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Remarks on the Lefschetz Standard conjecture and hyperkähler
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Abstract. We study the Lefschetz Standard conjecture on a smooth complex projective variety
X. In degree 2, we reduce it to a local Statement concerning local deformations of vector bundles

on X. When X is hyperkähler, we show that the existence of nontrivial deformations of stable

hyperholomorphic bundles implies the Lefschetz Standard conjecture in codimension 2.
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1. Introduction

In the fundamental paper [9] of 1968, Grothendieck states a series of conjectures
concerning the existence of certain algebraic cycles on smooth projective algebraic
varieties over an algebraically closed ground Heids. Those are known as the Standard

conjectures. In particular, given such a variety X of dimension /r, the Lefschetz
Standard conjecture predicts the existence of self-correspondences on X that give an

inverse to the Operations

#*(*) -»

given by the cup-product « — ä: times with a hyperplane section for all ä; < n. Here

//*(X) Stands for any Weil cohomology theory on X, e.g. Singular cohomology if
X is defined over C, or /-adic etale cohomology in characteristic different from /. If
we can invert the morphism //^(X) -> //^~^(X) using self-correspondences on

X, we say that the Lefschetz conjecture holds in degree
Let us now, and for the rest of the paper, work over C. The Lefschetz Standard

conjecture then implies the other ones and has strong theoretical consequences. For
instance, it implies that numerical and homological equivalence coincide, and that
the category of pure motives for homological equivalence is semisimple. We refer to
[13] and [14] for more detailed discussions. The Lefschetz Standard conjecture for
varieties which are fibered in abelian varieties over a smooth curve also implies the

Hodge conjecture for abelian varieties as shown by Yves Andre in [1]. Grothendieck
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actually writes in the aforementioned paper that "alongside the resolution of singu-
larities, the proof of the Standard conjectures seems to [him] to be the most urgent
task in algebraic geometry".

Though the motivic picture has tremendously developed since Grothendieck's
Statement of the Standard conjectures, very little progress has been made in their
direction. The Lefschetz Standard conjecture is known for abelian varieties, see [13]
and in degree 1 where it reduces to the Hodge conjecture for divisors. Aside from
examples obtained by taking products and hyperplane sections, those seem to be the

only two cases where a proof is known.
In this paper, we want to investigate further the geometrical content of the Lef-

schetz Standard conjecture, and try to give insight into the specific case of hyperkähler
varieties. The original form of the Lefschetz Standard conjecture for a variety X pre-
dicts the existence of specific algebraic cycles in the product X x X. Those cycles
can be considered as family of cycles on X parametrized by X itself. Our first remark
is that the conjecture actually reduces to a general Statement about the existence of
large families of algebraic cycles in X parametrized by any smooth quasi-projective
base. For this, we use Hodge theory on X.

It turns out that for those families to give a positive answer to the conjecture, it
is enough to control the local Variation of the family of cycles considered. Let us

give a precise Statement. Let X be a smooth projective variety, a smooth quasi-
projective variety, and let Z e C//^(X x S) be a family of codimension cycles in
X parametrized by *S. Let 7^ be the tangent sheaf of *S. Using the Leray spectral

sequence for the projection onto and constructions from Griffiths and Voisin in [8],
[25], we construct a map

&

0z: -"#*(*,©*) ® ÖS-

We then get the following result, which we State here only in degree 2 for simplicity,
but see Section 2.

Theorem 1. Xka sra<96tf/z prq/ecrfve varze/y. TTzezz £/ze cozzjVctz/re A
/rz/£ z>z 2/or X orz/y z/7/zere a .smoof/z gwasz-pro/ecftve v<:zrzA/y

a codzramszozz 2 cyc/e Z zzz C//^(X x *S) azzd a pozzz^ s E szzc/z Z/zzzZ £/ze raozp/zzAra

2

0z,«: A^^^(Vöz),
conszVfered 2, zA swzyec/zve.

This variational approach to the existence of algebraic cycles can be compared to
the study of semi-regularity maps as in [5].

In the following section, we give an explicit formula for 0z in case the cycle Z
is given by the Chern classes of a family of vector bundles S on X x 5. In this
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Situation, we show that 0z is expressed very simply in terms of the Kodaira-Spencer
map. Indeed, 7^ maps to the space Ext*(f??, £?). We then have a Yoneda product

Ext*(g,, S,) x Ext*(S„ "* Ext*(S„ g,)

and a trace map
Ext2(g„g,)^//2(X,0x).

We show that we can express 0z,s in terms of the composition

2

02(S):

of those two maps, and we get the following theorem.

Theorem 2. Ifea sra<96tf/z /?ro/ecft've v<zne/y. TTzen conjVctwre zs

m rfegree 2 /or Y z/ f/z<?r£ emzv a .smoof/z gz/asz-pro/ec/fve vr/n^/y *S, a Victor
fez/ndZe f? 1x5, rznrZ a s G *S szzc/z ^Zzotf £/ze raorp/z/sra

2

02 (S),: (1)

fry z7z<? composzY/orz afeow Ys swrjecft've.

The main interest of this theorem is that it makes it possible to only use first-
order computations to check the Lefschetz Standard conjecture, which is global in
nature, thus replacing it by a local Statement on deformations of f?. Of course,
when one wants to ensure that there exists a vector bündle over Y that has a positive-
dimensional family of deformations, the computation of obstructions is needed, which
involves higher-order computations. However, once a family of vector bundles is

given, checking the surjectivity condition of the theorem involves only first-order
deformations.

The last part of the paper is devoted to applications of the previous results to
hyperkähler varieties. We will recall general properties of those and their hyperholo-
morphic bundles in Section 4. Those varieties have Zz^ 1, which makes the last
criterion easier to check. In the case of 2-dimensional hyperkähler varieties, that is,
in the case of K3 surfaces, Mukai has investigated in [17] the 2-form on the moduli

space of some stable sheaves given by (1) and showed that it is nondegenerate. In
particular, it is nonzero. Of course, the case of surfaces is irrelevant in our work, but
we will use Verbitsky's theory of hyperholomorphic bundles on hyperholomorphic
varieties as presented in [23]. In his work, Verbitsky extends the work of Mukai to
higher dimensions and shows results implying the nondegeneracy of the form (1)
in some cases. Using those, we are able to show that the existence of nonrigid hy-
perholomorphic bundles on a hyperkähler variety is enough to prove the Lefschetz
Standard conjecture in degree 2. Indeed, we get the following.
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Theorem 3. I fea pro/ecrfve ZrraiwcZfeZe ZiyperfoiTzZer varZe/y, and Z^ 6
staZde ZzyperZzaZaraarpZzZc fenndZe an X. Avsnrae dza£ f? Zins a nan/rZvZaZ positZve-
dZraensZönaZ/araZZy a/d</armafianv TTzen dze Le/scÄetz conjectnre Z.s frn<? Zn degree 2

/orl.
In a slightly different direction, recall that the only known hyperkähler varieties,

except in dimension 6 and 10, are the two families constructed by Beauville in [4]
which are the small deformations of Hilbert schemes of points on a K3 surface or of
generalized Kummer varieties. For those, the Lefschetz Standard conjecture is easy -
see [2] for a general discussion - as their cohomology comes from that of a surface.
We get the following.

Theorem 4. n Z?£ <2 posidve Znteger. Asswme dnzt/or every K3 sn//ac£ S, tAere ex-
zvZv a vZzzZ^Z^ ZzyperZzaZaraarpZn'c sZzea/f? vwYA a nanzWvZaZ /?ösZdve-dZraensZönaZ/<zraZZy

o/de/orraadons on tAe //ZZAe/tscAerae *S ^ /?<zraraetrZzZng snAscAeraes a/*S o/ZengtA n.
TAen fAe Le/scAetz conjectnre Zs £rne Zn degree 2 /or <zny /?rö/ecdve de/orraadon 0/
S^. TAe revr/Zz AaZds/ar generaZZz^d Knraraer vanedes.

Both those results could be applied taking f? to be the tangent sheaf of the variety
considered, in case it has nontrivial deformations.

Those results fit well in the - mostly conjectural - work of Verbitsky as exposed
in [24] predicting the existence of large moduli Spaces of hyperholomorphic bundles.

Unfortunately, we were not able to exhibit bundles satisfying the hypotheses of the
theorems.

Varieties are defined to be reduced and irreducible. All varieties and schemes are

over the field of complex numbers.

Acknowledgements. It is a great pleasure to thank Ciaire Voisin for her help and

support, as well as many enlightening discussions during the writing of this paper. I
am grateful to Eyal Markman for kindly explaining to me the results of [16]. I would
also like to thank Daniel Huybrechts for pointing out the relevance of Verbitsky's
results and for the interesting discussions we had around the manuscript during his
nice invitation to the university of Bonn, as well as Burt Totaro and the referee for
many useful comments.

2. General remarks on the Lefschetz Standard conjecture

This section is devoted to some general remarks on the Lefschetz Standard conjec-
ture. Although some are well known to specialists, we include them here for ease of
reference. Let us first recall the Statement of the conjecture.

Let X be a smooth projective variety of dimension n over C. Let £ e (X, Q) be
the cohomology class of a hyperplane section of X. According to the hard Lefschetz
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theorem, see for instance [27], Chapter 13, for all A E {0,...,«}, cup-product with
induces an isomorphism

#*(*", Q) -»

The Lefschetz Standard conjecture was first stated in [9], conjecture 2?(X). It is

the following.

Conjecture 5. Lef X anrZ £ Ae aAove. TAen/or aZZ A E {0,...,^Aere an
<zZgeAra/ccycZe Z ö/cöd/mensicwA Zn prorZwctIxX swcA^Aotf ^Ae

[Z]* : //2"-*(T,Q) -> tf*CX",Q)

Zs zA<? Zrcverse o/

If this conjecture holds for some specific A on X, we will say the Lefschetz

conjecture holds in degree A for the variety X.
Let us recall the following easy lemma, see [14], Theorem 4.1, which shows in

particular that the Lefschetz conjecture does not depend on the choice of a polariza-
tion.

Lemma 6. Lef X anrZ £ Ae as aAove. TAen ^Ae Le/scAetz con/ectwre AoZrZs Zn rZ^gree A

/Ar X z/anrZ onZy Z/fAere emfa an ßZgeAraZc cycZe Z o/cod/raens/on A Zn ^Ae prorZwct

X x X swcA ^Aotf ^Ae correspomZence

[Z]* : #*"-*(*, Q) -> 7/^(X,Q)

Zs Azjecft've.

Proo/ Let Z be as in the lemma. The morphism

[Z]* o (u£"~* o [Z]*)-1: 7/2»-^(X, Q) _» #*(*, Q)

is the inverse of (X, Q) -> 7/2w-ä; Q). Now by the Cayley-Hamilton
theorem, the automorphism o [Z]*) * of ^(X, Q) is a polynomial
in o [Z]*). As such, it is defined by an algebraic correspondence. By
composition, the morphism [Z]* o o [Z]*)~* is defined by an algebraic
correspondence, which concludes the proof.

For the next results, we will need to work with primitive cohomology classes. Let
us recall some notation. Let *S be a smooth polarized projective variety of dimension
Z. Let L denote cup-product with the cohomology class of a hyperplane section. For

any integer A in {0,, Z}, let Q)pnm denote the primitive part of Q),
that is, the kernel of
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The cohomology groups of S in degrees less than / then admit a Lefschetz decom-

Position

#*(S,Q) ©L'tf^(S,Q)pnm-
7>0

The following lemma is well known, but we include it here for ease of reference as

well as to keep track of the degrees for which we have to use the Lefschetz Standard

conjecture.

Lemma 7. Z: Z?£ an /ntegej; and Z^ £ Z?£ <2 sraoctf/z pro/ecrfve scZzerae tf/dZmensic>n
Z > Z:. Consider Le/scÄe£z <i£C6>m/?6>.sZzh9/7

77*(S,Q) ® L'7/^(5,Q)p,
7>0

wZzere L Zs cwp-prodwct Zxy cZass 0/ <2 ZzyperpZßne sectZon. Asswrae Z/xzxZ

L^/sc/^z ZzoZ^s /or 5 Zn wp to Z: — 2. TTzen zY*£ pro/YczYorLS

//^(aS, Q) —> Z2 ^ Q)pnm are ZmZwc£<i Zxy ßZgeferaZc

Proo/ By induction, it is enough to prove that the projection

f/^S.Q) -» Ltf*~2(S,Q)

is induced by an algebraic correspondence. Let Z C 5 x 5 be an algebraic cycle
such that

[Z]* : i/2'-*+2(,s,Q) 7/^-2(5, Q)

is the inverse of Then the composition L o [Z]* o ^ ^ desired

projection since 7/^(S, Q)pnm is the kernel of in 7/^(S, Q)

The next result is the starting point of our paper. It shows that the Lefschetz
Standard conjecture in degree Z: on X is equivalent to the existence of a sufficiently
big family of codimension Z: algebraic cycles in X, and allows us to work on the

product of X with any variety.

Proposition 8. Zfea sraoctfZz pro/ecrfve varZ^/y tf/dZmensic>n /7, amZ Z^Z Zz < /7

Z?£ <2/7 Zntog^r: TTzen zY7£ L^/sc/^z ccwjectore Z.s /rwe Z/7 Z: /or A 7/ <2/7<i onZy //
/Y/^re ernto <2 .smoo/Y/ pro/ecftve .sc//£m£ 5 o/JZm^n^Zon Z > Z: .srtoY/y/Y/g /Y/£ L^/sc/z^fz

Zn ///? to Z: — 2 <2n<i <2 codZwensZon Z: cycZe Z Z/i I x S s//cZ/ Z/xzxZ

/Y?£ 777/2 r/2ZZZA777

[Z]*: 7/2'"^(5, Q) -> 7/^(Z,Q)

Z/2<Y//C£<Y Zxy /Y/£ c6>rr£.s7?6>/7<i£/7C£ Z Z.s sw/yecft've.
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Proo/ Taking S X, the "only if" part is obvious. For the other Statement, fix
a polarization on S, and let L be the cup-product with the class of a hyperplane
section of S. Consider the morphism s: Q) -> Q) which is given by
multiplication by (—1)* on L* 7/^-2* ^ Q)prim. By the Hodge index theorem, the

pairing

f/*(S,C)<g> tf*(S,<C)-)-C,

turns Q) into a polarized Hodge structure. Furthermore, Lemma 7 shows that

^ is induced by an algebraic correspondence.
We have a morphism [Z]* : Q) -> 7/^(X, Q) which is surjective. Its

dual [Z]* : //^~^(X, Q) -> Q) is injective, where « is the dimension of X.
Let us consider the composition

[Z]* o o ä O [Z]* : Q) -» *(X, Q).

It is defined by an algebraic correspondence, and it is enough to show that it is a

bijection. Since 7/^~^(X, Q) and //^(X, Q) have the same dimension, we only
have to prove it is injective.

Let a G //^~^(X, Q) lie in the kernel of the composition. For any /3 g
we get

([z]70vv((L'-*O,)([Z]V)) O.

Since [Z] * (7/2w-fc (x, Q)) is a sub-Hodge structure of the polarized Hodge structure

Q), the restriction of the polarization

(w,v) y w w (z/~^ o s)(t;)

on //^(aS, Q) to this subspace is nondegenerate, which shows that a is zero.

Remark 9. Using the weak Lefschetz theorem, one can always reduce to the case
where aS is of dimension

Corollary 10. Xkß sraoctf/z pro/ecrfve vane/y ö/dZmensiön and Z^ /: < «
Z?£ an /ntegej: Avswrae aZZ vane/zes Zn rZ^gr^s wp to — 2

amZ ^Zzotf g£ft£raZZz£rZ TZorZge Zs 7/^(X, Q).
TTze/z ^Zz£ L^/sc/z^fz Z.s /rwe Z/z rZ^gr^^ A: /or X Z/Yz/zrZ o/zZy z/f/zere ernzv

ß sra<96tfZz /?ro/ecft've scZzerae aS, <9/rZZrae/zsZö/z Z, a/zrZ a cörZZrae/zsZö/z /: cycZe Z Z/z

x 5) sz/cZz ^Zz£ //z6>zpZzZs//z

7/'(S, n£"*) -» #*(*", 0z) (2)
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fry morp/zfsm 6>///6><Zg£ sfrwctares

[Z]*: 77^-*(S,C) -> 77^(X,C)

fs .snrj^czfv^.

Remarkll. Note that this corollary is unconditional for/: 2 since the generalized
Hodge conjecture is just the Hodge conjecture for divisors, and the Lefschetz Standard

conjecture is obvious in degree 0.

Proo/ Let X, S and Z be as in the Statement of the corollary. Let // be the image of
7/2'-£(s,Q)by [Z]„. By (2), wehave 77^'° 77^(X,0x). Let 77'be a sub-Hodge
structure of 77^ (X, Q) such that 77* (X, Q) 7/ © 7/'. Then 77'*>° 0. As 77' has

no part of type (X, 0), the generalized Hodge conjecture then predicts that there exists

a smooth projective variety X' of dimension tz — 1, together with a proper morphism

/: X' -> X such that 7/' is contained in /*//^~^(X', Q).
If the Lefschetz conjecture is true in degree ä; — 2, then it is true for //^~^(X', Q).

As a consequence, we get a cycle Z' of codimension ^ - 2 in I' x I' such that

[Z']*: //2(«-i)-£+2(ja/^ q) is surjective. Consider the composi-
tion

772("—D+2—*(A" xP\Q) 77^"~^~*+2(X',Q)

i7*~*(X',Q) -> 77^(X, Q),

the first map being the pullback by any oftheimmersionsX' -> X'xP*,x' i-> (V,x),
the second one being [Z']* and the last one /*. This composition is induced by an

algebraic correspondenceZ" ^ rxP^xI, and is surjective onto /*//^~^(X', Q).
It is easy to assume, after taking products with projective Spaces, that and I'xP^
have the same dimension. Now since the subspaces // and /*//^~^(X', Q) generate

(X, Q), the correspondence induced by the cycle Z + Z" in (S ]J(X' xP^))xI
satisfies the hypotheses of Proposition 8.

With the notations of the previous corollary, in case, Z is Hat over X, we have a

family of codimension /: algebraic cycles in X parametrized by *S. The next theorem
shows that the map (2), which is the one we have to study in order to prove the
Lefschetz conjecture in degree /: for X, does not depend on the global geometry of *S,

and can be computed locally on S. This will allow us to give an explicit description
of the map (2) in terms of the deformation theory of the family Z in the next section.

Let us first recall a general cohomological invariant for families of algebraic
cycles. We follow [27], 19.2.2, see also [8], [25] for related discussions. In the

previous setting, Z, X and S being as before, the algebraic cycle Z has a class

[Z]e^(XxS,Q^).
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Using the Künneth formula, this last group maps to

0 #*(*", 0x),

which means that the cohomology class [Z] gives rise to a morphism of sheaves on S

&

0z: (3)

where 7^ is the tangent sheaf of S. If s is a complex point of S, let 0z,s be the

morphism /\ 7$^ -> //^(X, 0z) Coming from 0z-
Note that the definition of 0z,j is local on S. Indeed, the map

*(X X 5, ->• ^"(-5. ß|) ® #*(*> Oz)

factors through the restriction map

#*(* x 5, n*xs) # °(s> *V*s4xs),
where /? is the projection from X x S to S, corresponding to the restriction of a

cohomology class to the fibers of /?. Actually, it can be shown that it only depends

on the first order deformation ZJ of Z^ in X, see [27], Remarque 19.12, under rather
weak assumptions. We will recover this result in the next section by giving an explicit
formula for 0z,s- This fact is the one that allows us to reduce the Lefschetz Standard

conjecture to a variational Statement.
The next theorem shows, using the map 0z,s, that the Lefschetz conjecture can

be reduced to the existence of local deformations of algebraic cycles in X.

Theorem 12. Lef Xfca sraoctfA /?ro/ecft've vane/y. Asswme Zn CoroZZary 10 ^Aotf

g£ft£raZ/z£<i //orZge con/ec/wre Zs /rwe/or //^(X, Q) rznrZ ^Ae Le/scAe/z con/ec/wre
AoZrA/or sraoctfA prq/AcAw v<zrZe£Zes Zn rZ^gr^^ A — 2.

TA^n fAe Le/scAe£z ccwjectare Zs £rwe Zn rZ^gr^^ A/or X Z/VmrZ onZy Z/7Aere emt a
sraoctfA gwasZ-pro/ecrfve scAerae S, ß codZmension A cycZe Z Zn C//^(X x S) anrZ a

poZn* ^ G *S swcA ^Aotf ^Ae raorpAZsra

it

0z,,: (4)

Zs sw/yecft've.

Praö/ Assume the hypothesis of the theorem holds. Up to taking a smooth projective
compactification of *S and taking the adherence of Z, we can assume *S is smooth

projective. The morphism of sheaves

&

0z: A^ -"#*(*,©*) ® 0s
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that we constructed earlier corresponds to an element of the group

&

Hon^ (A < #*(*' <**) ® #°("is ® (*' ^))'
which in turn using Serre duality corresponds to a morphism

where / is the dimension of S.

By the definition of 0z, this morphism is actually the morphism (2) of Corol-
lary 10. Indeed, this last morphism was constructed using the Künneth formula for

IxS, Poincare duality and taking components of the Hodge decomposition, which
is the way 0z is defined, since Serre duality is compatible with Poincare duality.

Moreover, by construction, if0z,s is surjective, then 7/* (S, £2^) -> 77^(X, 0z)
is. As for the converse, if 77* (S, £2^) -> 77^ (X, 0z) is surjective, then we can

find points sq,... ,sy of s such that the images of the 0z,5, generate 77^ (X, 0z).
Replacing S by S"*, the cycle Z by the disjoint union of the Z; /?*Z, where

P« : S' x X -> S x X is the projection on the product of the i-th factor, and 5 by
(si,..., sy), this concludes the proof by Corollary 10.

The important part of this theorem is that it does not depend on the global geometry
of iS, but only on the local Variation of the family Z. As such, it makes it possible to use
deformation theory and moduli Spaces to study the Lefschetz conjecture, especially
in degree 2 where Theorem 12 is unconditional by Remark 11.

3. A local computation

Let X be a smooth variety and a smooth scheme, X being projective and quasi-
projective. Let Z be a cycle of codimension ä; in the product X x S. As we saw

earlier, for any point 5 e S, the correspondence defined by Z induces a map

it

0z,,:

The goal of this section is to compute this map in terms of the deformation theory of
the family Z of cycles on X parametrized by S. We will formulate this result when
the class of Z in the Chow group of X x S is given by the codimension ä; part ch^ (£?)

of the Chern character of a vector bündle f? over X x 5. It is well known that we
obtain all the rational equivalence classes of algebraic cycles as linear combinations
of those.

Let us now recall general facts about the deformation theory of vector bun-
dies and their Atiyah class. Given a vector bündle f? over X x S, and /? being
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the projection of X x S to let S) be the sheafification of the presheaf

[/ i-> Ext^^^(S|xxt/, ®|xxt/) on iS. The deformation of vector bundles deter-

mined by S is described by the Kodaira-Spencer map. This is a map of sheaves

p: Ts

where 7^ is the tangent sheaf to *S. Let s be a complex point of *S. The Kodaira-
Spencer map at s is given by the composition

Ps • ^5,5 6oc^,(S, S)j. —>* Ext (Sy, Sy),

the last one being the canonical one.
In the next section, we will use results of Verbitsky which allow us to produce

unobstructed elements of Ext* (Sy, Sy) in the hyperholomorphic setting.
Associated to S as well are the images in //^(A x S, ^ Chern classes

of S, which we will denote by q/S) with a slight abuse of notation. We also have

the images ch^(S) e //^(A x S, £2^xs) ^^ Chern character.
The link between Chern classes and the Kodaira-Spencer map is given by the

Atiyah class. It is well known that the Chern classes of can be computed from its

Atiyah class e Ext* (3% (8) £2^), see [3], [11], Chapter 10:

Proposition 13. Ebr A o posit/ve /ntegej; Z^ G //^(T, £2y) Ae ^Ae /roce e/tAe
eZera^ G Ext*/3% (8) £2y) Ay ^ /roce map. TAen

0!^ ^!ch^(^).

Now in the relative Situation with our previous notation, the vector bündle S has

an Atiyah class A(S) with value in Ext*(S, S (8) ^xs)- latter group maps to
the group S (8) ^}x^))' which contains

®(S, gtf* (g, g) 0 Horn-* gtf* (g, g))

as a direct factor. We thus get a morphism of sheaves

r: Z5 -> gjcr£(g,g).

For the following well-known computation, see [11] or [12], Chapter IV.

Proposition 14. TAe map r zndwced Ay tAe A/zy<zA cZoss o/S zs egwoZ ^Ae AorZo/ra-

Spencer raop p.

Those two results make it possible to give an explicit description of the map /z
of last section in case the image of Z in the Chow group of X x S is given by the
codimension A part ch^(S) of the Chern character of a vector bündle S over IxX.
First introduce a map of sheaves Coming from the Kodaira-Spencer map.
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For /: a positive integer, let

&

&(S): /\7s -+//*(*,

be the composition of the £-th alternate product of the Kodaira-Spencer map with
the map

&

/\ g) -> g) -> *(*, 0*) 0 05,

the first arrow being the Yoneda product and the second being the trace map.

Lemma 15. We /zave

0yfc(g) £!0chfc(6)>

w/zere 0ch^(g) ^ ^ z>z (3).

Proo/ We have the following commutative diagram:

Ext'(e,e®^xxs)®* ^Ext*(e,e®^xxs)

ff0(5, £«],(£, S ® ßJrxs))®* ff°(S, g*f*(g, g ® J2|xs)) *- #°(S, Ä*P*^xxs)

ff°(5,n^ «g»g^i(g,g))®* —ffO(g,n§ ® gx^(g,g)) —ff°(g,n§ ® ff^(z,0x)),

where the horizontal maps on the left are given by the Yoneda product, the horizontal

maps on the right side are the trace maps, the upper vertical maps come from the

Leray exact sequence associated to /?, and the lower vertical maps come from the

projection
By definition, and using Proposition 14, e Ext* (£?,£? <g) maps

to

£

0*(S) e Hom(/\5-5,^(X,0x) 0 <9g) 0

following the left side, then the lower side of the diagram. On the other hand,

Proposition 13 shows that it also maps to /:! 0ch*;(e)> following the upper side, then
the right side of the diagram. This concludes the proof.

As an immediate consequence, we get the following criterion.

Theorem 16. Le£ Ifeß sraoetf/z prq/ectzve varze/y, and £/ze sarae /zypetf/zeses

<xs m 77zee>rem 12. TTzezz f/ze Le/sc/zefz co/r/ecfnre A frzre zzz degree A: /or Y z/r/zere
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emfa a gwasz-pro/ectzve sc/zerae a vector fezmc/Ze f? over X x £, o/zcZ o poz>z£

s £ *S SWC/Z £/zot £/ze raorp/z/sra

mcZzccecZ fry fs swrject/ve.

Remark 17. Since Chern classes of vector bundles generate the Chow groups of
smooth varieties, we can get a converse to the preceding Statement by stating the
theorem for complexes of vector bundles - or of coherent sheaves. The Statement
would be entirely similar. As we will not use it in that form, we keep the preceding
formulation.

Example. Let A be a polarized complex abelian variety of dimension g. The tangent
bündle of A is canonically isomorphic to // * (A, 0^) (g) 0^. The trivial line bündle 0^
on A admits a family of deformations parametrized by A itself such that the Kodaira-
Spencer map 7A,o -> 77* (A, 0^) is the identity under the above identification. Now
the induced deformation of 0^ 0 0^ parametrized bydxd satisfies the criterion
of Theorem 16, since the map /\^ 77*(A, 0^) -> 7/^(A, 0^) given by cup-product
is surjective and identifies with the map (5). Of course, the Lefschetz conjecture for
abelian varieties is well known, see [15], Theorem 3.

4. The case of hyperkähler varieties

In this section, we describe how Verbitsky's theory of hyperholomorphic bundles

on hyperkähler varieties as developed in [23] and [24] makes those a promising
source of examples for Theorem 16. Unfortunately, we were not able to provide
examples, as it appears some computations of dimensions of moduli Spaces in [24]
were incorrect, but we will show how the existence of nontrivial examples of moduli
spaces of hyperholomorphic bundles on hyperkähler varieties as conjectured in [24]
implies the Lefschetz Standard conjecture in degree 2.

4.1. Hyperholomorphic bundles on hyperkähler varieties. We refer to [4] for
general definitions and results. An irreducible hyperkähler variety is a simply con-
nected Kähler manifold which admits a closed everywhere non-degenerate two-form
which is unique up to a factor. As such, an irreducible hyperkähler variety X has

7/^(X, 0x) C, and Theorem 16 takes the following simpler form in degree 2.

Theorem 18. X Z?e an ZrrecZwc7Z?Ze prq/ect/ve ZzyperZtz/zZer vone/y. 77ze Le/scAetz

co/zjectwre fs /rzze m cZegree 2/or X z/TAere evfsts o .smoctA gwasZ-pro/ect/ve vorze/y

(5)
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aS, a vecfor AwmZZe f? ov^r X x £, and a s G £ sncA dza£ dze raarpA/sra

2

&(G),: (6)

Zndnced Ay fA<? Köda/ra-Spencer map and dze frac<? map, fs nanz^ra.

In the paper [4], Beauville constructs two families of projective irreducible hy-
perkähler varieties in dimension 2« for every integer n. Those are the n-th punctual
Hilbert scheme of a projective K3 surface S and the generalized Kummer variety

which is the über at the origin of the Albanese map from to A, where A
is an abelian surface and A^+^ is the /i + 1-st punctual Hilbert scheme of A.

The Bogomolov-Tian-Todorov theorem, see [6], [20], [21], states that the local
moduli space of deformations of an irreducible hyperkähler variety is unobstructed.
Small deformations of a hyperkähler variety remain hyperkähler, and in the local mod-
uli space of and the projective hyperkähler varieties form a dense countable
union of hypersurfaces. The varieties and have Picard number at least 2,
whereas a very general projective irreducible hyperkähler variety has Picard num-
ber 1, hence is not of this form. Except in dimension 6 and 10, where O'Grady
constructs in [18] and [19] new examples, all the known hyperkähler varieties are
deformations of or

The Lefschetz Standard conjecture is easy to prove in degree 2 for (resp.

using the tautological correspondence with the K3 surface (resp. the abelian

surface), see [2], Corollary 7.5. In terms of Theorem 16, one can show that the

tautological sheaf on (resp. associated to the tangent sheaf of S has enough
deformations to prove the Lefschetz conjecture in degree 2. Since the tautological
correspondence between S and gives an isomorphism between 7/^(S) and
//2'0 ($ [**]), checking that the criterion is satisfied amounts to the following.

Proposition 19. Let £ Ae a pro/ecdve K3 sn//ac£. TA^n tAere emfa a smootA gwasi-
pro/ecdve vanb/y Af w/Z/z a d/sdngn/sAed pa/nf O pararaefrdz/ng de/arraadans
and a Victor AnndZe f? aver Af x Af sncA tAat S|{ox5} — 3s >

^ncA tAat tAe map

2

02(ß)o: /\%O^^(5,05)
Zndwced Ay tAe Abdazra-Spencer map and tAe trace map, A nanz^ra.

Praa/ This is proved by Mukai in [17]. A Riemann-Roch computation proves that
the moduli space of deformations of the tangent bündle of a K3 surface is smooth of
dimension 90.

This last proof is of course very specific to Hilbert schemes and does not apply
as such to other hyperkähler varieties. We feel nonetheless that it exhibits general
facts about hyperkähler varieties which seem to give strong evidence to the Lefschetz

conjecture in degree 2.
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4.2. Consequences of the existence of a hyperkähler structure on the moduli
space of stable hyperholomorphic bundles. In his paper [17], Mukai studies the
moduli spaces of some stable vector bundles on K3 surfaces and endows them with
a symplectic structure by showing that the holomorphic two-form induced by (5) on
the moduli space is nondegenerate. Of course, this result is not directly useful when

dealing with the Lefschetz Standard conjecture in degree 2 as it is trivial for surfaces.

Nevertheless, Verbitsky shows in [23] that it is possible to extend Mukai's result to
the case of higher-dimensional hyperkähler varieties.

Before describing Verbitsky's results, let us recall some general facts from linear
algebra around quaternionic actions and symplectic forms. This is all well known,
and described for instance in [4], Example 3, and [23], Section 6. Let M denote the

quaternions, and let L be a real vector space endowed with an action of M and a

euclidean metric

Let / G H be a quaternion such that —1. The action of / on L gives a

complex structure on L. We say that L is quaternionic hermitian if the metric on L is

hermitian for all such complex structures /. Fix such an /, and choose / and K in M
satisfying the quaternionic relations —Id, // —// K. We

can dehne on L a real symplectic form such that ?7(x, y) (x, 7y) + z(x, Ky).
This symplectic form does not depend on the choice of / and K. Furthermore, is

C-bilinear for the complex structure induced by /. Now given such / and on L,
it is straightforward to reconstruct a quaternionic action on L by taking the real and

complex parts of

Taking L to be the tangent space to a complex variety, we can globalize the

previous computations to get the following. Let X be an irreducible hyperkähler
variety with given Kähler class &>. Then the manifold X is endowed with a canonical

hypercomplex structure, that is, three complex structures /, /, K which satisfy the

quaternionic relations/^ —Id,// — 77 K. Itisindeed possible
to check that / and K obtained as before are actually integrable. Conversely, the

holomorphic symplectic form on X can be recovered from /, /, K and a Kähler form
on X with class o;.

If f? is a complex hermitian vector bündle on X with a hermitian connection 0, we
say that f? is hyperholomorphic if 0 is compatible with the three complex structures

/, / and K. In case £ is stable, this is equivalent to the first two Chern classes of
f? being Hodge classes for the Hodge structures induced by /, / and K, see [23],
Theorem 2.5. This implies that any stable deformation of a stable hyperholomorphic
bündle is hyperholomorphic. It is a consequence of Yau's theorem, see [28] that the

tangent bündle of Y is a stable hyperholomorphic bündle.

Let S be a stable hyperholomorphic vector bündle on Y, and let S Spl(S, Y)
be the reduction of the coarse moduli space of stable deformations of S onl. For
s a complex point of S, let £? be the hyperholomorphic bündle corresponding to a

complex point s in S. The Zariski tangent space to S at s maps to Ext* (£?, £?) using
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the map from S to the coarse moduli space of stable deformations of S. We can now
dehne a global section 77s of Jfora(7s (8) 7^, 0^), where 7^ is the tangent sheaf to
S, by the composition

2

Ts,* 0 5s,* -* /\Ext'(ß*,S*) -> Ext*(g„g,) -» C

as in the preceding section. The following is due to Verbitsky, see part (iv) of the

proof in Section 9 of [23] for the second Statement.

Theorem20 ([23], Theorem6.3). Lc£Spl(S, X) Z?c ^Zzc rc7ac/fano/TZzc coarse racJaZZ

space o/s£aZ?Ze e?e/orma^'oas o/S oa X. TZzea S Spl(S, X) Zs emZowee? wZ^Zz a
caaoaZcaZ Zzyper^äZzZer s/rac/arc. PZzc ZzoZomorpZzZc sec/fon a/Jfora(7s 0 7$, 0s)
ZmZacee? Zry f/zZs Zzyper/cä/zZer sfracfare Zs 77s.

In this theorem, S does not have to be smooth. We use Verbitsky's dehnition of a

Singular hyperkähler variety as in [23], Dehnition 6.4.

We can now prove Theorem 3.

Prcc/q/TZzcarcra 3. Let X be a smooth projective irreducible hyperkähler variety,
and let 6 be a stable hyperholomorphic bündle on X. Assume that S has a non-
trivial positive-dimensional family of deformations, and let s be a smooth point of
S Spl(S, X) such that 7s> is positive dimensional. We can choose a smooth

quasi-projective variety S" with a complex point s' and a family SV of stable hyper-
holomorphic deformations of S on X parametrized by S" such that the moduli map
S" -> S maps s' to s and is etale at s'. Since 77s induces a symplectic form on 7^,
the map

2

&(Gs')i: A ^ C

is surjective as it identihes with 77^ under the isomorphism TVy /s,s- The
result now follows from Theorem 16.

In order to prove Theorem 4, we need to recall some well-known results on defor-
mations of hyperkähler varieties. Everything is contained in [4], Section 8 and [23],
Section 1. See also [10], Section 1 for a similar discussion. Let X be an irreducible
hyperkähler variety with given Kähler class a>. Let 77 be a holomorphic everywhere
non-degenerate 2-form on X. Let g be the Beauville-Bogomolov quadratic form on

//^(X, Z), and consider the complex projective plane P in P(//^(X, C)) generated

by 77, 27 and a>. There exists a quadric 2 of deformations of X given the elements

a G P such that g(a) 0 and + ä) > 0.

Recalling that the tangent bündle of X comes with an action of the groups of
quaternions of norm 1 given by the three complex structures /, /, X, which satisfy
the quaternionic relations X^ —Id, // —77 X, this quadric
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2 of deformations of X corresponds to the complex structures on X of the form
a/ + &/ + cK with a, Z>, c being three real numbers such that a^ + Z)^ + c^ 1

- those complex structures are always integrable. The quadric 2 is called a twistor
line.

In this setting, let d be the cohomology class of a divisor in //^(X, C), and let
of be in 2- This corresponds to a deformation X« of X. The cohomology class d
corresponds to a rational cohomology class in //^(X«, C), and it is the cohomology
class of a divisor if and only if it is of type (1,1), that is, if and only if d) 0,

where by q we also denote the bilinear form induced by q. Indeed, d is a real

cohomology class, so if q(aqd) 0, then q(ä,d) 0 and d is of type (1,1).
It follows from this computation that d remains the class of a divisor for all the

deformations of X parametrized by 2 if and only if q(p, d) q(o>, d) 0.

We will work with the varieties ^, the case of generalized Kummer varieties

being completely similar. Let us Start with a K3 surface 5, projective or not, and let
us consider the irreducible hyperkähler variety X S ^ given by the Douady space
of n points in S - this is Kahler by [22]. In the moduli space Af of deformations
of X, the varieties of the type form a countable union of smooth hypersurfaces

//;. On the other hand, the hyperkähler variety admits deformations parametrized by
a twistor line, and those cannot be included in any of the //;. Indeed, if that were the

case, the class e of the exceptional divisor of X would remain algebraic in
all the deformations parametrized by the twistor line. But this is impossible, as e is a

class of an effective divisor, which implies that q(o>, e) > 0, tu being a Kähler class,

see [10], 1.11 and 1.17.

This computation actually shows that the twistor lines are transverse to the hy-
persurfaces //;. Now the preceding definition of the twistor line parametrizing de-

formations of an irreducible hyperkähler X shows that it moves continuously with
deformations of X. Counting dimensions, this implies that the union of the twistor
lines parametrizing deformations of Douady Spaces of n points on K3 surfaces cover
a neighborhood of the //; in M. We thus get the following.

Lemma 21. Le£ /i zz pas/dve Zntege?; and Ze£ Xka sraaZZ prq/ecdve de/arraadan
a/dze Danady space a/n pa/nfa on a K3 snz/ace. Tden dzere ev/sfa a K3 snz/ace £
and a Ov/sfar Z/ne 2 pararae/Wz/ng de/arraadans a/X^ sncZz zdaf X Zs a de/arraadan
o/X^ aZang 2-

The next result of Verbitsky is the main remaining ingredient we need to prove
Theorem 4. Recall first that if f? is a hyperholomorphic vector bündle on an irreducible
hyperkähler variety X, then by definition the bündle f? deforms as X deforms along
the twistor line.

Theorem 22 ([23], Corollary 10.1). Le£ X de an ZrredncZdZe Zzyper&äZzZer vane/y,
and Ze£ S fea stadZe ZzyperZzoZoraorpZn'c vecfor dnndZe an X, and Ze£ Spl(f?, X) de

dze redncdan a/dze caarse raadnZZ space a/stadZe de/arraadans a/f? an X.
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TTzezz ^Zze cazzozzzcaZ Zzy/?£rZ:äZzZ£r s/rzzctzzre ozz Spl(f?, X) zs sz/cZz ^Zzotf z/ 2 zs ^Zze

z^vz.st6>r Zzzze p<:/razzz£zWzzzzg de/öZTzzßft'özzs o/ X, 2 ^ ^ z^tTstor Zzzze p<:/razzz£zWzzzzg

J^/örm^zozz^ o/Spl(S, X) sz/cZz ^Zzotf z/a G 2> Spl(f?, X)« Spl(f?«,

This implies that the deformations of a hyperholomorphic bündle on X actually
deform as the complex structure of X moves along a twistor line. We can now prove
our last result.

Proo/o/TZzeorera 4. Let X be an irreducible projective hyperkähler variety that is

a deformation of the Douady space of zz points on some K3 surface. By a Standard

Hilbert scheme argument, in order to prove the Lefschetz conjecture for X, it is

enough to prove it for an open set of the moduli space of projective deformations of
X. By Lemma 21, we can thus assume that X is a deformation of some along a

twistor line 2> where *S is a K3 surface. Let f? on be a sheaf as in the Statement

of the theorem. By Theorems 22 and 3, we get a bündle f?' which still satisfies the

hypothesis of Theorem 16. This concludes the proof.

One can use this theorem with the tangent bündle of which is stable by
Yau's theorem and hyperholomorphic since its first two Chern classes are Hodge
classes for all the complex structures induced by the hyperkähler structure of
Unfortunately, white Verbitsky announces in [24], after the proof of Corollary 10.24,
that those have some unobstructed deformations for zz 2 and zz 3,it seems that

if zz 2, the tangent bündle might be actually rigid. However, we get the following
result by applying the last theorem to the tangent bündle.

Corollary 23. Lef zz Z?£ a posift've zzztegez: Assz/zzze ^Zzotf/or every X3 szzz/ace S, ^Zze

tazzgezz^ Zzz/zzdZe 7^[n] Zzas a zzozz/rzvzaZ poszYzVe-dzVzzmsztfzzaZ/azzzzZy o/J^/brzzzß-
zfozzv 77z£zz f/z<? Le/sc/ze£z cozzj^cfzzre zs Zrz/e zzz 2/or azzy prq/£czfv£ J^/brzzzß/^zozz

q/TZze Doz/arfy space c/zz pozzzfa ozz a X3 szzz/ace.

Remark 24. The conditions of the corollary might be actually not so difficult to
check. Indeed, Verbitsky's Theorem 6.2 of [23] which computes the obstruction to
extending first-order deformations implies easily that the obstruction to deform 7^[«j
actually lies in £2^[„]), where we see this group as a subgroup of

under the isomorphism 7^[„] ~ ^[„] •

Now the dimension of does not depend on zz for large zz, see for
instance [7], Theorem 2. As a consequence, the hypothesis of the Corollary would
be satisfied for large zz as soon as the dimension of Ext* goes to infinity
with zz.
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Remark 25. Of course, our results might be apply to different sheaves. In the recent

preprint [16], Markman announces the construction of - possibly twisted - sheaves

that, combined with our results, proves the Lefschetz Standard conjecture in degree
2 for deformations of Hilbert schemes of K3 surfaces.

Remark 26. The use of nonprojective Kahler varieties in these results dealing with
the Standard conjectures can be a little surprising. Indeed, results like those ofVoisin
in [26] show that there can be very few algebraic cycles, whether Coming from
subvarieties or even from Chern classes of coherent sheaves, on general nonprojective
Kahler varieties.
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