Recherche.

2. Background of the proofs

2.1. Notation and results. In this section we introduce some notation that will
be used throughout this text. We also State Theorems 4 and 5, which are slight
generalizations of Theorems 1 and 3 respectively.

The letter K will always stand for a (finite or infinite) algebraic extension of Q,
embedded into QcC.

Definition 3. Given an algebraic extension K of Q, we denote by Gj^c' the set of
all values, at points in K, of multivalued analytic continuations of G-functions with
Taylor coefficients at 0 in K.

For any G-function / with coefficients in K and any aGK, we consider all values

of /(a) obtained by analytic continuation, as in the definition ofG in the introduction;
obviously G G^c*. If a is a singularity of /, then we consider also these values

if they are finite. Of course /(az) is also a G-function with coefficients in K so that

we may restrict ourselves to values at the point 1. By Abel's theorem, Gj^c' contains
all convergent series YlnLo an®n where f(z) Y^=oanzn *s a G-function with
coefficients in K and a e K.

Definition 4. Given an algebraic extension K of Q, we denote by G^ the set of all
£ e C such that, for any R > 1, there exists a G-function / with Taylor coefficients
at 0 in K and radius of convergence > R such that £ /(1).

For any R > 1, we denote by G^K the set of all £ /(1) where / is a G-
function with Taylor coefficients at 0 in K and radius of convergence > R. In this

way we have f)i?>i gr,K' and also Gr.k c gI°' for anY > 1-
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With this notation, Theorem 1 reads G^c' Gq + i Gq Aetually
we prove that Gj^c' is independent from K, so that it is always equal to G G^c\
Concerning G^, there is an obvious remark: ifl C 1 then G^ C R. Apart from
this, G^ is independent from K, and equal (up to taking real parts) to G. Our result
reads as follows.

Theorem 4. Let K be an algebraic extension of Q. Then:

• We have G|c- G G^ + iG%.

• // K (f R then Gj£ G G^ + iGg; ifK C R then Gj£ G n R Gq.

In partieular this result eontains the fact that Q D R C Gq and Q C Gq + i G^;
this will be proved in §3.1. Another consequence of this theorem is that the set of
values of G-functions anzH with an £ K at points z e K inside the disk
of convergence (respectively at points where this series is absolutely convergent,
respectively convergent) is equal to G^ (so that it is equal to either G or G PI R).

We also generalize Theorem 3 as follows.

Theorem 5. Let K be an algebraic extension of Q, and £ E C*. Then thefollowing
Statements are equivalent:

(i) We have £ e Frac(G^v).

(ii) There exist two sequences (an)n>o and (bn)n>o of elements of K such that
^2^=0 ein?*1 and YlnLo bn2*1 are G-functions, bn ^ 0 for infinitely many n and

an -%bn o(bn).

(iii) For any R > 1 there exist two G-functions A(z) anzn and B(z)
bnzTl> with coefficients an,bn £ K and radius of convergence 1, such

that A(z) — £B(z) has radius of convergence > R and an,bn ^ 0 for any n

sufficiently large.

When K Q, this is a refinement of Theorem 3 because assumption (ii) of
Theorem 3 implies assumption (ii) of Theorem 5, and (iii) of Theorem 5 implies (iii)
of Theorem 3 (see also Lemma 2 below). The point in assertion (ii) of Theorem 5 is

that bn may vanish for infinitely many n\ by asking an — %bn o(bn) we require
that an 0 as soon as bn 0 and n is sufficiently large.

2.2. Examples and connection to periods. In this section, we prove that the num-
bers mentioned in the introduetion belong to G, and give some hints on the connection
with periods. This section is independent from the rest of the paper, except that we
assume here that G is a ring.
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Many examples of G-functions are provided by the generalized hypergeometric
series

(al)n(a2)n • • • (ak)n

n—o
(X)n(ßl)n • • • (ßk-l)n

with rational coefficients ar's and /3's, and (x)n x(x + 1)... (x + n — 1). Special
casesarethepolylogarithmicfunctionsLi^(z) ^2n>1 (k > 1) and arctan(z)

^2n>o(~^n 2n+i- deduce in particular that tt 4arctan(l) and the values of
the Riemann zeta function £(£) Li^(l) are in G for any integer k > 2. Catalan's

constant J2n>o (2Ä+1)2 *s a^so *n

Other examples of G-functions are the multiple polylogarithms

k \ k e

ni>->ns>lnl '"ns
where the k's are positive integers. This is a consequence of the fact that for s 1,

we have a polylogarithm from which we obtain the multiple series by a succession

of integrations and multiplications by 1/z or 1/(1 — z); this process does not leave
the set of G-functions. As a consequence, multiple zeta values £(&i,..., ks)

E»1 >...>«,> 1 fc/ ks (with kl >2) are in G.
n\ ...ns

It could seem more surprising that 1 /tt is also in G, a fact proved by each one of
the following identities:

i A O2 i ^(2;)3(42» + 5)

tt ^ (1 — 2n)2An+l' tt ^ 2l2n+A
n=0v 7 n =0

The first identity is a direct translation of the identity £"(1) 1 where E(k)

fo yj^ *s Legendre's complete elliptic function of the second kind. The

second identity is due to Ramanujan and it also has an elliptic interpretation. Both
series are in fact values of generalized hypergeometric series, hence l/ir eG.

In particular, tt and the non-zero algebraic numbers are units of G. These numbers
do not span the whole group of units, as we now proeeed to prove. Euler's Beta
function is defined by

B(x, y) f
J0

for Re(x), Re(y) > 0. It is well-known that B(x, y) r^+^y), which provides the

meromorphic continuation of B to C2; we recall that tt B(^, ^).

Proposition 1. (i) For all rational numbers x, y such that B(x,y) is defined and

non-zero, the number B{x, y) is a unit of G.
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(ii) For any integers a,b > 1, we have

.7 1

and r(f) is a unit ofG.

Remark. a) To sum up, the group of units of G contains the algebraic numbers and

the numbers B{x, y) where x, y e Q (as soon as they are defined and non-zero). We

don't know if this provides a complete list of generators of this group.
b) Chudnovski proved in 1974 that T (1/3), respectively T (1/4), and tt are alge-

braically independent over Q. Hence one needs other transcendental generators than

tt in the group of units of G.

c) This proposition is a transposition in our context of a discussion in Andre's
book [6], pp. 211-212, where he shows that the numbers T(a/b)b are periods (in the

geometric sense).

Proof (i) We first show that B(x,y) e G for all rational numbers 0 < x, y < 1.

Clearly, B(x, y) is well defined in this case and

dtB(x,y) f* fx_1 (1 - ty^dt jf
*

£(-!)"
n

1^B+JC-1

£(-»"r"rti V » JJo ti "+x
Sinee (— is positive, permuting the series and integral is licit. Moreover,
(y~

— ®{^/ny+l) so ünal series converges absolutely and is the value at

z 1 of a G-function. This proves that B{x, y) e G in this case.

From now on, we let x,y e Q and we assume that x, y, x + y $ Z (otherwise
the conclusion is easier to prove). Then B(x, y) is defined and non-zero. There exist
two integers M, N such that 0 < x + M, y N < l, and the functional equations

B(x,y) - --B(x+ 1 ,y),B(x,y)+y B(x,y + 1)
x y

yield B(x,y) Rm,n(x> y)B(x + M,y + N) with Rm,n(x> y) e Q(x,y). Sinee

B(x + M, y + N) is in G by the previous case, it follows that B(x, y) e G.
To prove that l/B(x,y)is also in G, we use the reflection formula T (x) T (1 —x)

f to getsm(7rx)

1 sin(Trx) sin(Try) 1 — x — y
B(x,y) sin7r(x + y) tt B(l-x,l-y).
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Now B( 1 — x, 1 — y) e G by the case above, ^ *s an

number (hence in G) and l/it e G, so that
y^ e G.

(ii) We have

from which we obtain the claimed identity. Moreover, for any integer j >
is obviously defined and non-zero, hence is a unit of G by (i). Thus, this is also the

To conclude this section, we mention some remarks (due to the referee) towards
the determination of the link between G and P [1 /tt], where P is the ring of periods
(in Kontsevich and Zagier's sense [26]); in particular a natural question is whether
G P[l/jt] or not.

Bombieri-Dwork's conjecture suggests that G might be contained in P[l/jr].
Indeed, this conjecture predicts that any G-function is Solution of an extension of
sub-quotients of Picard-Fuchs equations. It is not clear that such an extension is

motivic, but for a Picard-Fuchs equation the G-matrix Solution Y(z) is the quotient
P{z)P{0)_1 of two period matrices. Since the determinant of P{0) is an algebraic
number times a power of tt (see [2]), the inclusion G C P[\/it\ would follow.

Towards the converse inclusion, it is possible to prove that if a one-parameter
Picard-Fuchs equation doesn't have 0 as a singularity then the special values of its
Solutions can be expressed in terms of G-functions which are Solutions of the same

equation.
In view of this discussion, it would be very interesting to refine Theorem 1 by

ensuring that 0 isn't a singularity of the minimal differential equation of the G-
function / we construct (such that /(1) is a given £ e G). However our proof does

not provide this refinement directly and new ideas are necessary to do that.

2.3. General properties of the ring G^. The set of G-functions satisfies a number

of structural properties. It is a ring and even a Q[z]-algebra; it is stable by dif-
ferentiation and the Hadamard product of two G-functions (obtained by pointwise
multiplication of the coefficients) is again a G-function. These properties will be
used throughout the text, as well as the fact that algebraic functions over Q(z) which
are holomorphic at z 0 are G-functions: this is a consequence of Eisenstein's the-
orem3 and the fact that an algebraic function over Q(z) satisfies a linear differential
equation with coefficients in Q[z].

The following property is useful too:

3which states that for any power series Yl'nLo anzn algebraic over Q(z), there exists a positive integer D
such that D"an is an algebraic integer for any n.

case of r(|f.



322 S. Fischler and T. Rivoal CMH

Lemma 1. Consider a G-function anzH• Then the series

OO OO (X)

^2/ä~nzn, ^Re(aw)zw and Im(g^)z^
n=0 «=0 n=0

are a/sa G -functions.

Proof The series Y^=oanzU satisfies a linear differential equation Ly — 0 with
eoeffieients in Q[z], hence satisfies the linear differential equation

Ly 0 where L is obtained from L by replacing each eoeffieient X!ä;=o Pkzk

with Ylt=o P~kzk- Furthermore, the moduli of the conjugates of ä~n and their common

denominators obviously grow at most geometrically. Hence, ^~nzU is a

G-function.
For Re(a")z" and E^oIm(a«)z"' we write 2Re(a„) an + cTn,

2i\m{an) an — cTn and use the fact that the sum of two G-functions is also a

G-function.

The following lemma includes the easiest properties of ; especially (i) will be
used very often without explicit reference.

Lemma 2. Let K be an algebraic extension

(i) Gj^ is a ring and it contains K.

(ii) If K is invariant under complex conjugation then:

• Gj^ is invariant under complex conjugation.

• G|vnR G|vnM.
R n Frac(G-) Frac(G£nR) Frac(G£ n R).

(iii) G^(.} Gq[Z] Gq + ZGq, and more generally ifK C R then Gg^
g^'] G- + /G-

Proof (i) The properties of G-functions ensure that the sum and product of two G-
functions with eoeffieients in K and radii of convergence > R > 1 are G-functions
with eoeffieients in K and radii of convergence > R. Moreover algebraic constants

are G-functions with infinite radius of convergence.

(ii) Using Lemma 1 and the fact that K is invariant under complex conjugation, if
o anzU is a G-function with eoeffieients in K and radii of convergence > R > 1

then so is Y^T=o än2*1'- this proves that G^ is invariant under complex conjugation.
The inclusion G^nR C G^ HR is obvious. Conversely, if £ e R DG^ then for any

R > 1 we have £ YlT=o an where YlT=o anzH is a G-function with eoeffieients
in K and radius of convergence > R. Then Yln^o Re(ö«)z" is also a G-function (by
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Lemma 1); it has coefficients in K D R (because Re(an) \{an + cTn)) and radius

of convergence > R. Therefore £ Re(ö«) G ^kpir*
Finally, the inclusion Frac(G^ n 1) C 1 H Frac(G^) is trivial. The converse

is trivial too if K C R; otherwise let £, £' g G^ be such that tj' ^ 0 and £/£' g R.
Multiplying if necessary by a non-real element of K, we may assume £, £' $ z'R.

Then we have £/£' (£ + £)/(£' + £0 £ Frac(G^ n R).

(iii) Assume Ici Since G^ is a ring and i2 — 1 g Gg\ we have G^[i]
G^ + zG^. This is obviously a subset of GConversely, K(i) is invariant
under complex conjugation (because I C 1) so that for any £ e G^.^ we have

Re(f) !(£ + £) e G^(0 n R G|v by (ii). Since i <= K(i) c G^v(i) we
have Im(£) —z(£ — Re(£)) G Gjj^ fll Gg\ using (ii) again. Finally £

Re© + /Im©GG- + fG-
'

The following lemma is a consequence of Lemma 7 proved in §3 below; of course
the proof of Lemma 7 does not use Lemma 3, hence there is no circularity.

Lemma 3. Let K be an algebraic extension of Q.

(i) We have QDlC Gq C G^, and G^ is a (Q D R)-algebra.

(ii) If K (f R then Q C Gq^ C G^, and Gj^ is a Q-algebra.

Proof (i) By Lemma 7, we have Q D R C Gq^ PI R; this is equal to Gq by
Lemma 2. The inclusion Gq C G^ is trivial since QcK.

(ii) Since K (f R, there exist a,ß e R such that a + iß e K and ß ^ 0;
since a — iß is also algebraic, we have a,ß e Q. Therefore we can write i

+ iß) — a) with j,a e Q D R c G^ (by (i)). Since G^ is a ring which
contains a + iß, this yields i e G^, so that (using Lemma 2 and the trivial inclusion

Gq C G-) Gcqv(/) Gq + /Gq C G-. Using the inclusion Q c Gg(i) proved in
Lemma 7, this concludes the proof of (ii).

To conclude this section, we State and prove the following lemma, which is very
useful for constructing elements of G^ K. Recall that G^ K is the set of all £ /(1)
where / is a G-function with coefficients in K and radius of convergence > R.

Lemma 4. Let K be an algebraic extension of Q. Let £ G K, and g(z) be a

G-function in the variable t, — z, with coefficients in K and radius of convergence
> r > 0. Theng(zo) G Gc^KforanyR > landany Zq g K suchthat \zq—£| < r/R.

Proof Letting/(z) g(£+z(zo—£)), wehave /(1) g(z0) and / isa G-function
with coefficients in K and radius of convergence > R.
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2.4. Miscellaneous lemmas. We gather in this section two lemmas which are neither
difficult nor specific to G-functions, but very useful.

Lemma 5. Let A be a subring of C. Let S C N and T C Q be finite subsets. For

any (s, t) E S x T, let fs,t(z) — as,t,nzU ^ A[[z]] be afunction holomorphic
at 0, with Taylor coefficients in A. Let £2 denote an open subset ofC, with 0 in its

boundary, on which a continuous determination of the logarithm is chosen. Then

there exist c E A, er E N and x E Q such that, as z ^ 0 with z e Q,

^2Y2(l°gzYztfs,t(z) c(logz)azT(l +0(1)). (2.1)
seS teT

Proofi Let T + N {t+n,teT,ne N}. For any s e S and any 9 e T + N, let

cs,0 — IZteT as,t,0-t wherewelet aSitß-t 0ifd — t$N. Then the left-hand side

of (2.1) can be written, for z e £2 sufficiently close to 0, as an absolutely converging
series J2oet+n ^ZseS cs,o(\°gz)sz°

- If cs,0 0 f°r anY (a 9) then (2.1) holds with
c — 0. Otherwise we denote by r the minimal value of 9 for which there exists s E S

with csß 7^ 0, and by er the largest s e S such that cSiT ^ 0- Then (2.1) holds with
c c.CT, T

The following result will be used in the proof of Theorem 5.

Lemma 6. Let cd\,... ,cot be pairwise distinct complex numbers, with \cd\\ • • •

| cot | 1. Let K\,... ,Kt G C be such that lim/7^+00 k\Cd\ + • • • + KtCD" 0. TAen

Kj • • • Kt 0.

lof. For any n > 0, let <5„ det Mn where

Mn

cot CD'A cd':

CD
n +1 w +1 n +1

Wi
n+t—1

&>;
n+t—1 n+t—1

t

IM Ci^n denote the i-th column of Mn. Since C/jW CD?Ci$ we have |5W|

.cd"8q\ |<501 Y 0 because <50 is the Vandermonde determinant built on
the pairwise distinct numbers cDi,...,CDt. Now assume that kj Y 0 f°r some

j. Then for Computing 8n we can replace C/jW with KiCi,n; this implies

lim„^+00 <5„ 0, in contradiction with the fact that \8n | |<501 ^ 0.

3. Algebraic numbers and logarithms as values of G -functions

An important Step for us is to show that algebraic numbers are values of G-functions
with coefficients in Q(i) (and, more precisely, that they satisfy the conclusion of
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Theorem 1). Despite quite general results in related directions, this fact does not
seem to have been proved in the literature in the füll form we need. Eisenstein [31]
showed that the G-function (of hypergeometric type)

oo /5«\
Kn>
5n\

An + \-a
An +1

n=0

is a Solution of the quintic equation x5 + x a, provided that |a \ < 5~5^4 (to ensure
the convergence of the series). Eisenstein's formula can be proved using Lagrange's
inversion formula. More generally, given a polynomial P(x) £ C[x], it is known
that multivariate series can be used to find expressions of the roots of P in terms
of its coefficients pj. For example in [32], it is shown that these roots can be for-
mally expressed as A-hypergeometric series evaluated at rational powers of the pj 's.

(A--hypergeometric series are an example of multivariate G-functions.) It is not clear
how such a representation could be used to prove Lemma 7 below: beside the
multivariate aspect, the convergence of the series imposes some conditions on the pj 's and

their exponents are not integers in general. Our proof is more in Eisenstein's spirit.

Lemma 7. Leta £ Q, and Q(X) £ Q[X] be a non-zeropolynomial ofwhich a is a

simple root. For any u £ Q(i) such that Qf(u) 0, the series

^ / X nnöW" dn 1 ({ x — u \n\•iz} ="+ S( ' ((öw-ÖM)

is a G-function with coefficients in Q(i); it satisfies the equation

Q(<S>u{z)) (1 -z)ß(w).

For any R > 1, ifu is close enough to a then the radius of convergence of
is > R anda Om(1) £ Gc^Qqy

cvAccordingly we have Q C

Remarks. a) The proof can be made effective, i.e., given a, Q and R, we can compute
s(a, Q, R) such that for any u £ Q(i) with \a—u\ < s(a, Q, R), wehave Om(1) a
and the radius of convergence of is > R.

b) Using Lemma 2 (ii), we deduce that any real algebraic number is in Gq.

We also need a similar property for values of the logarithm.

Lemma 8. Let a £ Q*. For any determination of the logarithm, the number log(a)
belongs to
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3.1. Algebraic numbers

ProofofLemma 7. If deg Q 1 then (z) u + (a — u)z so that Lemma 7 holds

trivially. From now on we assume deg Q > 2. Then is a non-constant
polynomial with eoeffieients in Q(7); its value at X u is Q'{u) ^ 0 so that
the eoeffieients of Om(z) are well-defined and belong to Q(i). If Q(u) 0 then

Om(z) u and the result is trivial, so that we may assume Q(u) ^ 0 and define the

polynomial function

0(t + u)
Z"W 1 - nr ^

G
Q(u)

so that zM(0) 0 and z^(0) — 7^ 0. Hence zM(?) can be locally inverted

around £ 0 and its inverse tu{z) ^2n>1 4>n(u)zn is holomorphie at z 0.

The Taylor eoeffieients of tu can be computed by means of the Lagrange inversion
formula [20], p. 732, which in this case gives Om(z) u + tu(z). By definition of
tu(z)9 this implies <2(Om(z)) (1 —z)Q(u). Therefore is an algebraic function
hence it is a G-function.

Now let

0/1 (w)
i-Q(u)r d"-1d"ff

dxn~l Vvß(x) - Q(u)J || X U

denote, for n > 1, the coefficient of zn in Om(z). Then for any n > 1 we have

^ ß(w) f dz
<M") —— / 7777-—7777— (3.1)

2z Jv (Q(u) - Q(z))n

where ^ is a closed path surrounding u but no other roots of the polynomial Q (X) —

Q (;u). This enables us to get an upper bound on the growth of the eoeffieients <pn (;u).

Let us denote by ßi (u) u, ß2(u),..., ßd (w) the roots (repeated according to their
multiplicities) ofthepolynomial Q(X) — Q(u), withd deg Q > 2. Wetakew close

enough to a so that ß2 (u),..., ßd (w) are also close to the other roots a2,..., 01d of the

polynomial Q(X). Since a is a simple root of Q(X), we have a $ {a2,..., ctd}- We

can then choose the smooth curve ^ in (3.1) independent from u such that the distance
from ^ to any one of u, ß2(u),..., ßd(u) is > s > 0 with s also independent from

u, in such a way that u fies inside ^ and ß2(u),..., ßd(w) outside cfo. 4 It follows in
particular that, for any z e

u. Hence maxze^
1

that
Q(u)-Q(z)

Q(u) — Q(z) | > p for some p > 0 independent from

< From the Cauchy integral in (3.1), we deduce

Ye\ I Q(u)\n
I0n(w)l< <3-2)

2tt pn

4We do so because we want to use a curve cff that does not depend of u, whereas the poles of the integrand
move with u.
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where |^| is the length of ^. Let R > 1. Since Q(u) -> Q{ot) 0 as u -> a, we
deduce that the radius of convergence of (z) is > R provided that u is sufficiently
close to a (namely as soon as R\ Q(u)\ < p). Then the series Om(1) is absolutely
convergent and we have

|$M(1) -u\ y] </>»(«)

n 1

< mf-\emL 0mu)iy (3J)
n 1

Therefore Om(1) can be made arbitrarily close to u, and accordingly arbitrarily close
to a. Now for any z inside the disk of convergence of we have <2(Om(z))
(1 — z) <2 (w), so that (1) is a root of Q (X). If it is sufficiently close to a, it has to
be a. This completes the proof of Lemma 7.

.2. Logarithms of algebraic numbers

ProofofLemma 8. Throughout this proof, we will always consider the determination
of log z of which the imaginary part belongs to (—tt, tt] (but the result holds for any
determination because itt log(—1) e Gq^).

Using the formula log(a) n log(a1^n) with n sufficiently large, we may assume
that a is arbitrarily close to 1; in particular the imaginary part of log a gets arbitrarily
close to 0.

Letting Q(X) denote the minimal polynomial of a, we keep the notation in the

proof of Lemma 7, and write a Om(1) u + wVPM( 1) where u e Q(i) is close

enough to a, VPM(1) is in Gq^ and VPM(0) 0. By Equation (3.2), the radius of
convergence at z 0 of the G-function (z) can be taken arbitrarily large provided
that u e Q(i) is close enough to a. We have

log(a) log(a/w) + log(w) log (l + 1^(1)) + log(w),

because all logarithms in this equality have imaginary parts arbitrarily close to 0. Let
R > 1; we shallprove, if u is close enough to 1, thatboth log(l + VPM(1)) and log(u)
belong to GCÄV Q(0.

a) Provided that u is close enough to a, reasoning as in Equation (3.3) we get
\Vu(z)\ < 1 for all z in a disk of center 0 and radius > R. Hence for such a

, the radius of convergence of the Taylor series of log(l + VPM(z)) at z 0 is

> R > 1. To see that it is a G-function with coefficients in Q(i), we observe that

log (l + (z)) is an algebraic function holomorphic at the origin: its

Taylor series is a G-function Y^=oanzn e Q(0IMI- Therefore log(l + VPM(z))

o ^hz"+1 G Q(0[[zI; ^is is a G-function because the set of G-functions
is stable under Hadamard product and both Yln^o anzH+l and ^iz"+1 are
G-functions. Whence, log(l + ^M(l)) e G^Q(/).
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b) It remains to prove that log(u) g G^q^ f°r anY u G Q(0 sufficiently close

to 1. Let a,b e Q be such that u a + ib. Then we have

log(w) - log(a2 + b2) + i arctan f-Y
2 \aj

Now log(l + z) (~T l~z"andarctan(z) fe+Tz2"+1 are
functions with rational coefficients and radius of convergence 1, and we may
assume that \a2 + b2 — 1| < 1 /R and |Z?/a| < l/R. Then log(w) G G^q^ (see

Lemma 4).

4. Analytic continuation and connection constants

4.1. Properties of differential equations of G -functions. Let K be an algebraic
extension of Q, and /(z) Y^=oanzU e ^[[ZI be a G-function with coefficients

an G K. Let L be a minimal differential equation with coefficients in Kfz] of which

/(z) is a Solution. We denote by £i,..., e C the singularities of L (throughout
this paper, we will consider only points at finite distance). For any i e {1,..., p}, let
A i be a closed broken line from £/ to the point at infinity; we assume A; DAy 0

for any i ^ j\ and let 0 C \ (Ai U • • • U A^): this is a simply connected open
subset of C. In most cases we shall take for A; a closed half-line starting at

The differential equation Ly — 0 has holomorphic Solutions on and these

Solutions make up a C-vector space of dimension equal to the order of L; a basis of
this vector space will be referred to as a basis of solutions of L.

Let £ be a singularity of L. Then for any sufficiently small open disk D centered
at £, the intersection D D ^ is equal to D with a ray removed; let us choose a

determination of the logarithm of £ — z, denoted by log(£ — z), for z g D D @ (in
such a way that it is holomorphic in z). If £ G @ is not a singularity of L, the function
log(£ — z) will cancel out in what follows.

We shall use the following theorem (see [4], p. 719, for a discussion).

Theorem 6 (Andre, Chudnovski, Katz). Let K denote an algebraic extension ofQ.
Consider a minimal differential equation L oforder /x, with coefficients in Kfz] and

admitting a Solution at z 0 which is a G-function in Kffz]]. Let £p be as
above. Then L is fuchsian with rational exponents at each of its singularities, and

for each point £ G Q} U {£i,..., %p} there is a basis ofsolutions (gi (z),..., gß(z))
ofL, holomorphic on S1, with the following properties:

• There exists an open disk D centered at £ and functions Fsjj (z), holomorphic
at 0, such thatfor any j G {1,..., /x} and any z G D D 'S:

Si (z) E E (lo2^ ~ & ~ z)
seSj tsTj
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where Sj C N and Tj C Q arefinite subsets.

• //*£ G K then thefunctions Fsjj{z) are G-functions with coefficients in K.

• If^is not a singularity of L then Sj — Tj — {0} for any j, so that g\ (z),...,
gß (z) are holomorphic at z £.

This theorem is usually stated in a more precise form, namely

where the functions fj (z) are holomorphic at 0 and Q is an upper triangulär matrix,
and a similar formulation holds for the singularity at infinity, where one replaces £ — z
by 1/z. However this precise version won't be used in this paper.

4.2. Statement of the theorem on connection constants. Let K, /, L and @ be

as in §4.1. Let (gi,..., gß) denote a basis of the C-vector space of holomorphic
Solutions on 0 of the differential equation Ly 0; here /x is the order of L. Since

/ g K[[z]] satisfies Lf 0 and is holomorphic on a small open disk centered at 0,

it can be analytically continued to 0 and expanded in the basis (gr,..., gß):

for any z g ff, where w\,..., tuß G C are called connection constants.
The following theorem5 is an important ingredient in the proof of Theorems 4

and 5.

Theorem 7. Let K denote an algebraic extension of Q. Consider a minimal
differential equation L of order fi, with coefficients in K [z] and admitting a Solution

at z 0 which is a G-function f G K[[z]]. Let ff, £i, be as above,
£ G K f! (ß U {£i,..., £p}) and (gi,..., gß) be a basis ofSolutions given by Theorem

6. Then the connection constants tui tuß defined by Equation (4.1) belong

The following corollary is a consequence of Theorem 7 and Lemma 5 (applied
with A It is used in the proof of Theorem 5.

Corollary 1. Let K, /, ff, £ be as in Theorem 7. Then there exist c G G^y er G N
and x G Q such that, as z £ with z G ff,

(g! (Z), gß(z)) (/x (C - Z), m-Z),Z)) • - z)C?

(4.1)

y'=i

/(z) c (log(£ - z))CT(^ - z)T(l + o(l)).
5As the proof shows, Theorem 7 holds under slightly weaker assumptions: it applies to any G-Operator L

such that Lf 0, and also to f oo.
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4.3. Wronskian of fuchsian equations. Given a linear differential equation L with
coefficients in Q(z), of order /x and with a basis of Solutions fi, f2, • • •, f/i, the
wronskian W W(f\,..., fß) is the determinant

/l(z) fl(z) fß(z)
fll\z) fz\•••

W(z)

fg~l\z)/2(/i_1)(z) ••• flf-l\z)
The wronskian can be defined in a more intrinsic way as follows. We write L as

y{ß\z)+ aß-i{z)y(ß~l) (z) 0

where a/(z) e Q(z), j 1,... ,/x — 1. Then W(z) is a Solution of the linear
equation

y\z) -aß-i{z)y{z), (4.2)

henee W(z) v0 exp (— / aß-i (z)dz). The value of the constant v0 is determined

by the Solutions fx, f2,..., fß.

Lemma 9. Let K, /, L, Q}, £, g\, gß be as in Theorem 7. Then the wronskian

W(z) W(gi,..., gß)(z) is an algebraic function over Q(z), and and

singularities lie among thepoles ofaß-X(z).

Proofi Since the differential equation (4.2) is fuchsian, Equation (5.1.16) in [24],
p. 148, yields W(z) vn/= x (z — pj) rt where px,..., pj e Q are the poles of
aß-\(z) (which are simple because L is fuschian), rx,..., rj e Q (because L has

rational exponents at its singularities), and v £ C*. It remains to prove that v is

algebraic.
With this aim in view, we compute the determinant W(z) for z e & sufficiently

close to £ by means of the expansions of g\,..., gß and their derivatives. This yields

W(z) J2 J2 (lo^ - z))7^ - z)tps,td - z)
seS teT

where S C N and T C Q are finite subsets, and the Fsj(z) are G-functions with
coefficients in K. Now Lemma 5 provides c e K, er e N and r e Q such that, as

z —> £ with z G Q}\

W{z) c(log(f-z))ff(f-z)T(l +0(1)).

On the other hand we also have n/= x{z — pj) rt c(£ — z)T( 1 + o(1)) for some

cgQ* and r e Q. Since the quotient is a constant, namely v, taking limits as z -> £

yields o — 0, r r and v — c/c e Q. This concludes the proof of Lemma 9.
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4.4. ProofofTheorem 7. LetZ? > 1. Forany£ £ (St\{0, £}) flK(i), let > Obe

the distance of £ to the border Ai U • • • U of $ (with the notation of §4.1), and

be the open disk centered at £ of radius r^/R. Since £ is not a singularity of L, there
is a basis gi^(z),..., gß^(z) of Solutions of Ly 0 consisting in G-functions in
the variable £ — z with coefficients in K(7) (by Theorem 6); these G-functions have

radii of convergence > r^, so that gj^(z) £ for any z £ DK(i) and any

j (seeLemma4).
Let r0 > 0 be the radius of convergence of the G-function /(z), and D0 denote

the open disk centered at 0 with radius r0/R. Finally, for any j £ {1,..., /x} we let

gj^{z) gj(z) \ by assumption there exists > 0 such that

gj,s(z) E E (log(Z - Z)Y (Z - ZY Fs,tj(i; - z)
seSj teTj

for any z £ @ such that |z — £| < r^, where Sj C N and 7}- C Q are finite subsets

and the FSitj are G-functions with coefficients in K and radii of convergence > r^.
Then we let D% be the open disk centered at £ with radius r^/R, so that for any
z £ n K(7) and any j we have gj^(z) £ by Lemmas 4, 7 and 8.

Following a smooth injective compact path from 0 to £ inside 0 U {0, £}, we
can find s — 2 points £2, • • •, £5-1 £ (ß \ {0, £}) H K(7) (with 5 > 3) such that
Dfc—\ n / 0 for any k £ {2,... ,s}, where we let D^ D^k and £1 0,

& ?•

As in the beginning of §4.2, we have connection constants wj^ £ C such that

ß

f(z)L mj>2 Sj,h (z) (4-3)

7=1

for any z e 2$. In the same way, for any z £ 2$, any k £ {3,... ,s} and any

j £ {1,..., /x} we have

ß

gj£k-y (2) J2 gi,$k (z). (4.4)
1=1

Obviously the connection constants wj £ C in Theorem 7 are obtained by mak-

ing products of the vector (vjj£)\<j<ß and the matrices (^j,k,l)i<j,l<ß (f°r k £

{3,..., s}), because gj^s (z) gj (z). Since is a ring and R > 1 can be any
real number, Theorem 7 follows from the fact that all constants wj^ and vJj,k,l in
(4.3) and (4.4) belong to K^y We will prove it now for (4.4); the proof is similar
for (4.3).

Let k £ {3,..., s} and j £ {1,..., /x}. We differentiate /x — 1 times Equa-
tion (4.4), so that we get the /x equations

(z) L 8iL
i=i
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We choose z e D^-i DD^n K(7) outside the poles of aß-\{z) (with the
notation of §4.3). Döing so yields a System of /x linear equations in the /x unknowns

^ 1,..., /x, which can be solved using Cramer's rule because the determi-
nant of the System (namely W(pjc), where W{z) is the wronskian of L built on the
basis of Solutions g\£k (z),..., gß£k (z)) does not vanish, by Lemma 9. Using again
Lemma 9, we have W(pk) G Q* and therefore

W(j>k)
r~ pcve Q(0 C GS(,) by

Lemma 7. Now Cramer's rule yields the following expression for

gl,£k(Pk) gl-l,£k(Pk) gj,£k-i(Pk) gl+l,£k(Pk) gu,%k(Pk)

W(pk)

r^giPk) 4+uL^

Sinee p^ G D^-x H Z)^, the entries in this determinant belong to the ring (as

notieed above), so that T&j,k,l £ G^K(^. concludes the proof of Theorem 7.

5. Proof of Theorem 4

The main part in the proof of Theorem 4 is to prove that G^c' C Gq^; this will
be done below. We deduce Theorem 4 from this inclusion as follows, by Lemmas 2

and 3. If K (£_ M, we have

Ga.c. a.c. cv cv a.c.
K C C Q(i) C C

and Theorem 4 follows. IfK C 1, we have:

Gk c g|c- nie Gq(i-} n r Gq c g^v

so that G^ Gq. The inclusion Gj^c' C G^c' Gq + iGq is trivial; let us

prove that Gq + /Gq C Gj^c\ Let £i, £2 ^ Gq, and /, g, h be G-functions with
rational coefficients and radii of convergence > 2 such that /(1) £i,g(l) £2, and

h(1) \fl. ThenZ(z) /(z) + g(z)h(z) 1 — | is a G-function with coefficients

in Q CK, and £1 + *£2 is the value at 1 of an analytic continuation of k (obtained
after a small loop around z 2). This concludes the proof that Gj^c' Gq + i Gq
if K C R.

The rest of the section is devoted to the proof that G^)C" C Gq(j-}. Letf e G^c';we
may assume £ 7^ 0. There exists a G-function /(z) anzU with coefficients

an e Q, and z0 G Q, such that £ is one of the values at z0 of the multivalued
analytic continuation of /. Replacing /(z) with /(z0z), we may assume z0 1.
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Let L denote the minimal differential equation satisfied by /, and be the

singularities of L. To keep the notation simple (and because the general case can be

proved along the same lines), we shall assume that there is an open subset ^ C C (as

in §4.1) such that 1 e U {£i,..., %p} and £ /(1), where / denotes the analytic
continuation of the G-function anzn to Q}. If 1 is a singularity of L then /(1) is

the (necessarily finite) limit of /(z) as z —> 1, z £ Q}.

The coefficients an (n > 0) belong to a number field K Q(ß) for some

primitive element ß of degree d say. We can assume without loss of generality that
K is a Galois extension of Q, i.e, that all Galois conjugates of ß are in K. There
exist d sequences of rational numbers (uj,n)n>0, j 0,..., d — 1, such that, for all

n > 0, an EUUj,nßJ and thus (at least formally)

c» d — 1 c»

fd) Y2anZn Ujß]UjUj'nZ"-
n=0 j=0 n=0

The power series Uj(z) Y^=ouj,nZn are G-functions (see [17], Proposition

VIII. 1.4, p. 266), so that Equation (5.1) holds as soon as |z| is sufficiently small.
Moreover Uj has rational coefficients, so that it satisfies a differential equation with
coefficients in Q[z] (see for instance [17], Proposition VIII.2.1 (iv), p. 268). We let

Lj denote a minimal one, of order /xy. Let S?j denote the set of singularities of Lj,
and y U • • • U S?d-1- Let T denote a compact broken line without multiple
points from 0 to 1 inside Q) U {0,1}. Since 5? is a finite set, we may assume that

my C{0,1} and find a (small) simply connected open subset Q C C such that

T\{0,1} C ^ C ^\{1} and Q D 5? — 0. If T and Q are chosen appropriately, it
is possible to construct S^d-i as in §4.1 (with respect to L0, L^-i) such

that Q C S?o H • • • D @d-i- Since Q is simply connected and 1 $ £2, we choose a

continuous determination of log(l — z) for z e Q. Now Equation (5.1) holds in a

neighborhood of 0, and 0 lies in the closure of Q so that, by analytic continuation,

d-1

m £ Uj(z) for any z £ Q. (5.2)

7=0

We shall now expand this equality around the point 1, which lies also in the closure of
Q. For any j £ {0,..., d — 1}, let gj\ßj) denote a basis of Solutions of the

differential equation Ljy — 0 provided by Theorem 6 with £ 1. Then Theorem 7

gives zzj/,1 VTj^j £ Gq(/) such that Uj (z) Tnj,igj,i (z) + • • • + TujißJ gj,ßj (z)

for any z £ Q. Since e by Lemma 7, Equation (5.2) yields finite subsets

S C N and T C Q such that, for z £ Q sufficiently close to 1,

/(z) ££ (log(l - z))^(l - z)'Fs,t(1 - z)
seS teT
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where the functions Fsj{z) are holomorphic at 0 and have Taylor coefficients at 0

in GThen Lemma 5 gives c e Gc^y a e N and r e Q such that f(z)
c (log(l—z))<7(l—z)T(l+o(l)) asz -> lwithz e Q. Since limz^i /(z) £ ^ 0,

we have er r 0 and £ c e ^his concludes the proof of Theorem 4.

6. Rational approximations to quotients of values of G -functions

This section is devoted to the proof of Theorem 5: in §6.1 we prove that (i) => (iii),
and in §6.2 that (ii) => (i). Since (iii) obviously implies (ii), this will conclude the

proof.

6.1. Construction of rational approximants. Assume that assertion (i) holds. Let
§i,£2 eG^v\ {0} be such that £ fi/f2- Let > 1, and U(z) M»z">

V(z) Z,T=o v"z" be G-functions with coefficients in K and radii of convergence
> R,such that £7(1) J2T=oun fi and V(\) vn &

For any n >0, let a„ J2k=oukand b„
and B{z) Y^=0bnzn. Then A(z) U(z)JZZLoz" and B(z)
are G-functions with coefficients in K and radii of convergence 1. Moreover
lim/7^+00 an and lim/7^+00 bn £2 so that an,bn ^ 0 for any n sufficiently
large, and

(X) (X)

\an-Hbn\ \{an-^)-^bn-h)\< £ l"*l + lfl £ \vk\ 0(R~n)
k=n +1 k=n +1

because un,vn 0{R~n) as n -> +oo and we may assume R > 2. Therefore

A(z) — %B{z) has radius of convergence > R, thereby concluding the proof that

(i) (üi).

6.2. Application of Singularity Analysis. Let us prove that (ii) => (i) in Theorem 5.

Let A{z) — anzH and B(z) be G-functions with coefficients

in K, such that bn ^ 0 for infinitely many n and an — %bn o(bn). Since
£ / 0, we have an / 0 for infinitely many n: none of A(z) and B(z) is a polynomial.
Therefore these G-functions have finite positive radii of convergence, say p and p
respectively.

Let us denote by L the minimal differential equation over Kfz] satisfied by A(z),
and by p£i, p^q the pairwise distinet singularities of A(z) of modulus p (so that

|£i | • • • \£q | 1). Then we have q > 1, and all are singularities of L and

are algebraic numbers.

Let 9o G (—tt/2, tt/2) and A0 {z G C, z 1 or arg(z — 1) 0O m°d 2tt}.
For any i e {1,..., #}, let A; p& A0 z e A0}. Denoting by p£i,



Vol. 89 (2014) On the values of G-functions 335

p^q, f-g+i, i;p the singularities of L, we may assume (by choosing 0o

properly) that Ai, Aq and some appropriate half-lines A^+i, Ap satisfy the

assumptions made at the beginning of §4.1, so that we can take @ C \ (Ai U

• • • U A^). Choosing arbitrary determinations for log(p£/) (i 1,..., q), and also

a continuous one for logz when z e C \ A0, we may dehne log(p£; — z) to be

log(p£/) + log (l — ^|-) for z G ^ sufhciently close to p£; (because A; A0).
For any i G {1,..., q}, Corollary 1 yields c; G \ {0}, 07 G N and 77 G Q such

that

A(z) a (log (ph-z)Y' (pk - z)Zi (1 + o(l))

ciO>{i)"(log(l -^-)) '(l '(1 +»(!))

asz -> pfy withz g Q). Replacing A(z) and i?(z) with their£-th derivatives from the

beginning, where i is a sufhciently large integer, we may assume ri < 0 (because p£\
is a singularity of A(z)). Let r min(ri,..., xq) <0, and er denote the maximal
valueofa/ among those indices i such that x\ — r. Letg(z) (log(l —z))cr(l —z)T
for z G C \ A0, and di — c/(p^)T/ if (07, 77) (er, r), di — 0 otherwise. Then

(d\,, dq) 7^ (0,..., 0) and, for any i G {1,..., q}, we have df G (by

Lemma 7, because p£/ G Q). Finally,

Ä(z)=d'g(i;)+Mi;)) <61)

as z -> p£j with z e St. We have checked all assumptions of Theorem VI.5 (§VI.5,
p. 398) of [20] (see also [21]). This result enables one to transfer this estimate (6.1)
around the singularities on the circle of convergence into an asymptotic estimate for
the coefhcients of A(z), namely

ün f(IZ) ' ' h« + with Xn E d*Tn- C6.2)

Remark. Equation (6.2), the proof of which is based on Singularity Analysis, seems

to be interesting for itself (and not only as a Step in the proof of Theorem 5).

The same arguments with B(z) provide p, d, r, £1, ^q, d\, dq such that

hn ^Z)'^S^'^n+0{X)^ Wkh ^^ i 1

Let Jd) — {n G N, bn 0} and — N \ J/q. By assumption is inhnite, and

an — 0 for any n G sufhciently large. In what follows, we assume implicitly
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that t/fg is infinite (otherwise the proof is the same, and even easier since everything
works as if o 0 and JV N).

By Equations (6.2) and (6.3), we have as n —> +oo with n e

• -"fm ' (6-4)
bn r(—r) Xn+o(1) Vp/

Now the left-hand side tends to £ 7^ 0 as n -> +00 with n e If (p, er, r) 7^

(p, 0, r) then | -^+0(1) | tends to 0 or +00 as n —> +00 with n e Jif. Since both Xn
and Xn are bounded, this implies that Xn or Xn tends to 0 as n -> +00 with n e
Since Xn o(1) and Xn — o{\) as n -> 00 with n e (using (6.2) and (6.3),
because an — bn 0 for n e sufficiently large), we have lim^+00 Xn — 0 or
limw_»+00 Xn 0. By Lemma 6 this implies d\ • • • dq 0 or d\ • • •

dq 0, which is a contradiction.

Therefore we have (p, er, r) (p, ö, r) in Equation (6.4), so that ^ -^+0(1)
as n -> +00 with n e Therefore — t tends to 0 as n ->Xn\Oyi) on

+00 with n e Since Xn is bounded, we deduce limn^+00 xn %Xn 0

(using the fact that Xn ö(1) and o{\) as n -> 00 with n e jVq). Writing
Xn-IXn J2j=iKjC0j where {&>i coJ{ff1,..., ff1,..., ff1}with
(Di,..(ot pairwise distinet, Lemma 6 yields K\ — • • • Kt =0. Reordering the

£/s and the (D^ s if necessary, we may assume that rfj / 0 and co\ ^j-1. Then

/ei di — £d; if there is a (necessarily unique) i such that (D\ and K\ — d\
otherwise. Since K\ — 0 7^ di, there is such an i and it satisfies d\ 7^ 0 and

£ — d\/di e Frac(Gg^). IfK (jL MthenGg' Gj^ by Theorem 4; otherwise we
have f Gin Frac(G^) Frac(G^nR) Frac(G^) by Theorem 4 and Lemma 2.

In both cases, this concludes the proof of Theorem 5.

7. Perspectives

7.1. Other classes of arithmetic power series. It is natural to wonder if the results

presented in this paper can be adapted to other classes of arithmetic power series.

The most natural class is that of L'-functions, also introduced by Siegel in [30].
The definition of these funetions (see the Introduction) is formally similar to that
of G-funetions, but of course the presence of n\ at the denominator of the Taylor
coefficients changes drastically the properties of L'-functions. An L'-function is entire
and Andre proved in Theorem 4.3 of [4] that any ii-funetion is Solution of a linear
differential equation with polynomial coefficients (not necessarily minimal) whose

singularities are 0 (a regulär singularity with rational exponents) and infinity (an

irregulär singularity in general). Like the set of G-functions, the set of L'-functions
enjoys certain stability properties; for instance, it is a ring.
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Let us denote by E as the set of all values of E'-functions at algebraic points. This
is the analogue of G and it is a ring; it would be interesting to prove a result on E
analogous to Theorem 1. However we do not even know what a reasonable conjecture
would be in this respect; what is clear is that the Situation is really different, as the

following result shows (we are indebted to the referee for suggesting its proof to us).

Proposition 2. Let f be an E -function with coefficients in Q (i), and a £ Qbe such

that /(1) a or /(1) ea. Thena £ Q(i).

Proof. Let 0(z) denote either a or eaz, with a £ Q; assume there exists an E-
function / with coefficients in Q(i) such that /(1) 0(1). Replacing /(z) with
/(z) — ß or /{z)e~ßz for a suitable ß £ Q(i), we may assume that a has zero trace
over Q(i). Now there exist Q(z)-linearly independent E'-functions /i, fn with
coefficients in Q(i) such that /i(l) 0(1) and the vector / *(/i,..., fn) is a

Solution of the differential System y' Ay where A is an n x n matrix with entries in

Q(i)(z). Modifying necessary as in the proof of Theorem 1.5 of [11],
we may assume that 1 is not a pole of an entry of A. Using Beukers' version of Siegel-
Shidlovskii's theorem (namely Theorem 1.3 of [11]), the relation /i(l) 0(1) can
be lifted to P1(z)f1(z) H b Pn(z)fn(z) P0(z)f(z) with P0,...,Pn e Q[z]
suchthat P0(l) Pi(l) 1 and P2{1) ••• Pn(1) 0.

If 0(z) a, taking the trace over Q(i) yields <90, • • •> Qn e Q(0tzl such

that ßi(z)/i(z) H + ßtt (z) fn(z)ßo(z) with ßi(l) 1, ß2( 1) •••
Qn{ 1) 0, and öo(l) 0 since a has zero trace. Therefore /i(l) 0, anda 0.

If 0(z) eaz, we take the norm over Q(i) of the relation P\ (z) f\ (z) + • • • +
Pn{z) fn(z) P0(z)eaz. Letting d denote the degree of a finite Galois extension
of Q(i) which contains a and all coefficients of Po,..., Pn, this provides (since
a has zero trace) a relation Qk{z)/k(z) Qo{z) where Qo e Q(i)[z], k
Qci,..., Kn) £ n is such that K\ H b Kn d, f^fz) /i (z)Kl fn (z)Kn, and

Qk{z) e Q[z] is suchthat Q^l) 0 for k (d, 0,..., 0) and g(</,0,...,o)(l) 1.

Taking z 1 yields öo(l) ^ Q(0 hence ea £ Q, so that a 0.

This concludes the proof of Proposition 2.

The possibility of a result analogous to Theorem 3 is also uncertain. It is easy
to describe the limits of sequences An/Bn where An,Bn £ Q, Bn / 0 for all
large enough n and Anzn and BnZn are ^-functions. This is simply
Frac(G), because the series n}-Anzn and n}-BnZn are G-functions, and

conversely if Y^=oanZn is a G-function, then 7tis an ^-function. This

can hardly be the analogue we seek. We now observe that given an E'-function

/(z) AnZn, the sequence pn/qn, with pn YZ=o Ak and qn 1, tends

to /(1), but o Pnz" not an ^-function and o z" a

function. Hence a result analogous to Theorem 3 and involving E might be achieved

by considering simultaneously E and G-functions. It is also possible that similar



338 S. Fischler and T. Rivoal CMH

questions might be easier to answer in the larger class of arithmetic Gevrey series
introduced by Andre in [4], [5].

7.2. Possible applications to irrationality questions. The Diophantine theory of
E-functions is well understood after the works of many authors, among which we may
cite Siegel [30] and Shidlovskii [29], and more recently Andre [5] and Beukers [11].
An E'-funetion essentially takes transcendental values at all non-zero algebraic points,
and the algebraic points where it may take an algebraic value are fully controlled a

priori.
This is far from being true for a non-algebraic G-function. There are many

examples in the literature of G-functions taking algebraic values at some algebraic
points without an obvious reason, see for example [10]. After the pioneering works
of Galochkin [22] and Bombieri [12], it is known that, given a transcendental G-
function /, if a is a non-zero algebraic number of modulus < c, then f(a) cannot
be an algebraic number of degree < d. Here, c > 0 and d > 1 are explicit quantities
that depend on / and on the degree and height of a. A typical example is that if
a \/q is the inverse of an integer, then /(a) is an irrational number provided that
\q\ > Q is sufficiently large in terms of /. An important issue is that the constant
c is usually much smaller than the radius of convergence of /: the point where the
value is taken has to be very close to 0.

On the contrary, a few results are known in which such a restriction is not nec-

essary. One of them is Wolfart's theorem [33] on transcendence of values of Gauss'

hypergeometric function at algebraic points. Another, more related to the present

paper, is Apery's proof of the irrationality of £ (3); it involves evaluating a G-function
on the border of its disk of convergence. The starting point of his method is given by
Theorem 5: he constructs two sequences (an)n>o and (bn)n>o of rational numbers,

whosegeneratingfunctions are G-functions6, suchthatan/bn tendsto£(3). Toprove
irrationality, more is needed, i.e., one also has to find a suitable common denominator
Dn of an and bn, and then prove that the linear form Dnan + Dnbn^(3) e Z + Z£(3)
tends to 0 without being equal to 0. (In this case, Dn lcm(l, 2,..., n)3.) The

growth of Dn is usually the main problem in attempts at proving irrationality in
Apery's style. Indeed, there exist many examples of values /(a) of a G-function /
at an algebraic point a having approximations in the sense of Theorem 3 (iii) (see [28]
for references), but the growth of the relevant denominators Dn prevents one to prove
irrationality when the modulus of a is too close to the radius of convergence of /.
For instance, this approach has failed so far to establish the irrationality of £ (5) or of
Catalan's constant G

(2w+1)2'
In the following proposition, we explain in details how the growth of Dn, the

radii of convergence and the irrationality exponent /x(£) of £ are connected. Recall
that /x(£) is the supremum of the set of real numbers /x such that, for infinitely many

6This was apparently first observed by Dwork in [16]; see also [18], §1.10, for references.
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fractions p/q, |£ — p/q\ < q ß. In particular £ is said to be a Liouville number if
n(%) +oo.

Proposition 3. Letf eGfll. Let A(z)a„zn and B{z) o
be G-functions, with rational coefficients and radii of convergence r > 0, such

that A(z) — %B(z) has afinite radius of convergence, which is > R > r. Let C > 1

be such that an and bn have a common denominator < Cn^1+°^ (as n +00).
Then:

• IfC <Rthen $ and Ii(t) < 1 - gggg.
• Necessarily C > \/~Rr.

This proposition is analogous to the other ones used to bound /x(£) from above
when small linear forms antj — bn are available; the main difference here is that we
do not assume lim^oo \an% — bn \

x^n to exist. We hope this proposition can be used

to make some progress towards Conjecture 1 stated in the introduction; of course the
difficult point is to construct the G-functions with a control upon the denominators
of an and bn (so that C is not too large).

We have considered here only the case of one number £, but G-functions also

arise in proofs of linear independence, in the same way as in Apery's, for instance

concerning the irrationality [8], [27] of £(s) for infinitely many odd s > 3.

ProofofProposition 3. The second assertion follows from the first one because

ß(%) > 2 for any £ e R \ Q. Let us prove the first one.
Let pn Dnan e Z and qn Dnbn e Z, where n is sufficiently large and

Dn e Z is such that 1 < Dn < Cn (increasing C slightly if necessary). Decreasing
R slightly ifnecessary, we may assume that the radius of convergence of A (z)—%B{z)
is > R, so that |qn% — pn\ < (C/R)n for any n sufficiently large. Since C < R
and qn% ~ Pn ^ 0 for infinitely many n (because A(z) — %B(z) has a finite radius

of convergence), this implies £ Q. Moreover there exists a non-trivial linear
recurrencerelation P0(n)un + P\{n)un+i H b Pr{n)un+r 0, with coefficients

Pj(n) e Z[/i],satisfiedbybothsequences(aw)w>oand(^)w>o. We claim that for any
n sufficiently large, the vectors (pn, qn), (pn+i, qn+i), ..(Pn+r, qn+r) span the Q-
vector space Q2. Using Lemma 3.2 in [23], this implies /x(£) < 1 — f°r anY

r' < r, because 1^1,1^1 < (C/ r')n for any n sufficiently large. To prove the claim
we argue by contradiction, and assume (permuting (pn)n>o and (qn)n>o ifnecessary)
that for some X e Q we have q^ Xp^ for any k e {n, n + 1,..., n + r}. Then
the sequence (b( — Xai)i>n satisfies the above-mentioned recurrence relation, and its
first r + 1 terms vanish. If n is sufficiently large then Pr (/) ^ 0 for any i > n + r + 1

(because we may assume Pr to be non-zero), so that qi —Xpi bi — Xai 0 for any
i > n. Since lim;^+00 q^ — p\ =0 and p\ ^ 0 for infinitely many n, we deduce

1, in contradiction with the fact that £ Q.
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