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Some remarks on orbit sets of unimodular rows

Jean Fasel

Abstract. Let A be a d-dimensional smooth algebra over a perfect field of characteristic
not 2. Let UmnC1.A/=EnC1.A/ be the set of unimodular rows of length n C 1 up to
elementary transformations. If n d C 2/=2, it carries a natural structure of group as
discovered by van der Kallen. If n D d 3, we show that this group is isomorphic to a

cohomology group Hd A; GdC1/. This extends a theorem of Morel, who showed that the
set UmdC1.A/= SLdC1.A/ is in bijection with H d A;GdC1/=SLdC1.A/. We also extend
this theorem to the case d D 2. Using this, we compute the groups UmdC1.A/=EdC1.A/
when A is a real algebra with trivial canonical bundle and such that Spec.A/ is rational. We
then compute the groups UmdC1.A/=SLdC1.A/ when d is even, thus obtaining a complete
descriptionof stably free modules of rank d on these algebras. We also deduce fromour computations

that there are no stably free non free modules of top rank over the algebraic real spheres

of dimension 3 and 7.

Mathematics Subject Classification 2010). Primary 13C10, 14C25, 14F43, 19A13, 19G38;
Secondary 14P05.

Keywords. Unimodular rows, Witt and Grothendieck–Witt groups, Milnor–Witt K-theory.

1. Introduction

LetAbe a commutativenoetherian ring and P;Qbe two projectiveA-modules which
are stably isomorphic, i.e., P ° An ' Q °An. The question is to know in which
situations this implies P ' Q. A celebrated theorem of Bass and Schanuel states

that this is always the case if P is of rank strictly bigger than the Krull dimension
of the ring A see [4, Theorem 9.3], or [5, Theorem 2]). If A is an algebra over
an algebraically closed field, then Suslin showed that the result can be extended to
projective modules whose rank is equal to the dimension of the ring ([31]). In general,
this result is wrong as shown by the example of the tangent bundle over the algebraic
real two-sphere.

As a special case of the question, thestably free moduleswere extensively studied.
Let d denote the Krull dimension of A. By Bass–Schanuel’s cancellation theorem,
the study of stably free modules reduces to the case P °A ' AdC1. Such modules
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correspond to unimodular rows of length d C 1. In general, let UmnC1.A/ denote
the set of unimodular rows of length nC1. One sees that GLnC1.A/ acts on the right
on this set, and so does its subgroup EnC1.A/ generated by elementary matrices.
It is not hard to see that a unimodular row a1; :: : ;anC1/ yields a free module
if and only if it is the first row of a matrix in GLnC1.A/. This observation led
to the study of the sets UmnC1.A/=EnC1.A/ and UmnC1.A/=GLnC1.A/ which
is the same as UmnC1.A/=SLnC1.A/). An important step was the discovery by
Vaserstein that Um3.A/=E3.A/ was carrying a natural structure of abelian group
under some conditions on A ([35, Theorem 5.2]). These conditions are for example
satisfied when A is of Krull dimension 2. Inspired by this case, van der Kallen put
a structure of abelian group on UmnC1.A/=EnC1.A/ under some hypothesis on A)
which coincides with the previous one when n D 2. This structure comes from the
following observation: If A D C.X/ is the ring of continuous real functions on some

nice CW-complex X, then the set of maps from X to RdC1 n f0g up to homotopy is
the cohomotopygroup d.X/. In[33], van der Kallen showed that the group lawwas
in some sense algebraic, thus leading to the group structure on UmnC1.A/=EnC1.A/
for any reasonable ring A. The problem is now to actually compute this group and

its quotient UmnC1.A/= SLnC1.A/.
In his recent preprint [23], Morel showed that the group UmdC1.A/=SLdC1.A/

has a cohomological interpretation when A is a d-dimensional smooth algebra over a

field k. Indeed, letKMW
dC1

be the unramifiedMilnor–Witt sheaf. Thena very easy

computation shows thatHd AdC1nf0g; KMW
dC1/ D GW.k/, the Grothendieck–Witt group

of k. Anyunimodular row.a1; : :: ; adC1/ can be seenas a morphismf W
Spec.A/

AdC1 n f0g and one can consider the pull back f h1i/ in Hd A; KMW
dC1

/, where h1i
denotes the unit in GW.k/. Let H.k/ be the A1-homotopy category of smooth
kschemes. One of the main theorems in [23] states that this map induces a bijection
between HomH.k/.A; AdC1 nf0g/ andHd A;KMW

dC1
/. Furthermore, the natural action

of GLdC1.A/ on HomH.k/.Spec.A/; AdC1 nf0g/ gives an action on Hd A; KMW
dC1

/,
which reduces to an action of SLdC1.A/. The quotientHd A;KMW

dC1
/= SLdC1.A/ is

then in bijection with the set of stably free modules of rank d. Thus the above map
induces a bijection UmdC1.A/= SLdC1.A/ Hd A; KMW

dC1
/=SLdC1.A/. For some

technical reasons, Morel has to assume that d 3 to prove this theorem. Observe
also that if the field k is of characteristic different from 2, the group Hd A; KMW

dC1/
coincide with the group Hd A; GdC1/ as defined in [11, Chapter 10] following the
original idea of [3]).

Our first goal in this paper is the following theorem Theorem 4.9 in the text):

Theorem. Let A be a smooth k-algebra of dimension d. Suppose that k is perfect.
Then the map W UmdC1.A/=EdC1.A/ Hd A; GdC1/ is an isomorphism for
d 3.
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This result is also true if d D 2 and the field k is not perfect of characteristic
different from 2. This will be treated in [13] using different methods. Our strategy
is the following: First we show that UmnC1.A/=EnC1.A/ is nothing but the set of
morphisms from Spec.A/ to AnC1 n f0g up to naive homotopy. Here we say that

two morphisms f; g W
Spec.A/ AnC1 n f0g are naively homotopic if there exists a

morphism F W Spec.AOEt / AnC1 n f0g whose evaluations in 0 and 1 are f and g
respectively. Then we show that there is an exact sequence of pointed sets

SLn.A/=En.A/ SLnC1.A/=EnC1.A/

UmnC1.A/=EnC1.A/ UmnC1.A/= SLnC1.A/ 0:

which turns out to be an exact sequence of groups in some situations. Next we show
that the set GLn.A/=En.A/ is nothing else than HomH.k/.Spec.A/; Sing GLn/ if
n 3. This is one of the results of [23], but we spend some lines to explain it in
Section 4. The theorem is an obvious consequence of this fact.

Our next result extends the theorem of Morel to the case d D 2 Theorem 4.11).

Theorem. Let A be a smooth k-algebra of dimension 2, where k is a field of
characteristic 0. The homomorphism induces an isomorphism

x W
Um3.A/= SL3.A/ ' H2 A;G3 /= SL3.A/:

The idea to prove this result is to use a result of Bhatwadekar and Sridharan
relating Um3.A/= SL3.A/ with the Euler class group E.A/ and the weak Euler class

group E0.A/ see [8]). Namely, there is an exact sequence

0 Um3.A/= SL3.A/ E.A/ E0.A/ 0:

We then use the fact that ifA is of smooth of dimension 2 then E.A/ coincide with the
Chow–Wittgroup CH2.A/ andE0.A/ is just the ChowgroupCH2 A/. Acomparisonfof exact sequences then yields the result.

Next we compute the group Hd A; GdC1/ where A is a real algebra satisfying
some extra conditions:

Theorem. LetAbe a smoothR-algebra of dimension d with trivial canonicalbundle.
Suppose that X D Spec.A/ is rational. Then

H d X; GdCj / ' Hd X; IdCj / 'M
C2C

Z

where C is the set of compact connected components of X.R/ endowed with the
Euclidian topology).
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We also show that when A is even-dimensional, then GLdC1 acts trivially on

Hd A; GdC1/ and we can completely compute the set of stably free modules of rank

d in that case.

Theorem. Let A be a smooth R-algebra of even dimension d with trivial canonical
bundle. Suppose that X D Spec.A/ is rational. Then the set of stably free modules

of rank d is isomorphic to LC2C Z, where C is the set of compact connected
components of X.R/ endowed with the Euclidian topology).

In odd dimension, things are more complicated. If S3 and S7 denote the real

algebraic spheres of dimension 3 and 7, we show that all the stably free modules of
top rank on these spheres are free.

1.1. Conventions. Throughout the article, k will be a commutative field of
characteristic different from 2. All k-algebras are commutative and essentially of finite
type over k. If A is such an algebra and p is any prime ideal in A, we denote by

k.p/ the residue field in p. If p is of height n, we denote by p the k.p/-vector
space Extn

Ap k.p/; Ap/ which is of dimension 1 if the ring is regular). When we

write Wz k.p//, we always mean theWitt group of k.p/-vector spaces endowed with
symmetric isomorphisms for the duality Homk.p/._; p/. The Witt group Wz k.p//
is a module over the classicalWitt ring W.k.p// of k.p/. If h i denotes the class of

2 k.p/ in the classical Witt group, and is any element of Wz k.p//, we denote
by h i the product of h i and

2. Unimodular rows and naive homotopies of maps

2.1. Naive homotopies. Let A be a k-algebra, where k is a field. For any m; n 2 N
such that m n, let Umm;n.A/ be the set of surjective homomorphisms An
Am. Let En.A/ be the subgroup of SLn.A/ generated by the elementary matrices.
This group acts on the right) on Umm;n.A/ and we denote the set of orbits by
Umm;n.A/=En.A/. In particular, when m D 1 we get the set of unimodular rows
under elementary transformations, and when m D n we get the set GLn.A/=En.A/,
which is a group when n 3.

For any m; n as above, denote by V.m; n/ the ideal ofAmn seen as theset ofm n
matrices) generated by the m m minors. Denote by D.m;n/ the open subscheme

Amn n V.m;n/ of Amn. In particular, D.1; n/ D An n f0g and D.n; n/ D GLn.k/.
Let X; Y be two schemes over k. We say that two homomorphisms f;g W X Y

arenaively homotopic if there existsamorphismF
W X A1 Y such thatF.0/ D f

and F.1/ D g where F.i/ denotes the evaluation in i D 0; 1. We consider the
equivalence relation generated by naive homotopies and we denote by HomA1.X; Y /
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the set of equivalence classes of morphism from X to Y If X D Spec.A/, observe

that Hom.X;D.m; n// D Umm;n.A/ and we can identify the naivehomotopy classes
as follows:

Theorem 2.1. Let A be a smooth k-algebra and X D Spec.A/. Then

HomA1.X; D.m; n// D Umm;n.A/=En.A/

for any m;n.

Proof. First notice that any elementary matrix is naively homotopic to the identity.
Let L and L0 be two elements of Umm;n.A/. Suppose that there is an element M in
Umm;n.AOEt / such that M.0/ D L and M.1/ D L0. Consider the exact sequence

0 P AOEt n M
AOEt m 0

where P is the kernel of M. Notice that P is projective, and therefore it is extended
from A by [18] or more generally [27] and [28]), i.e., P D P.0/OEt But P.0/ is
defined by the following sequence

0 P.0/ An L Am 0:

Comparing the two split) exact sequences

0 P.0/OEt AOEt n M
AOEt m 0

0 P.0/OEt AOEt n L
AOEt m 0;

we see that there exists an automorphism of AOEt n such that the diagram commutes.
Observe that .0/ D Id. By [37], 2 En.AOEt / here, the referee pointed out that
Vorst’s results can be greatly generalized using the work of Popescu, see [27] and

[28] again). Evaluating at t D 1, we get L0 D L .1/. Thus the result is proved.

2.2. The groupstructure onUmn.A/=En.A/. The universal weakMennicke symbol

on the set Umn.A/=En.A/ is the free group WMSn.A/ with generators wms.v/
for all v 2 Umn.A/ and relations

i) wms.v/ D wms.vg/ for any g 2 En.A/;
ii) if x; v2; :: : ;vn/ and .1 x; v2; :: : ;vn/ are both unimodular, then

wms.1 x; v2; :: : ;vn/ wms.x;v2;: : : ; vn/ D wms.x.1 x/; v2; : : : ; vn/:
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Remark 2.2. The readerfamiliar with weak Mennicke symbols might have remarked
that this definition is different from the original one see [33, §3.2]). However, both
definitions coincide when n dim.A/ C 4/=2 by [34, Theorem 3.3].

By definition, there is a map wmsW Umn.A/=En.A/ WMSn.A/. In [33,
Theorem 4.1], it is proven that this map is a bijection under certain conditions. In the
same paper, it is shown that WMSn.A/ is abelian in that case ([33, Theorem 3.6]).
We condense these informations in the next result:

Theorem 2.3 van der Kallen). Let A be a commutative ring of Krull dimension

d 2. Then the map wmsW Umn.A/=En.A/ WMSn.A/ is a bijection for any

n d C 4/=2. Moreover, WMSn.A/ is an abelian group.

2.3. An exact sequence. For n 1 Consider the morphism of algebraic groups
SLn SLnC1 sending amatrixM to the matrix 1 0

0 M Consider also the morphism

SLnC1 AnC1 n f0g sending a matrix to its first row. We get a sequence

SLn SLnC1 AnC1 n f0g:

If A is a smooth k-algebra, we apply the functor HomA1.A; _/ to this sequence to get
a sequence of pointed sets where UmnC1.A/=EnC1.A/ is pointed by OE1; 0; : : : ; 0

SLn.A/=En.A/ SLnC1 EnC1.A/ UmnC1.A/=EnC1.A/:

This sequence of pointed sets is exact for quite general rings A:

Proposition 2.4. Let A be a commutative ring of dimension d. For n 2, the
sequence of pointed sets

SLn.A/=En.A/ SLnC1 EnC1.A/ UmnC1.A/=EnC1.A/

is exact. If moreover n D d and d 3, then it is an exact sequence of groups.

Proof. We begin by proving the first assertion. Notice first that the sequence is
clearly a complex. Let M 2 SLnC1.A/ be such that there exists E 2 EnC1.A/ with
ME D 1 0

M0 for some M0 2 GLn.A/. There is then a matrix F 2 EnC1.A/ such

0 M0 NowM 1FM is in EnC1.A/ since the latter is normal inthat FME D
1 0

SLnC1.A/ for n 2 by [32]. Therefore M.M 1FM/E comes from SLn.A/ and

the sequence is exact.

If n D d and d 3 the terms in the sequence are groups. Moreover, the map

SLnC1.A/=EnC1.A/ UmnC1.A/=EnC1.A/ is a homomorphism of groups by [33,
Theorem 5.3 ii)].
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Now the cokernel of the map SLnC1.A/=EnC1.A/ UmnC1.A/=EnC1.A/ is
just UmnC1.A/= SLnC1.A/ which is the set of isomorphism classes of stably free
modules of rank n over A. The following result is an obvious consequence of the
above proposition, but we state it for further reference.

Theorem 2.5. Let A be a commutative ring of dimension d. For any n 2, there is
an exact sequence of pointed sets

SLn.A/=En.A/ SLnC1.A/=EnC1.A/

UmnC1.A/=EnC1.A/ UmnC1.A/= SLnC1.A/ 0:

If n D d and d 3, this is an exact sequence of groups.

3. Computations of some cohomology groups

3.1. The sheaf G. In this section, we briefly recall the definition and first properties
of the sheaf Gj for any j 2 Z) defined in [10, Definition 3.25]. More precisely, we
will exhibit a flasque resolution of Gj which will facilitate further computations.

If X is a regular scheme over k, consider the Gersten–Witt complex ([2, Theorem

7.2], recall our conventions about Wz

M
xp2X.p/

Wz k.xp// d M
xpC12X.pC1/

Wz k.xpC1// :

Choosing a generator of p for any xp, we obtain isomorphisms W.k.p//
Wz k.p//. Consider the fundamental ideal I.k.p// of even dimensional quadratic
forms in W.k.p//, and its powers I j k.p// for any j 2 Z where Ij k.p// D
W.k.p// ifj < 0 by convention. For any j 2 Z, we denote by zIj k.p// the image

of I j k.p// under the isomorphism W.k.p// Wz k.p//. Notice that this
definition is independent of the choice of the isomorphism W.k.p// Wz k.p// ([11,
Lemma E.1.12]).

It turns out that the differential d respects the subgroups zIj k.xp// ([11,
Theorem 9.2.4] or [15, Theorem 6.4]) and therefore for any j 2 Z we get a complex

C.X; Ij /:

M
xp2X.p/

zIj p k.xp//
dI M

xpC12X.pC1/
zI j p 1 k.xpC1// :
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This complex can be seen as a flasque resolution of a sheaf I j on X, which is
the sheaf associated to the presheaf j defined on any open subset U X by
j U / D H0.C.U; Ij// ([10, §3]).

For any xp and any n 2 Z, consider the group

xI
n k.xp// WD I n k.xp//=InC1 k.xp//:

It is easily seen that xIn.k.xp// WD zIn.k.xp//= zI nC1.k.xp// ([11, Lemma E.1.13]).
Therefore we obtain a complex C.X; xIj /:

M
xp2X.p/

xIj p k.xp//
dI M

xpC12X.pC1/

xIj p 1 k.xpC1//

which fits in an exact sequence of complexes

0 C.X; IjC1/ C.X;Ij / C.X; xIj/ 0

for any j 2 Z observe that ifj < 0, the right hand side is trivial). If xIj is the sheaf
associated to the complex C.X; xI j /, then by definition we obtain an exact sequence

of sheaves on X:

0 I jC1 I j xIj 0:

Now there is a complex in Milnor K-theory C.X;KMj / ([16, Proposition 1]):

M
xp2X.p/

KM
j p.k.xp//

dK M
xpC12X.pC1/

KM
j p 1.k.xpC1// :

Again, this complex can be seen as a flasque resolution of a sheaf KMj on X. For any

n k.xp// xIn.k.xp// definedxp and any n 2 N, there is a homomorphism sn W KM
by mapping an elementary symbol fa1; : : : ; ang to the class of the n-fold Pfister form

hha1; : : : ; anii modulo I nC1.k.xp// ([20, Theorem 4.1]). These homomorphisms
yield a morphism of complexes C.X; KMj / C.X; xI j / for any j 2 N ([11,
Theorem 10.2.6]). We can therefore take the fibre product of the complexes C.X; KMj /
and C.X; Ij/ over C.X; xIj / to get a complex C.X; Gj /

M
xp2X.p/

zGj p k.xp//
dG M

xpC12X.pC1/
zGj p 1 k.xpC1//
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which is a flasque resolution of a sheaf Gj on X. Here the groups zGj p.k.xp// are
the fibre products

zGj p.k.xp// zI j p.k.xp//

j p k.xp// xI j p.k.xp//.KM

Notice that the group zGj p.k.xp// is also twisted by the vector space p. When the
vector space is canonically isomorphic to k.xp/, we drop the twiddle. By definition,
we get an exact sequence of sheaves on X

0 I jC1 Gj KMj 0

for any j 2 Z.
If A be a smooth k-algebra of dimension d, the above sequence of sheaves gives

an exact sequence

Hd A; I jC1/ Hd A; Gj / Hd A; KMj / 0

for any j 2 N. The natural map of sheaves GjC1 I jC1 gives a surjective
homomorphism Hd A; GjC1/ Hd A; I jC1/ and we get an exact sequence

Hd A; GjC1/ Hd A; Gj/ Hd A; KMj / 0

for any j 2 N. By definition, Hd A; Gd / is the Chow–Witt group CHd A/ asfd / is the ChowgroupCHd A/.defined in[3]or [11,Definition 10.2.14]andHd A; KM
Putting everything together, we have:

Proposition 3.1. Let A be a smooth k-algebra of dimension d. There is an exact
sequence

Hd A;GdC1/ CHd A/ CHd A/ 0:f
3.2. The sheafKMW. First recall the following definition from [21, Definition 5.1]:

Definition 3.2. Let F be a field possibly of characteristic 2). Let KMW F / be the
unitary, associative) Z-graded ring freely generated by the symbols OEa of degree 1

with a 2 F and a symbol of degree 1 subject to the following relations:

1. OEab D OEa C OEb C OEa OEb for any a; b 2 F
2. OEa OE1 a D 0 for any a 2 F f1g.
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3. OE 1 C 2/ D 0.

4. OEa D OEa for any a 2 F

There is a natural homomorphism KMW F / KM F/ such that OEa 7! fag and

7! 0. For any n 2 Z there is also a natural homomorphism KMWn F / I n.F/
such that OEa1; : : : ; an 7! h 1;a1i h 1; ani and 7! h1i 2 I 1.F / D W.F/
this definition isalso meaningful in characteristic 2, see [22, §2.1]). These homomorphisms

coincideon xIn.F / and therefore yield ahomomorphismKMWn F / Gn.F/
for any n 2 Z. The expected result holds ([21, Theorem 5.3] if F is of characteristic
different from 2, and [22, Remark 2.12] in characteristic 2):

Theorem 3.3. The homomorphism KMWn F / Gn.F / is an isomorphism.

One can also define a Gersten complex in Milnor–Witt K-theory twisting these

groups accordingly, see [22, Remark 2.21]), and obtain a complex C.X; KMWj / for
any j 2 Z which coincides under the homomorphisms of Theorem 3.3) with the
complex C.X; Gj / for any smooth X over a field of characteristic different from 2.

In view of this, one has the choice to work either with the complex in Milnor–Witt
K-theory or with the complex C.X; Gj /. This is mostly a question of point of view.
On the one hand, Milnor–Witt K-theory appears very naturally in A1-homotopy, as

we will see below. On the other hand, the complex C.X;Gj/ puts more emphasis
on the Gersten–Witt complex and seems closer to higher Grothendieck–Witt groups
also known as Hermitian K-theory). In particular, lots of concrete computations are

available. Of course this distinction is artificial, since both complexes are the same!

At the end, I decided to work with the complexGj because of my personal preference
for the latter.

3.3. A useful computation. In this section, we compute the cohomology groups of
the sheaf Gj on AnC1 f0g for any j 2 N. For the forthcoming results, there are a

few useful facts to know:

1. The functorHi ._; Gj / is contravariant on the category of smooth schemes over

k ([10, Definition 7.1]).

2. The projection pW X An X induces an isomorphism

p W H i X; Gj / H i X An ;Gj/
for any i; j 2 Z ([11, Theorem 11.2.9]).

3. For any j 2 Z and any open subscheme W U X, with closed complement
Y D X U, there is a long exact sequence of localization

Hi X; Gj / Hi.X; Gj / Hi.U;Gj/Y
@

H iC1Y X; Gj /
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where HiY X; Gj / denotes the cohomology group with support on Y ([11,
Lemma 10.4.7]).

In particular, let U D AnC1 f0g. The groups Hi.U; Gj / fit in the localization
sequence

f0g
AnC1; Gj / Hi AnC1; Gj /Hi

Hi.U; Gj / @

H iC1
f0g

AnC1; Gj /

f0g
AnC1; Gj / are by definition thefor any j 2 Z. The cohomology groups Hi

cohomology groups of the complex with only the group zGj n 1.k.q// in degree

nC1,where q is theprime ideal x1; : : : ; xnC1/ kOEx1; : : : ; xnC1 Hencek.q/ D k
and p is the k-vector space generated by the Koszul complex Kos.x1; : : : ;xnC1/
associated to the regular sequence x1; : : : ; xnC1/. Therefore Hi

f0g
AnC1; Gj / D 0

if i ¤ n C 1 and H nC1
f0g

AnC1; Gj / D zGj n 1.k/.
Using homotopy invariance, we obtain H0.AnC1; Gj / D H0.k; Gj / D Gj k/

and Hi AnC1; Gj / D 0 if i > 0. We therefore get the following computation:

Hi U; Gj/ D
8
<̂

:̂
Gj k/ if i D 0,

0 if 0 < i < n,

zGj n 1.k/ if i D n,

where the last line is given by the isomorphism @
W Hn.U;Gj/ H nC1

f0g
AnC1; Gj /,

which is H0.k;G0/-linear i.e., GW.k/-linear). Since we use it in the sequel, we
give an explicit description of @ for j D n C 1.

Let B D kOEx1; : : : ; xnC1 and consider the Koszul complex Kos.x2; : : : ;xnC1/
associated to the regular sequence x2; : : :; xnC1. We get an isomorphism

x2;:::;xnC1 W B=.x2; : : : ;xnC1/ ' ExtnB.B=.x2; : : : ; xnC1/;B/
given by 1 7! Kos.x2; : : : ; xnC1/. Localizing at p D x2; : : : ; xnC1/, it becomes an
isomorphism x2;:::;xnC1 W k.x1/ ' Extn k.x1/; Bp/. Observe thatBp x1 2 B andp
consider the couple x1; h x2;:::;xnC1 ; x1 x2;:::;xnC1i/ in the fibre product

zG1.k.x1// zI.k.x1//

KM1 k.x1// I.k.x1//=I 2.k.x1//.

It defines an element of Hn.U; GnC1/ which is mapped under @ to the generator
as GW.k/-module) of zG0.k/ given by the Koszul complex Kos.x1; : : : ; xnC1/ see

[1, §9]).
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4. The homomorphism UmnC1.A/=EnC1.A/ Hn.A; GnC1/

4.1. The homomorphism. Let A be a smooth k-algebra and X D Spec.A/. We

define a map

W
Hom.X; AnC1 f0g/ Hn A; GnC1/

by f / D f / where f W Hn.AnC1 f0g; GnC1/ Hn.A; GnC1/ is the
pull-back induced by f ([10, Definition 7.2]). Because of the homotopy invariance
of Hn.A;GnC1/, we get a map

W UmnC1.A/=EnC1.A/ Hn A;GnC1/:

Theorem 4.1. Let A be a smooth k-algebra. Then the map

W UmnC1.A/=EnC1.A/ Hn A; GnC1/
induces a homomorphism

ˆW WMSnC1.A/ Hn A;GnC1/

for any n 2.

Proof. Since Hn.A;GnC1/ is a group and the relation i) in WMSnC1.A/ is clearly
satisfied in Hn.A;GnC1/, it is enough to verify that relation ii) is also satisfied. We
start with a simple computation in G1.k.t //. Using [17, Chapter I, Proposition 5.1],
we have ht; 1 ti D h1; t t 1/i in I.k.t// because both forms represent 1 and

they have the same discriminant. Adding h 1; 1i on both sides, we get h 1; ti C
h 1; 1 ti D h 1; t.1 t/i in I.k.t//. Therefore we have an equality

t; h 1;t i/ C .1 t; h 1; 1 t i/ D t.1 t/; h 1;t.1 t/i/ 1)

in G1.k.t// note that this is obvious in KMW
1 k.t//).

Supposenowthat x; v2; : : : ;vnC1/and.1 x; v2; : : : ; vnC1/ are unimodularrows
in A. Observe then that x.1 x/; v2; :: : ;vnC1/ is also unimodular. Performing
if necessary elementary operations on this unimodular line, we can suppose that the
sequence v2; : :: ; vnC1/ is regular.

Now the pull back of under the map f W Spec.A/ AnC1 f0g given by

x; v2; : : : ;vnC1/ is precisely the cycle x; h 1;xi/ supported on A=.v2; : : :; vnC1/.
Since .1 x;v2; : : : ; vnC1/ is also unimodular by assumption, we obtain a cycle

.1 x;h 1; 1 xi/ also supported on A=.v2; : : : ; vnC1/. Because of relation 1
above, we see that the relation ii) in WMSnC1.A/ is also satisfied in Hn.A; GnC1/
and the theorem is proved.

Applying Theorem 2.3, we get the following corollary:
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Corollary 4.2. Let A be a smooth k-algebra of dimension d. For any n d C2/=2
the map W UmnC1.A/=EnC1.A/ Hn.A; GnC1/ is a homomorphism of groups.

There is an elementary proof of the fact that is surjective in some non trivial
situations. Let m be any maximal ideal in A and put d D dim.A/. Then there
is a regular sequence v1; : : : ; vd/ such that A=.v1; : : : ;vd / is a finite length
Amodule and Am=.v1; : :: ; vd/Am D A=m use [9, Corollary 2.4]). The primary
decomposition of this ideal is v1; : : :; vd/ D m \ M1 \ \ Mr for some mi-
primary ideals Mi where mi are comaximal maximal ideals). Thus

A=.v1; : : : ; vd/ ' A=m A=M1 A=Mr :

Let 2 A=m/ Then there exists an element a 2 A such that its class modulo
v1; : : : ;vd / is ; 1; : : : ; 1/ under the above isomorphism. Therefore a; v1; : : :; vd/

is unimodular. Consider the Koszul complex Kos.v1; : : : ; vd/ associated to the regular

sequence v1;: : : ; vd/. As in Section 3, we get an isomorphism

v1;:::;vd W A=.v1; :: : ;vd / ExtdA.A=.v1; : : : ; vd/; A/

defined by v1;:::;vd .1/ D Kos.v1; : : : ; vd/. Consider a; h v1;:::;vd ; a v1;:::;vdi/
inLq2Spec.A/.d/ G1.A=q/. By construction, it vanishes outside m and, as varies,

generates G1.A=m/ because any ab; ha v1;:::;vd ; b v1;:::;vd i/ is equal to

a; h v1;:::;vd; a v1;:::;vd i/ b; h v1;:::;vd ; b v1;:::;vd i/
in G1. We have proven:

Proposition 4.3. Let A be a smooth k-algebra of dimension d. Then the homomorphism

W UmdC1=EdC1.A/ Hd A; GdC1/ is surjective.

Our next goal in the next section is to show that is in fact an isomorphism when
d 3, independently of the dimension d of the algebra. The case d D 2 will be
treated in the sequel.

4.2. The case d 3. In this section, we will use results of Morel ([23]). We will
have to first recallsome definitions and results inA1-homotopy theory. Our reference
here will be [24]. Consider the category Sm=k of smooth schemes over k, endowed
with the Nisnevich topology. The category of simplicial sheaves of sets on Sm=k
in the Nisnevich topology) is endowed with a model structure ([24, Definition 1.2,

Theorem 1.4]), and we denote by Hs.k/ its homotopy category. If F G are two
simplicial sheaves, we denote by HomHs.k/.F; G/ the set of homomorphisms in this
category.
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Let X be a smooth scheme over k and consider the simplicial sheaf Sing X/
defined at the level n 2 N by U 7! X n/.U / for any smooth scheme U. Here

n denotes the usual n-simplex over k, i.e., n D Spec.kOEx0; : : : ; xn Pxi 1/.
Observe that there is a canonical map of simplicial sheaves X Sing X/ where

X is seen as a simplicially constant sheaf). If moreover X is an algebraic group, then
the above map is a map of simplicial sheaves of groups.

For any simplicial sheaf F there exists a fibrant simplicial sheaf RF and a trivial
cofibration F RF. Such an association can be done functorially. If X is a smooth
scheme, then HomHs.k/.X; F/ D 0.RF.X// by definition. One of the results of

[23] is that the map of simplicial sheavesGLn Sing GLn induces an isomorphism
GLn.A/=En.A/ HomHs.k/.A; Sing GLn/ for n 3. The idea is to show that
the map Sing GLn RSing GLn induces for any affine smooth scheme Spec.A/ a

weak-equivalence of simplicial sets Sing GLn/.A/ RSing GLn/.A/ for n 3.
The explanation of the proof first requires a definition see [23]).

Definition 4.4. Let F be a presheaf of simplicial sets over Sm=k.
1) We say that F satisfies the affine B.G. property in the Nisnevich topology if for

any smooth k-algebra A, any étale A-algebra A B and any f 2 A such that

A=f B=f is an isomorphism, the diagram

F.A/ F.B/

F.Af / F.Bf /
is homotopy cartesian.

2) We say that F satisfies the A1-invariance property if for any smooth k-algebra

A the map F.A/ F.AOEt / induced by the inclusion A AOEt is a weak
equivalence.

The following theorem is a particular case of a theorem proved by Morel. Its
proof is done in [23].

Theorem 4.5. Let k be aperfect field. Let F be a simplicial sheaf of groups on Sm=k
for the Nisnevich topology). Suppose that F satisfies the affine B.G. property in the

Nisnevich topology and the A1-invariance property. Then for any smooth k-algebra

A the map F.A/ RF.A/ is a weak equivalence.

Corollary 4.6. Let k be a perfect field and let A be a smooth k-algebra. Then the
map of simplicial sheaves GLn Sing GLn induces an isomorphism

GLn.A/=En.A/ HomHs.k/.A;Sing GLn/

for n 3.
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Proof. We first prove that Sing GLn satisfies the properties of Definition 4.4. If F
is any sheaf on Sm=k, then it is not hard to see that Sing F is A1-invariant see

[23]). The affine B.G. property is also proven in [23] and requires n 3. Theorem

4.5 shows then that Sing GLn/.A/ is weak-equivalent to RSing GLn/.A/.
Therefore 0..Sing GLn/.A// ' 0..RSing GLn/.A/. The left-hand term is just
GLn.A/=En.A/ by Theorem 2.1 and the other term is HomHs.k/.A;Sing GLn/ by
definition.

Let now H.k/ be the A1-homotopy category of smooth schemes over k. It can

be seen as the full subcategory of A1-local objects in Hs.k/ ([24, Theorem 3.2]).
It turns out that Sing GLn is A1-local for n ¤ 2. So HomHs.k/.A;Sing GLn/ D
HomH.k/.A; Sing GLn/.

Consider the pointed) map of simplicial sheaves Sing GLn Sing GLnC1
induced by the inclusion GLn GLnC1 sending M to 1 0

0 M It is a cofibration
whose cofiber is Sing GLnC1=Sing GLn, and it is not hard to see that the latter
is isomorphic to Sing GLnC1=GLn/. Moreover, the map of simplicial sheaves

Sing GLnC1=GLn/ Sing AnC1 n f0g/ is a weak equivalence in H.k/ and the
following sequence

Sing GLn Sing GLnC1 Sing AnC1 n f0g/

is a fibration sequence in H.k/ ([23]). This is one of the ingredients of the proof of
the following theorem of Morel ([23] again):

Theorem 4.7 F. Morel). Let A be a smooth k-algebra and let n 3. Suppose that

A is of dimension d n. Then the natural map

HomH.k/.A; Sing AnC1
n f0g// Hn A; GnC1/

is a bijection. This induces a bijection between the set of stably free modules of rankn
and Hn.A; GnC1/=GLnC1.A/. Moreover, A acts trivially on Hn.A; GnC1/ and

therefore Hn.A;GnC1/=GLnC1.A/ D Hn.A; GnC1/= SLnC1.A/.

Remark 4.8. Notice that ifd < n then the set of stably free modules of rank n and

Hn.A; GnC1/ are both trivial.

This allows to prove the following theorem:

Theorem4.9. LetAbe a smooth k-algebra of dimensiond. Suppose that k isperfect.
Then the map

W UmdC1.A/=EdC1.A/ Hd A; GdC1/ is an isomorphism for
d 3.
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Proof. By Theorem 2.5, there is an exact sequence of groups

SLd A/=Ed A/ SLdC1.A/=EdC1.A/

UmdC1.A/=EdC1.A/ UmdC1.A/=SLdC1.A/ 0:

Because

Sing GLd Sing GLdC1 Sing AdC1 n f0g/

is a fibration sequence and because of Theorem 4.7, we have an exact sequence

HomH.k/.A;Sing GLd / HomH.k/.A;Sing GLdC1/

Hd A;GdC1/ Hd A; GdC1/=GLdC1.A/

0

Using the definition of as well as Corollary 4.6, we get a commutative diagram

SLd A/=Ed A/ HomH.k/.A; Sing GLd/

SLdC1.A/=EdC1.A/ HomH.k/.A;Sing GLdC1/

UmdC1.A/=EdC1.A/ Hd A;GdC1/

UmdC1.A/=SLdC1.A/ Hd A;GdC1/=GLdC1.A/

0 0.

The two top homomorphisms are injective with cokernel A We conclude by applying

Theorem 4.7.

Remark 4.10. As in the previous theorem, observe that ifn > d, thenHn.A; GnC1/
and UmnC1.A/=EnC1.A/ are both trivial.
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4.3. The case d D 2. We first recall some definitions. Let A be a k-algebra of
dimension d, where k is of characteristic 0. Then one can define the Euler class
group E.A/ of A ([8, §4]) and the weak Euler class group E0.A/ of A ([8, §6]). In
short, E.A/ is the group generated by pairs J; J /, where J A is an ideal of
height d such that J=J2 is generated by d elements and J is an equivalent class of
surjections A=J /d J=J2, modulo relations similar to rational equivalence. The
group E0.A/ is generated by elements J /, where J is an ideal of height d as above.
There is a natural surjection E.A/ E0.A/. If d is even, there is an exact sequence

([8, Theorem 7.6])

UmdC1.A/= SLdC1.A/ E.A/ E0.A/ 0

where is defined as follows:
Let a1; :: : ;adC1/ be a unimodular row. By performing if necessary elementary

operations, we can suppose that the ideal J D a2; : : : ; adC1/ is of height
d. Let e2; : : : ;edC1 be a basis of A=J /d and let J W A=J /d J=J2 be the
surjection defined by J ei/ D ai for any i Because a1;: : : ; adC1/ is unimodular

and a2; : : :; adC1/ is of height d, a1 2 A=J / and we can define by

a1; : : :; adC1/ D J; a1!J / in E.A/. The proof that this is well defined is done

in [8, §7] and this is where we need that A contains Q.
Suppose now that A is of dimension 2. Then the above sequence is exact on the

left also, i.e., we have a short exact sequence ([8, Proposition 7.3, Proposition 7.5])

0 Um3.A/= SL3.A/ E.A/ E0.A/ 0:

If A is smooth over k, then W Um3.A/=E3.A/ H2.A; G3/ gives a homomorphism

SL3.A/=E3.A/ H2.A; G3/ after composition with the homomorphism
SL3.A/=E3.A/ Um3.A/=E3.A/).

Theorem 4.11. Let A be a smooth k-algebra of dimension 2, where k is a field of
characteristic 0. The homomorphism induces an isomorphism

x W Um3.A/= SL3.A/ ' H2 A;G3 /= SL3.A/:

Proof. Observe first that x is surjective by Proposition 4.3. Now there are

surjective CH2.A/ and E0.A/ CH2 A/ ([11, Propositionhomomorphisms E.A/ f17.2.10]) making the following diagram commutative:

E.A/ E0.A/

CH2.A/ CH2 A/.f
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CH2.A/ is an isomorphism ([11,Because dim.A/ D 2, the homomorphism E.A/ fTheorem 15.3.11] and [8, Theorem 7.2]). We then get a commutative diagram:

0 Um3.A/= SL3.A/

x

E.A/

'
E0.A/ 0

H2.A; G3/= SL3.A/ CH2.A/ CH2 A/ 0.fHence there exists a homomorphism f W H2.A; G3/=SL3.A/ Um3.A/= SL3.A/
such that f x D Id. So x is also injective.

5. Computations for real varieties

5.1. Computation of Hd.A; GdCj /. From now on, A is a smooth R-algebra of
dimension d 2 with trivial orientation, i.e., A=R ' A. Put X D Spec.A/. First
we compute Hd.X; I dCj/ for any j 0.

Proposition 5.1. For any j 0, we have Hd.X; IdCj / ' LC2C Z where C is the
set of compact connected components of X.R/. More precisely, choose a real point
xC for any C in C and a generator xC of ExtdA R.xC/; A/. Then the generators
are the classes of the forms h1; 1i/j xC in Ij R.xC //.

Proof. For j D 0, this is [11, Theorem 16.3.8]. We prove the result by induction on

j Consider the form h1; 1i 2 I.R/. It can be seen as an element of H0.R; I/. The
multiplication by this element yields a homomorphism

h1; 1iW Hd A; IdCj / H d A; IdCjC1/:

Now the homomorphism of sheaves IdCjC1 I dCj induces a homomorphism
Hd A; IdCjC1/ Hd A; I jCd/. It is easy to check that the composition of these

two homomorphism is the multiplication by 2 from Hd A; I jCd / to itself. By
inductionHd A;I jCd/ is a sum of copies of Z, and therefore the multiplication by 2 is
injective. So thehomomorphism h1; 1iW Hd A; IdCj / Hd A; I dCjC1/ is injective.

But the multiplication by h1; 1i is surjective as a map fromLx2X.d/ I j R.x//
toLx2X.d/ I jC1.R.x// because all residue fields are R or C. Therefore the
multiplication by h1; 1i is also surjective on cohomology groups.

Remark 5.2. If the canonical module A=R is non trivial, Proposition 5.1 is already
wrong for j D 0 see [7, Corollary 6.3]). More precisely, letAbea smoothR-algebra
of dimensiond and letX D Spec.A/. ThenHd A; I d / is afinitely generated abelian
group, with a free part corresponding to the compact connected components of X.R/



Vol. 86 2011) Some remarks on orbit sets of unimodular rows 31

where the canonical module is trivial and a Z=2-vector space corresponding to the
compact connected components of X.R/ where the canonical module is not trivial.
This can be deduced from [6, Theorem 4.21].

At the moment, I do not know how to compute Hd.X;I dCj/ for j > 0 for
general smooth real algebras. Further work should clarify this.

The next result is an obvious consequence of the proposition.

Corollary 5.3. For any j 0, we haveHd.X; xI dCj/ ' LC2C Z=2Z and an exact
sequence of cohomology groups

0 Hd A;I dCjC1/ Hd A; IdCj / Hd A; xI dCj / 0:

Next we exhibit some exact sequence which will be useful for the computation of
Hd.X; GdC1/. We first prove a preliminary result. Let f W X C X be the finite
morphism induced by the inclusion R C. For any j 0, it yields a morphism

f W Hd.X C; KM
dCj / Hd.X; KM

dCj
/. Moreover, the natural projection gives

a homomorphism Hd.X; KM
dCj/ Hd.X; KM

dCj
2KM

dCj
/.

Proposition 5.4. For any j 1, the sequence

Hd.X C; KM
dCj /

f Hd.X; KM
dCj / Hd.X; KM

dCj
2KM

dCj / 0

is exact.

Proof. It suffices to show that the sequence of groups

M
x2.X C/.d/

KMj R.x// f M
y2X.d/

KMj R.y//

M
y2X.d/

KMj R.y//=2KM
j R.y// 0

is exact. We have two distinct cases, depending on whether y is a complex point or a

real point. Suppose first that y is a complex point. Then there are two points x1 and

x2 in X C/.d/ over y and the above sequence becomes

KMj C/ ° KMj C/ f KMj C/ KMj C/=2KMj C/ 0

where f is just the sum which is surjective). Since j 1, KMj C/ is 2-divisible
and therefore KMj C/=2KMj C/ D 0.
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Suppose now that y is a real point. There is only a complex point over y and the
sequence becomes

KMj C/ f KMj R/ KMj R/=2KMj R/ 0:

Here f is just the transfer map given by the inclusionR C. ButKMj R/ is just the
direct sum of a 2-divisible group D generated by symbols fa1; : : : ; aj g with ai > 0
and a factor Z=2Z generated by f 1; : : : ; 1g. Now f is surjective on D use

[19, Proposition 14.64]) and 0 on the subgroup generated by f 1; : :: ; 1g because

KMj C/ is 2-divisible. So the sequence is exact.

As a corollary, we get:

Proposition 5.5. Let X be a real smooth affine variety with trivial canonical bundle.
Then for any j 0, the sequence

Hd.X C;GdCj / f Hd.X; GdCj / Hd.X; IdCj / 0

is split exact, where the first homomorphism is induced by the finite morphism

f W X C X and the second by the map of sheaves GdCj I dCj Moreover,

the morphism of sheaves GdCj KM
dCj

induces an isomorphism Hd.X
C; GdCj/ Hd.X C;KM

dCj
/.

Proof. If j D 0, this is [11, Theorem 16.6.4] and [11, Remark 10.2.16]. We suppose

now that j 1. First observe that, since I.C/ D 0, we have Gj C/ D KMj C/.
This proves the last assertion of the theorem. This also proves that the composition

Hd.X C; GdCj/ f Hd.X; GdCj / Hd.X; I dCj/

is zero since the groupsGj R.x//are the fibre products ofKMj R.x// and I j R.x//
over xIj R.x// for any x 2 X.d/. Using the definition of the corresponding sheaves,

it is not hard to see that there is a commutative diagram of sheaves whose rows are

exact

0 IdCjC1 GdCj KM
dCj

0

0 IdCjC1 IdCj xIdCj 0.
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This yields the following commutative diagram

0 Hd X C;GdCj/ Hd X C;KM
dCj/ 0

Hd X;I dCjC1 / Hd X;GdCj/ Hd X; KM
dCj / 0

0 Hd X;I dCjC1 / Hd X;IdCj/ Hd X; xI dCj/ 0

0 0 0

where the rows are exact. A simple chase in the diagram shows that it suffices to
prove that the right column is exact to finish. Proposition 5.4 gives an exact sequence

Hd.X C; KM
dCj /

f Hd.X; KM
dCj / Hd.X; KM

dCj
2KM

dCj / 0.

But the homomorphisms sn of Section 3.1 yield a homomorphism

dCj
2KM

dCj/ Hd X; xI dCj/H d X;KM

which is in fact an isomorphism by [36, Theorem 7.4] and [26, Theorem 4.1].

Next we prove thatHd.X C; KM
dCj / D 0 for some interesting algebras. Recall

that a real variety X is said to be rational if X C is birational to Pd

Proposition 5.6. Let A be a smooth R-algebra of dimension d. Suppose that X D
Spec.A/ is rational. Then Hd.X C;KM

dCj/ D 0 for any j 0.

d / D CHd X C/ D 0 becauseProof. Suppose first j D 0. Then Hd.X C; KM
X C is rational. Using [25, Corollary 3.4, Theorem 2.11] see also [29] and

[30]), this shows that any maximal ideal m in A C is complete intersection. Let

fa1; : : :; ajg be an element of KM C/ D KMj j A C/=m/. Let f1; : : : ;fd/ be
a regular sequence generating m. Consider the symbol ffd; a1; a2;: : : ; ajg defined
on the residue fields of the generic points of A C/=.f1; : : : ; fd 1/. It defines an
element ofLx2Spec.A C/.d 1/ KM

jC1 R.x// whose boundary is fa1; : : : ; ajg.

Finally, we get:



34 J. Fasel CMH

Theorem 5.7. Let A be a smooth R-algebra of dimension d with trivial canonical
bundle. Suppose that X D Spec.A/ is rational. Then

H d X; GdCj / ' Hd X; IdCj / 'M
C2C

Z

for j 0, where C is the set of compact connected components of X.R/ endowed
with the Euclidian topology).

Proof. The first isomorphism is clear in view of Proposition 5.5 and Proposition 5.6.
The second isomorphism is just Proposition 5.1.

Remark 5.8. If d 3 this shows that

HomA1.X; AdC1 n f0g/ D UmdC1.A/=EdC1.A/

which is isomorphic to Hd.X;GdC1/) is isomorphic to the cohomotopy group

d.X.R//. Observe that if the algebra is not rational, then the complex points may
appear making this statement incorrect.

5.2. Stably free modules. The previous section allows to understand the structure
of stably free modules over good real algebras. Before stating the result, we briefly
recall the definition of the Euler class.

Let A be a smooth k-algebra of dimension d and let P be a projective module
of rank d over A with trivial determinant. To such a module, one can associate an

Euler class Qcd.P/ in CHd A/ ([23] or [11, Chapter 13]) which satisfies the followingfproperty proven in [23] if d 4, in [14] if d D 3 and in [11] if d D 2): Qcd.P/ D 0
if and only if P ' Q ° A the same result holds for projective modules with non

trivial determinant, but we do not use this fact here). When d is even, the Euler class

allows to strengthen our results:

Theorem 5.9. Let A be a smooth R-algebra of even dimension d with trivial canonical

bundle. Suppose that X D Spec.A/ is rational. Then the set of isomorphism
classes of stably free modules of rank d is isomorphic toLC2C Z, where C is the set

of compact connected components of X.R/ endowed with the Euclidian topology).

Proof. By Proposition 3.1, there is an exact sequence

Hd.X;GdC1/ CHd.X/ CHd X/ 0:fTheorem 5.7, shows that this sequence is exact on the left also.
Suppose that d 3. Because of Theorem 4.9, we get a short exact sequence:

0 UmdC1.A/=EdC1.A/ CHd.X/ CHd X/ 0f
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and UmdC1.A/=EdC1.A/ ' LC2C Z by Theorem 5.7. Using [8, §7], we see

that the homomorphism UmdC1.A/=EdC1.A/ fCHd.X/ associates to a stably
free module P representing a unimodular row) its Euler class. The Euler class of
Ad being trivial, a unimodular row coming from GLdC1.A/ has therefore image

0 in CHd.X/. The exact sequence above shows that GLdC1.A/ acts trivially onfUmdC1.A/=EdC1.A/. This proves the result when d 4.
Suppose now that d D 2. Because of Theorem 4.11, it suffices to compute

H2.A;G3/= SL3.A/. The same argument as above shows that the action of SL3.A/
on H2.A; G3/ is trivial. This concludes the proof.

Theorem 5.10. Let A be a smoothR-algebra of even dimension d with trivial canonical

bundle. Suppose that X D Spec.A/ is rational. Then a stably free module of
rank d over A is free if and only if its Euler class is 0.

Proof. Again, the exact sequence

Hd.X;GdC1/ CHd.X/ CHd X/ 0:fis also exact on the left by Theorem 5.7 and the map Hd.X; GdC1/ fCHd.X/ in
the exact sequence of Proposition 3.1 sends a stably free module to its Euler class.

Remark 5.11. Observe that we heavily use the fact that A is of even dimension in
the theorem in order to identify the homomorphism Hd.X; GdC1/ CHd.X/ offProposition 3.1. In odd dimension, this homomorphism cannot be the Euler class,
since the Euler class of an odd dimensional stably free module is trivial. It is clear
however that thehomomorphismHd.X; GdC1/ CHd.X/ is in generalnon trivial!fA consequence of this is that the action of SLdC1.A/ on UmdC1.A/=EdC1.A/ might
be non trivial if d is odd. We will see below that this is the case for the real algebraic
spheres S3 and S7.

The other hypotheses in the theorem are explained by the fact that we use Theorem

5.7 in the proof of the theorem. As already said in Remark 5.2, I do not know
how to compute the groups involved when the canonical module is not trivial. If the
algebra is not rational, then the group UmdC1.A/=EdC1.A/ might contain some non

trivial subgroup generated by complex points. This subgroup will be contained in the
kernel of the Euler class, but I do not see why the corresponding modules should be
trivial. Again, this should be clarified in further work.

As an illustration of the theorem, let Sd denote the algebraic real sphere of
dimension d, i.e., Sd D Spec.ROEx1; : : : ; xdC1 Px2i 1/.

Corollary 5.12. The set of isomorphism classes of stably free modules of rank 2d
over S2d is isomorphic to Z. It is generated by the tangent bundle.
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Proof. The first statement is an obvious corollary ofTheorem 5.9, since the set of real

maximal ideal is the realsphere ofdimension 3. We prove next that the tangent bundle
generates H2d S2d; G2dC1/. By Theorem 5.7, it suffices to see that it generates

H2d S2d; I2dC1/. Consider the complete intersection ideal a D x1; :: : ;x2d / and

the symmetric isomorphism

x1;:::;x2d W A=a Ext2dA A=a; A/

defined by 1 7! Kos.x1; : : :; x2d/, where the latter is the Koszul complex associated
to the regular sequence x1; :: : ;x2d /. Since x2dC1 is invertible modulo a we can

consider the symmetric isomorphism h 1; x2dC1i x1;:::;x2d on the finite length
module A=a.

Now we have a decomposition of the form a D m1 \ m 1, where m1 D
x1; : : : ; x2d; x2dC1 1/ and m 1 D x1; : :: ; x2d; x2dC1 C 1/. This decomposition

decomposes the finite length module A=a and the symmetric isomorphism

h 1; x2dC1i x1;:::;x2d Since x2dC1 1 modulo m1 and h 1;1i D 0 in I.R/,
we see that

A=a;h 1; x2dC1i x1;:::;x2d/ D A=m 1; h 1; 1i x1;:::;x2d /m 1/
holds in the group H2d S2d; I2dC1/, where x1;:::;x2d/m 1 is the localization of

x1;:::;x2d The right hand term is a generator of H2d S2d; I2dC1/ by Proposition

5.1, and the left hand term is the image of the unimodular row x1;: : : ; x2dC1/
under the homomorphism

W Um2dC1.S
2d /=E2dC1.S

2d / H 2d S2d; I 2dC1/

of Section 4.1.

In odd dimension, the situation is a bit more complicated as illustrated by the
following result:

Proposition 5.13. All stably free modules of top rank on S3 and S7 are free.

Proof. We do the proof for S3, the case of S7 being similar. The proof of the above
corollary shows that Um4.S3/=E4.S3/ ' Z with generator the tangent bundle. It
is well known that the tangent bundle over S3 is free and therefore its associated
unimodular row comes from GL4.S3/. This shows that Um4.S3/=GL4.S3/ D 0.

Remark 5.14. In the proposition, we restricted to S3 and S7 because in those cases

the tangent bundle is actually free. In [12], we proved that all the projective modules
on S3 are free, while the analogue result on S7 seems far out of range at the moment.
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