
Smooth compactness of self-shrinkers

Autor(en): Colding, Tobias H. / Minicozzi, William P.

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 87 (2012)

Persistenter Link: https://doi.org/10.5169/seals-283486

PDF erstellt am: 19.09.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-283486


Comment. Math. Helv. 87 (2012), 463^75 Commentar« Mathematici Helvetici
DOI 10.4171/CMH/260 © Swiss Mathematical Society

Smooth compactness of self-shrinkers

Tobias H. Colding and William P. M inicozzi II*

Abstract. We prove a smooth compactness theorem for the space of embedded self-shrinkers
in R3. Since self-shrinkers model singularities in mean curvature flow, this theorem can be

thought of as a compactness result for the space of all singularities and it plays an important role
in studying generic mean curvature flow.

Mathematics Subject Classification (2010). 53C44.

Keywords. Geometric flows, mean curvature flow, self-shrinker, singularities.

0. Introduction

A surface E C M3 is said to be a self-shrinker if it satisfies

(x,n)tf lyA (0.1)

where H divw is the mean curvature, x is the position vector, and n is the unit
normal. This is easily seen to be equivalent to that E is the t — 1 time-slice1 of
a mean curvature flow ("MCF") moving by rescalings, i.e., where the time t slice is

given by v^FE.
Self-shrinkers play an important role in the study of mean curvature flow. Not

only are they the simplest examples (those where later time slices are rescalings of
earlier), but they also describe all possible blow ups at a given singularity of a mean
curvature flow. The idea is that we can rescale a MCF in space and time to obtain

a new MCF, thereby expanding a neighborhood of the point that we want to focus

on. Huisken's monotonicity, [H3], and Ilmanen's compactness Theorem, [II], give a

subsequence converging to a limiting solution of the MCF; cf. [Il], [WI]. This limit,
which is called a tangentflow, achieves equality in Huisken's monotonicity and, thus,
its time t slice is \/—t E where E is a self-shrinker.

The main result of this paper is the following smooth compactness theorem for
self-shrinkers in M3 that is used in [CM 1].

*The authors were partially supported by NSF Grants DMS 0606629 and DMS 0405695.
1In [H3], self-shrinkeiB are time t —^ slices of self-shrinking MCFs, these satisfy H (x,n)
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Theorem 0.2. Given an integer g > 0 and a constant V > 0, the space of smooth

complete embedded self-shrinkers E C M3 with

• genus at most g,

• 3E 0,

• Area (BR(x0) n E) < VR2 forali x0 e M3 and all R > 0

is compact.
Namely, any sequence of these has a subsequence that converges in the topology

of Cm convergence on compact subsets for any m > 2.

The surfaces in this theorem are assumed to be homeomorphic to closed surfaces

with finitely many disjoint disks removed. The genus of the surface is defined to be
the genus of the corresponding closed surface. For example, an annulus is a sphere
with two disks removed and, thus, has genus zero. Below, we will use that the genus
is monotone in the sense that if Ei C E2, then the genus of Ei is at most that of E2-

As mentioned, the main motivation for this result is that self-shrinkers model

singularities in mean curvature flow. Thus, the above theorem can be thought of as

a compactness result for the space of all singularities. In practice, scale-invariant
local area bound, smoothness, and the genus bound will automatically come from
corresponding bounds on the initial surface in a MCF. Namely:

• Area bounds are a direct consequence of Huisken's monotonicity formula, [H3] 2

• Ilmanen proved that in M3 tangent flows at the first singular time must be smooth
and have genus at most that of the initial surface; see Theorem 2 of [II] and

page 21 of [II], respectively.

Conjecturally, the smoothness and genus bound hold at all singular times:

• Ilmanen conjectured that tangent flows are smooth and have multiplicity one at

all singularities. If this conjecture holds, then it would follow from Brakke's
regularity theorem that near a singularity the flow can be written as a graph of
a function with small gradient over the tangent flow. Combining this with the
above mentioned monotonicity of the genus of subsets and a result of White,
[W3], asserting that the genus of the evolving surfaces are always bounded by
that of the initial surface, we get conjecturally that the genus of the tangent flow
is at most that of the initial surface.

Our compactness theorem will play an important role in understanding generic
mean curvature flow in [CM1]. Namely, in [CM1], we will see that it follows
immediately from compactness together with the classification of (entropy) stable self-
similar shrinkers proven in [CM1] that given an integer m and 8 > 0, there exists an
€ €(m, 8, V, g) > 0 such that:

2See, for instance, Corollary 2.13 in [CM1].
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• For any unstable self-similar shrinker in M3 satisfying the assumptions ofTheorem

0.2, there is a surface <5-close to it in the Cm topology and with entropy less

than that of the self-similar shrinker —€.

This is, in particular, a key to showing that mean curvature flow that disappears in a

compact point does so generically in a round point; see [CM 1] for details and further
applications.

The simplest examples of self-shrinkers in M.3 are the plane M2, the sphere of
radius 2, and the cylinder S1 x M1 (where the S1 has radius V2). Combining [H3],
[H4], and Theorem 0.17 in [CM 1] it follows that these are the only smooth embedded
self-shrinkers with H > 0 and polynomial volume growth.3 It follows from this that
spheres and cylinders are isolated (among all self-shrinkers) in the C2-topology. On
the other hand, by Brakke's theorem, [Br], any self-shrinker with entropy sufficiently
close to one (which is the entropy of the plane) must be flat, so planes are also isolated
and we see that all three of the simplest self-shrinkers are isolated. Moreover, one of
the key results of [CM 1] (see Theorem 0.7 there) was to show that these are the only
(entropy) stable self-shrinkers. In sum, if a self-shrinker has H > 0 or is stable, then
it is one of the three simplest types. Moreover, all of these are isolated among all self-
shrinkers. 4 However, there are expected to be many examples ofself-shrinkers in M3

where H changes sign or that are unstable. In particular, Angenent, [A], constructed

a self-shrinking torus of revolution and there is numerical evidence for a number of
other examples; cf. Chopp, [Ch], Angenent-Chopp-Ilmanen, [AChI], Ilmanen, [12],
and Nguyen, [NI], [N2]. These examples suggest that compactness fails to hold
without a genus bound.

There are three key ingredients in the proof of the compactness theorem. The
first is a singular compactness theorem that gives a subsequence that converges to a
smooth limit away from a locally finite set of points. Second, we show that if the

convergence is not smooth, then the limiting self-shrinker is L-stable, where L-stable
means that for any compactly supported function u we have

\x\2
(-u L u) e"^~ > 0. (0.3)

s
Here L is the second order operator from [CM1] that is given by

1
1 1

Lu Au + \Afu {x,Vu} + -u. (0.4)

The last ingredient is the following result from [CM 1]:

3Huisken, [H3], [H4], showed that these are the only smooth embedded self-shrinkers with H > 0, \A\
bounded, and polynomial volume growth. In [CM1], we prove that this is the case even without assuming a

bound on \A\.
4Both the classification of stable self shrinkers from [CM1] and that those are isolated are implicitly used

in the application in [CM1], mentioned above, of our compactness theorem to prove that the € > 0 above can
bechosen independently of the self-shrinker and not just independently for all self-shrinkers a definite distance

away from one of the stable ones.
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Theorem 0.5 ([CM 1]). There are no L-stable smooth complete self-shrinkers without
and with polynomial volume growth in~Rn+1.

To keep this paper self-contained, we will prove Theorem 0.5 in an appendix.

Finally, we note that the results of [CM4]-[CM8] suggest that there is a compactness

theorem for embedded self-shrinkers even without an area bound. However,
as mentioned above, then it follows from Huisken's monotonicity formula that self-
shrinkers arising as tangent flows at singularities of a MCF starting at a smooth closed
surface automatically satisfy an area bound for some constant depending only on the
initial surface.

0.1. Conventions and notation. A one-parameter family Mt of hypersurfaces in
M"+1 flows by mean curvature if

(BtX)-1 -Hn, (0.6)

where n is the outward unit normal and the mean curvature H is given by H div n.
With this convention, H is n/R on the «-sphere of radius R inWl+l and H is k/R on
the "cylinder" Sk x Mn~k C Mn+1 of radius R. If e^ is an orthonormal frame for E,
the coefficients of the second fundamental form are defined to be a^ (V^.ey, «).
In particular, we have

7ein -aijej. (0.7)

Since (Vnn,n) 0, the mean curvature is H (Vej«,ej) —an where by
convention we are summing over repeated indices.

1. The self-shrinker equation

The starting point for understanding self-shrinkers is to realize that there are several
other ways to characterize self-shrinkers that are equivalent to the equation (0.1):

(1) The one-parameter family of hypersurfaces ^/^tJj C Mn+1 satisfies MCF.

(2) E is a minimal hypersurface in ffin+1, not with the Euclidean metric <5;,-, but
-Is 12

with the conformali}' changed metric gfj e 'm

»B+ l(3) E is a critical point for the functional F defined on a hypersurface E
by

C l |2

F(E) (4jt)-n/2 / e=^~dfi. (1.1)

The characterization (2) is particularly useful since it will allow us to use local
estimates and compactness theorems for minimal surfaces to get corresponding results
for self-shrinkers.
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1.1. The equivalence of (1), (2), and (3). The fact that (1), (2), and (3) are equivalent
to satisfying the self-shrinker equation (0.1) is well known, but we will include a short

proof of this in the next two lemmas.

Lemma 1.2. If a hypersurface E satisfies (0.1), then Mt V-1 E satisfies MCF

HMt -lj2T^ (L3)

Conversely, if Mt is an MCF, then Mt V — t M-\ if and only if Mt satisfies (1.3).

Proof. If E is a hypersurface that satisfies (0.1), then we set Mt V —t E and

x(p,t) — V—tpforp e E. It follows thatnmt (x (p, t)) n^(p), Hm((x(p t))
Z0.,andBtx —^=t. Thus, (â,*)-1 -j$L -HMt(x(p,t)). This proves
that Mt is an MCF and shows (1.3).

On the other hand, suppose that Mt is an MCF. A computation shows that

(-0* dt (-j=) -t Btx + X-. (1.4)

Mt _If-^4= M_i,then
v—t

0 (-f)i (Bt(-^=\ ,«m_i) -t {BtX,nM_x) + ^(x,nM_i). (1.5)

Hence, since M^ is an MCF, it follows that

(x,«Af_1)
Hm-i -(o^,«m_i) • (1.6)

The equation for Hm( for general t follows by scaling.
Finally, if an MCF Mt satisfies (1.3), then, by the first part of the lemma, Nt

V—FM_i is an MCF with the same initial condition as Mt ; thus Mt Nt for t > — 1.

D

The next lemma, which is due to Huisken, [H3] (cf. Ilmanen, page 6 of [12], [A];
see also [CM1]), computes the first variation of the F functional; since it is so short,
we include the proof here. The equivalence of both (2) and (3) with (0.1) follows
from this lemma.

Lemma 1.7. Ifx' fn is a compactly supported normal variation ofa hypersurface
E cl"+1 and s is the variation parameter, then -^ F(Jjs) is

(4*r)"7y f[^H-^-^jdß. (1.8)
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Proof The first variation formula (for volume) gives

(dp)' f H dp,. (1.9)

The s derivative of log I (Ajt)~^ e 4~~ J is given by — ¦£¦ (x,n). Combining this with
(1.9) gives (1.8).

" " "
D

1.2. Self-shrinkers as minimal surfaces. We saw that self-shrinkers in M"+1 are
minimal hypersurfaces for the conformally changed metric

giJ Q-^8ij. (1.10)

We will use this in the next section to get local estimates and singular compactness,
but first investigate these metrics a bit. In particular, we will see that these metrics
cannot be made complete and, thus, the compactness of the space of self-shrinkers
does not follow from compactness results for minimal surfaces such as the Choi-
Schoen, [CS], compactness for positive Ricci curvature; cf. [CM2]. In fact, it turns
out the Ricci curvature of these metrics does not have a sign and goes to negative
infinity at infinity.

We begin with the obvious observation that the distance to infinity is finite since

J0 e~^n dt < oo. Furthermore, for n > 2, the scalar curvature R of the metric

u «-i Sij is given by
~ —4ft -(H+ 3)
R u~^~ Au. (1.11)

n — 1

(\—n) |;t|2 „
Thus, for our conformai metrics, we have u e 8« Using that Ae-'

ef(Af + |V/|2), A|x|2 2(n + 1) onl"+1, and |V|x|2|2 4|x|2, we get
that

((n-1)2 n2 -1\Au u{ ± i- x2 (1.12)
V 16n2 ' '

An J

It follows that the scalar curvature is

R u^ [n + l It2 e^" [n + 1 — \xf (1.13)
V An J V An J

There are a few interesting consequences of this formula. First, the scalar curvature
does not have a sign; it is positive when \x \ is small and then becomes negative near

infinity. Second, as \x \ -> oo, the scalar curvature goes to negative infinity. It follows
that the space is not complete; even though infinity is at a finite distance, there is no

way to smoothly extend the metric to a neighborhood of infinity.

5See page 184 in [SY], the formula there is for an «-dimensional manifold, so we have shifted n by one.
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2. Compactness away from a locally finite set of singular points

We specialize now to self-shrinkers in M 3. We will use the following well-known local
singular compactness for embedded minimal surfaces in any Riemannian 3-manifold.

Proposition 2.1. Given a point p in a Riemannian 3-manifold M. There exists
R > 0 such that thefollowing is true: Suppose Ey are embedded minimal surfaces in
BiR Ë2r(p) C M with BJjj C BB2R- Ifeach Ey has area at most V and genus
at most g for some fixed V, g, then there is a finite collection ofpoints x^, a smooth
embedded minimal surface E C Br with 3E C BBr and a subsequence of the Ey 's

that converges in Br (with finite multiplicity) to E away from the x^ 's.

There are a number of ways to prove this proposition. For instance, one can use
the bounds on the area and genus to get uniform total curvature bounds on B^r/2 f~l Ey
(this follows from the local Gauss-Bonnet estimate given in Theorem 3 of [II]) and

then argue as in Choi-Schoen, [CS]. Alternatively, the proposition is an immediate

consequence of the much more general compactness results of [CM4]-[CM8] that
hold even without the area bound.

Combining Proposition 2.1 with a covering argument (and going to a diagonal
subsequence) gives a global singular compactness theorem for self-shrinkers:

Corollary 2.2. Suppose that Jùi C M3 is a sequence of smooth embedded complete
self-shrinkers with genus at most g, 3Ej 0, and the scale-invariant area bound

Area(BR(xo)nZi)<VR2 (2.3)

for all Xo e M3 and all R > 0. Then there is a subsequence (still denoted by Ej),
a smooth embedded complete (non-trivial) self-shrinker E without boundary, and a
locallyfinite collection ofpoints S C E so that "Ei converges smoothly (possibly with
multiplicity) to E offof S.

A set S C M3 is said to be locally finite if Br C\ S is finite for every R > 0.

Proof. The compactness follows by covering M3 by a countable collection of small
balls on which we can apply Proposition 2.1 and then passing to a diagonal
subsequence. To see that the limit must be non-trivial, observe that every self-shrinker
must intersect the closed ball bounded by the spherical self-shrinker. This follows
from the maximum principle since the associated MCF's both disappear at the same

point in space and time. D
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3. Showing that the convergence is smooth

It remains to show that the convergence is smooth everywhere. ByAllard's theorem,
[Al], this follows from showing that the multiplicity must be one. We will show that

if the multiplicity is greater than one, then the limit E is L-stable where

L A + \A\2-l-(x,V(-)) + l- (3.1)

is the linearization of the self-shrinker equation (see [CM1]).

Proposition 3.2. If the multiplicity of the convergence of the Ej 's in Corollary 2.2 is

greater than one, then E is L-stable.

The idea for the proof of Proposition 3.2 comes from a related argument for
minimal surfaces in [CM9].

Proofof Proposition 3.2. Since the limit surface E C M3 is complete, properly
embedded, and has no boundary, E separates M3 and has a well-defined unit normal
n. By assumption, the convergence of the E;'s to E is not smooth and, thus, by
Allard's theorem [Al] must have multiplicity greater than one.

Existence of a positive solution u of L u 0. Let S be the (non-empty) locally
finite collection of singular points for the convergence. Since the convergence is
smooth away from the yt's, we can choose éj —>- 0 and domains fìjCS exhausting
E \ S so that each Ej decomposes locally as a collection of graphs over Qj and is
contained in the €t tubular neighborhood of E. By embeddedness (and orientability),
these sheets are ordered by height. Let w^~ and w~ be the functions representing the

top and bottom sheets over Qj. Arguing as in equation (7) of [Si2], the difference
Wi w^~ — u>Y satisfies Lwt 0 up to higher order correction terms since the

operator L given by (3.1) is the linearization of the self-shrinker equation (this is

proven in Section 4 in [CM 1]).
Fix some y £ S and set Ui u>i / u>i(y). Since the Wj's are positive (i.e., the

sheets are disjoint), the Harnack inequality implies local Ca bounds (Theorem 8.20

of [GiTr]). Elliptic theory then gives C2'a estimates (Theorem 6.2 of [GiTr]). By
the Arzelà-Ascoli theorem, a subsequence converges uniformly in C2 on compact
subsets of E \ S to a non-negative function u on E \ S which satisfies

Lu=0 and u(y) 1. (3.3)

It remains to show that u extends smoothly across the y^s to a solution of Lu 0.

This follows from standard removable singularity results for elliptic equations once

we show that u is bounded up to each y^. Consider the cylinder Nk (in exponential
normal coordinates) over B€(yk) C E. If € is sufficiently small, then a result ofWhite
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(see the appendix of [W2]) gives a foliation by minimal (in the conformai metric)
graphs Vt of some normal neighborhood of E in Nk so that

v0(x) 0 for all x e B€(yk), and (3.4)

Vt(x) t for all x e BB€(yk).

Furthermore, the Harnack inequality implies that t/C < Vt < C t for some C > 0.

In particular, combining (3.4) with the maximum principle for minimal surfaces (and
the Hausdorff convergence ofthe Ej's to E), we see that Wj is bounded on B€(yk) by a

multiple of its supremum on B€(yk) \ B€/2(yk)- We conclude that u has a removable

singularity at each yt and thus extends to a non-negative solution of Lu Oonall
of E; since u(y) 1, the Harnack inequality implies that u is everywhere positive.

Using u to prove L-stability. We will now use a variation on an argument of
Fischer-Colbrie-Schoen (see, e.g., Proposition 1.26 in [CM2]). Set w logu, so
that

Aw — - IVtül2 -IA\2 + -{x, Vw) - - - IViul2. (3.5)
u

' ' ' ' 2V ' 2
' '

_1T12
Given <p with compact support, applying Stokes' theorem to div \<p e 4 Viu gives

0= / \2<f>(V<f>,Vw) + -\A\2---\Vw\2ii 2
i i e 4

V^|2-|A|2^2--02)e^ =- I (4>L4>)e~^-, (3.6)

where the inequality used 20(V0, Vu;)<02|Vu;|2-|- |V0|2 and the last equality
/ _|X|2\

came from applj'ing Stokes' theorem to div <fi V<p e 4 j. D

Proofof Theorem 0.2. We will argue by contradiction. Suppose therefore that there
is a sequence of smooth complete embedded self-shrinkers Ej ci3 with genus g,
9E 0, and the scale-invariant area bound

Area(BR(xo)nZi)<VR2 (3.7)

for all XqéI3 and all R > 0, but so that Ej does not have any smoothly convergent
subsequences. By Corollary 2.2, we can pass to a subsequence so that the Ej's
converge (possibly with multiplicity) to an embedded self-shrinker E away from a

locally finite set S C E. By assumption, S is non-empty and, by Allard's theorem,
the convergence has multiplicity greater than one. Consequently, Proposition 3.2

implies that E is L-stable. However, Theorem 0.5 gives that no such E exists, giving
the desired contradiction. D
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A. There areno L-stable self-shrinkers

CMH

In this appendix, we will include a proof of Theorem 0.5 from [CM 1] for the reader's
convenience. Throughout, the smooth complete embedded hypersurface E C Mn+1

will be a self-shrinker without boundary and with polynomial volume growth.
We will need the following calculation from [CM1]: The normal part {v,n} ofa

constant vector field v is an eigenfunction of L with

L{v,n) ~{v,n). (A.1)

Proofof Theorem 0.5. We will construct a compactly supported function u that does

not satisfy (0.3). Fix a point p in E and define a function v on E by

v(x) (n(p), n(x)). (A.2)

It follows that v(p) 1, \v\ < 1, and, by (A.l), that Lv \ v. Therefore, given

any smooth function r\, we have

L (r]v) ï}L v + vi Ar] — -{x, Vrç) I + 2{Vrj, Vv)

- r] v + v f Ar} (x, Vrj) I + 2{Vï], Vv).

Taking r\ to have compact support, we get that

(A.3)

— f rjv L(ï}v)e~ T~ —
1 1

Tj2 V2 + TjV2{ Aì] {x,Vïj)

1

+ 2<V* 'Vu >

- ri2 v2 — v2 |V??|2
L2 ' ' "

e 4

vi2
e 4

(A.4)

(A.5)

where the second equality uses Stokes' theorem to j div v2 Vrç2 e 4 j to get

1 -l*l2 f 1 \ -\x\2
- (Vt?2, Vv2} e~^~ - / v2 f rj Ar} + |Vt?|2 - - t?(x, V??) J e^-. (A.6)

If rj is identically one on Br and cuts off linearly to zero on Br+i \ Br, then (A.4)
gives

|2 C _i-ri2 1 /* _,T,2— Ixl

s\-B*
D'e^-- / u2e^^. (A.7)

However, since \v\ < 1 and E has potynomial volume growth, we know that

lim / v e~*~ 0, (A.8)
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so the right-hand side of (A.7) must be negative for all sufficiently large it's. In
particular, when R is large, the function u rjv does not satisfy (0.3). This completes
the proof. D
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