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Monodromy in Hamiltonian Floer theory
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Abstract. Schwarz showed that when a closed symplectic manifold M; !/ is symplectically
aspherical i.e. the symplectic form and the first Chern class vanish on 2.M/) then the spectral
invariants, which are initially defined on the universal cover of the Hamiltonian group, descend
to the Hamiltonian group Ham.M; !/. In this note we describe less stringent conditions on
the Chern class and quantum homology of M under which the asymptotic) spectral invariants
descend to Ham.M; !/. For example, they descend if the quantum multiplication of M is
undeformed and H2.M/ has rank > 1, or if the minimal Chern number is at least nC1 where
dimM D 2n) and the even cohomology ofM is generated by divisors. The proofs are based on
certaincalculationsofgenus zeroGromov–Witten invariants. Asan application,we showthat the
Hamiltonian group of the one point blow up of T 4 admits a Calabi quasimorphism. Moreover,
whenever the asymptotic) spectral invariants descend it is easy to see that Ham.M;!/ has

infinite diameter in the Hofer norm. Hence our results establish the infinite diameter of Ham in
manynewcases. We alsoshowthat theareapseudonorm–a geometric version of theHofer norm
– is nontrivial on the compactly supported) Hamiltonian group for all noncompact manifolds
as well as for a large class of closed manifolds.
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1. Introduction

Let M; !/ be a closed symplectic manifold. Denote by Ham ´ Ham.M;!/ its
group of Hamiltonian symplectomorphisms and by eHam the universal cover of Ham.
Each path f tg0 t 1 in Ham is the flow of some time dependent Hamiltonian Ht
and, following Hofer [8], we define its length L.f tg/ to be:

L.f t g/ D Z
1

max
0 x2M

Ht x/ min
x2M

Ht x/ dt:

The Hofer pseudo)norm k Qk of an element Q D ; f tg/ in the universal covereHam of Ham is then defined to be the infimum of the lengths of the paths from the
identity element id to that are homotopic to f t g. Similarly we define the norm

k k of an element in Ham to be the infimum of the lengths of all paths from id to
It is easy to see that k k is conjugation invariant and satisfies k k k k C k k,
but harder to see that it is nondegenerate, i.e. k k D 0 iff D id. This was proved
for compactly supported symplectomorphisms of R2n by Hofer [8] and for general

M by Lalonde–McDuff [14].) It is unknown whether k k is always nondegenerate

and hence a norm) on eHam since it may vanish on some elements of the subgroup

1.Ham/. On the other hand, there is no known counterexample; for some results in
the positive direction see Remark 2.9 below.

The question of whether k k is uniformly bounded makes sense even if k k is just
a pseudonorm. If is it unbounded on eHam or Ham we shall say that this group has

infinite Hofer) diameter. Ostrover [24] showed that eHam always has infinite Hofer
diameter we sketch the proof below), while the corresponding result is unknown for
Ham in many cases. For example, it is shown in [20] that Ham has infinite diameter
when M is a “small” blow up of CP2 but it is unknown whether this remains the
case when M is monotone i.e. the exceptional divisor is precisely one third the size

of the line) or is a still bigger blow up.
However, if both OE! and c1.M/ vanish on 2.M/ then Schwarz [27] showed that

Ham does have infinite diameter. To prove this he established that for such M each
element Q e2 Ham has a set of so-called spectral invariants

fc.a; Q/ j a 2 QH M/; a ¤ 0g R:

Later, Oh [22], [23] and Usher [29] showed that the numbers c.a; Q/ are well defined

on eHam forallsymplectic manifolds. Itfollows easilyfromtheirproperties explained
in §2.2 below) that eHam has infinite Hofer diameter. However, they do not in general
descend to well defined functions on Ham; in other words it may not be true that

c.a; Q/ D c.a; Q / whenever Q; Q project to the same element of Ham. Schwarz
showed that when both OE! and c1.M/ vanish on 2.M/ the invariants do descend to
Ham. As we explain below, it is then an easy consequence of Ostrover’s construction
that Ham has infinite diameter.
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Another case in which Ham was known to have infinite diameter is S2. The original

proof in Polterovich [26] initially appears somewhat different in spirit from the
approach presented here, but the arguments in Entov–Polterovich [3] using quasimorphisms

bring this result alsowithin thecurrent framework;cf. case ii) ofTheorem 1.3.

In fact there are two questions one can ask here. Do the spectral invariants
themselves descend, or is it only their asymptotic versions that descend? Here,
following Entov–Polterovich [3], we define the asymptotic spectral invariants cN.a; Q/

for nonzero a 2 QH M/ by setting

cN.a; Q/ WD lim inf
k!1

c.a; Q k/
k

; for all Q 2 eHam:

Ostrover’s construction again implies that Ham has infinite diameter whenever an
asymptotic spectral number descends to Ham; see Lemma 2.7.

We shall extend Schwarz’s result in two directions, imposing conditions either on

via the Gromov–Witten invariants or on c1. Recall that the quantum product on

H M/ is defined by the 3-point genus zero Gromov–Witten invariants

ha1; a2; a3i
M ; 2 H2.M/; ai 2 H M/;

and reduces to the usual intersection product if these invariants vanish whenever

¤ 0. In the latter case we shall say that the quantum product or simply QH M/)
is undeformed. The condition OE! j 2.M/ D 0 is much stronger; in this case there are

no J-holomorphic spheres at all, and so the quantum product on M is of necessity
undeformed. If OE! j 2.M/ D 0, Schwarz’s argument easily extends to show that the
spectral invariants descend; see Proposition 3.1 i). However, its generalization in
Theorem 1.1 below concerns the asymptotic invariants.

We shall denote by N the minimal Chern number of M;!/, i.e. the smallest
positive value of c1.M/ on 2.M/. If c1j 2.M/ D 0 then we setN WD 1. We always
denote dim M D 2n. We shall say that M; !/ is spherically monotone if there is

> 0 such that c1j 2.M/ D j 2.M/ and is negatively monotone if c1 D OE!

on 2.M/ for some < 0. Recall also that M; !/ is said to be symplectically)
uniruled if some genus zero Gromov–Witten invariant of the form hpt; a2;: : : ; ami

¤ 0, does not vanish. It is called strongly uniruled if this happens for m D 3.

Theorem 1.1. Let M; !/ be a closed symplectic manifold such that QH M/ is
undeformed. Then the asymptotic spectral invariants descend to Ham except possibly
if the following three additional conditions all hold: rankH2.M/ D 1;N n, and

M; !/ is spherically monotone.

Remark 1.2. i) The exceptional case does not occur if M has dimension 4. For if
QH M/ is undeformed then M; !/ is minimal. The class of an exceptional sphere
always has nontrivial Gromov–Witten invariant; see [19].) Moreover it follows from
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the results of Taubes–Li–Liu that it cannot be spherically monotone, for if it were it
would be uniruled, in particular the quantum product would be deformed. Similarly,
the exceptional case does not occur for smooth projective varieties of any dimension.
ForN ¤ 1implies that at leastsome nonzeroelements inH2.M/ arerepresented by
spheres. Hence they must all be since rankH2.M/ D 1). Therefore the conditions
imply thatM is Fano, and hence, by an argument of Kollar–Ruan that is explained in
[10], also symplecticallyuniruled. It is unknownwhether every spherically monotone
symplectic manifold is uniruled. If this were true then there would be no exceptions
at all.

ii) Every minimal 4-manifold that is not rational or ruled such as a K3 surface or
a simply connected surface ofgeneral type) has vanishinggenus zero Gromov–Witten
invariants and so is covered by this theorem.

The next result explains what can be proved under various conditions on the
minimal Chern number N. We denote the even degree homology of M by Hev.M/.

Theorem 1.3. Let M; !/ be a closed symplectic 2n-dimensional manifold with
minimal Chern number N. Suppose further that either Hev.M/ is generated as a
ring by the divisors H2n 2.M/ or that QH M/ is undeformed. Then:

i) If N n C 1, the spectral invariants are well defined on Ham except possibly
if N 2n and M; !/ is strongly uniruled.

ii) If nC1 N 2n the asymptotic spectral invariants are well defined on Ham.

iii) The conclusion in ii) still holds if N D n except possibly if M; !/ is strongly
uniruled or if rankH2.M/ D 1.

iv) The conclusion in ii) also holds when M;!/ is negatively monotone, indepen¬

dently of the values of n, N.

For example, ifM is a 6-dimensional Kähler manifold then Hev.M/ is generated
as a ring by H4.M/ because ^OE!

W H2.M/ H4.M/ is an isomorphism. Hence
all Calabi–Yau 3-folds satisfy the conditions of this theorem.

Remark 1.4. i) InTheorem 1.3 the conditions in the second sentencemaybe replaced

by the weaker but somewhat technical condition D); cf. Definition 3.5.

ii) Theorem 1.3 is sharp. To see that the non-uniruled hypothesis in i) is necessary,

observe that by Entov–Polterovich [3] the spectral invariants do not descend for
M D CPn although the asymptotic ones do. This condition is also needed in iii).
For example, considerM D S2 S2 which has N D n D 2 and is strongly uniruled.
Ostrover [25] showed that the asymptotic spectral invariants descend if and only if
M; !/ is monotone, i.e. the two 2-spheres have equal area. Further, the results do

not extend to smaller N. Proposition 1.8 below gives many examples of manifolds
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with N D n 1 that satisfy the other cohomological conditions but are such that the
asymptotic invariants do not descend.

iii) It is not clear what happens when N D n but rankH2.M/ D 1. If M; !/
is negatively monotone, then by Proposition 3.1 the asymptotic spectral invariants
always descend without any condition onQH M/), but it is not clear what happens

in the positive case. Cf. the similar missing case in Theorem 1.1.) If M;!/ were
also projective then M; !/would be uniruled and onewould notexpect the invariants
to descend but in the general case considered here all we can say is that our methods

fail. The relevant part of the proof of Proposition 3.1 fails for N D n and > 0,
while the argument in Lemmas 4.3 and 4.4 definitely needs rankH2.M/ > 1.

iv) The example of S2 S2 in Remark 1.4 ii) above suggests that perhaps
the asymptotic spectral invariants descend for all monotone manifolds. But this is
not true. Consider, for example the monotone one point blow up of CP2 with its
obvious T 2 action. It is easy to see that there are circles in T 2 that represent elements

2 1.Ham/ for which Nc.1; /¤ 0; see [20], [25].

Corollary 1.5. If M; !/ satisfies any of the conditions in Theorems 1.1 and 1.3, then
Ham has infinite Hofer diameter.

Proof. This holds by Lemma 2.7.

Of course, one expects Ham always to have infinite Hofer diameter, but this
question seems out of reach with current techniques. However there are other ways
to tackle thisquestion. For example, in [20] we show that asmall blow up ofCP2 has

infinite Hofer diameter even though the spectral invariants do not descend by using
an argument based on the asymmetry of the spectral invariants, i.e. the fact that the
function xV of Remark 1.11 does not vanish on 1.Ham/. Also if 1.M/ is infinite,
one can sometimes use the energy–capacity inequality as in Lalonde–McDuff [15].

Another related problem is the question of when the area pseudonorm

C C W
Ham R

defined in [17] is nonzero. Here

C. / WD inf Z
1

0
max
x2M

Ht dt;

where the infimum is taken over all mean normalized1 Hamiltonians with time 1
map Further / WD C. 1/. It is easy to see that C C is a conjugation
invariant pseudonorm on Ham. Therefore, because Ham is simple, CC is either

1I.e. RM Ht!n D 0 for all t Also, this discussion of one sided norms is the one place in this paper where
the choice of signs is crucial. In order to be consistent with [17] we shall define the flow of Ht to be generated

by the vector XHt satisfying XH; / D dHt
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identically zero or is nondegenerate and hence a norm. The difficulty in dealing with
it is that one may need to use different lifts Q of to eHam to calculate C and
However it has a very natural geometric interpretation. For by [17, Proposition 1.12]

C. / C / D inf Vol.P; / Vol.M; !/
where the infimum is taken over all Hamiltonian fibrations M; !/ P; / S2
with monodromy around some embedded loop in the base. This ratio is called the
area of the fibration P S2 since for product fibrations it would be the area of the
base.

Since the area pseudonorm CC is never larger than the Hofer norm, the next
result also implies Corollary 1.5.

Corollary 1.6. If M; !/ satisfies any of the conditions in Theorems 1.1 and 1.3,
then the area pseudonorm C C is an unbounded norm on Ham.

Proof. See Lemma 2.8.

This result improves [17, Theorem 1.2] which established the nontriviality of
C C only for the cases j 2.M/ D 0 and M D CPn.

The real problem in understanding the onesided pseudonorms is caused by the
possibleexistence of short loops, i.e. loops in Ham that aregenerated byHamiltonians
for which C or is small; see [17, §1.4]. These are still not understood in the
closed case in general, but, as we now explain, it turns out that they cause no problem
when M is noncompact.

Let M; !/ be a noncompact manifold without boundary, and U M be open
with compact closure. Denote by Hamc U the group of symplectomorphisms generated

by functions Ht with support in U and by eHamc U its universal cover. Denote

by Q
CU the positive part of the Hofer norm on eHamc U and by CU the induced function

on Hamc U. Notice that in principle Q
CU might depend on U. But clearly U0 U

implies Q
CU0 Q

CU A similar remark applies to C
U

The following result was suggested by a remark in an early version of [7]. Note
that M; !/ can be arbitrary here; in particular it need satisfy no special conditions
at infinity.

Proposition 1.7. Suppose that M;!/ is noncompact and that U is an open subset

of M with compact closure. Then for all H W M R with support in U there is

i D i.H;U/ > 0 such that C
U

H
t / D t maxH for all 0 t i. In particular

C
U C U is a nondegenerate norm on Hamc U.

The proof is given at the end of §2. Note that eHamc U always has infinite Hofer
diameter because of the existence of the Calabi homomorphism. However, even



Vol. 85 2010) Monodromy in Hamiltonian Floer theory 101

though eHamc U is not a simple group, the kernel of the Calabi homomorphism is
simple. Hence the second statement in the above proposition follows from the first
because the element H

t belongs to this kernel when RU H!n
D 0. For a brief

discussion of other issues that arise in the noncompact case, see [20, Remark 3.11].
Finally we describe another class of examples, the one point blow ups. These

have Nj.n 1/ but may be chosen to satisfy the other conditions of Theorem 1.3.

Proposition 1.8. i) Let M be a sufficiently small one point blow up of any closed
symplectic manifold X; X/ such that at least one of OE!X ; c1.X/ does not vanish on

2.X/. Then the asymptotic spectral invariants do not descend to Ham.
ii) If M is the one point blow up of a closed symplectic 4-manifold X such that

both OE!X and c1.X/ vanish on 2.X/ then the asymptotic spectral invariants do
descend to Ham.

The proof is given in §5.

Corollary 1.9. If M is as in Proposition 1.8 ii) then Ham supports a nontrivial
Calabi quasimorphism.

The proof is contained in the following remark.

Remark 1.10. Otherpotential applications of these results arise from theworkof Entov

and Polterovich ([3], [4], [5], [6]). They denote the asymptotic spectral invariant
given by an idempotent e in AM WD QH2n.M/ by

e W
eHam R; e. / WD Nc.e; /:

It is immediate that e descends to Ham iff ej 1.Ham/ vanishes; see Proposition 2.3.
The Entov–Polterovich results about nondisplaceablity see [5] for example) apply
whether or not e descends to Ham. But if one is interested in questions about the
structure of the Hamiltonian group itself, for example what quasimorphisms or norms

it might have or what discrete subgroups it might contain, then our results are relevant.
If e is an idempotent such that eAM is a field,2 then Entov–Polterovich show that

e is a homogeneous quasimorphism, i.e. there isC > 0 such that for all k 2 Z andeQ; Q 2 Ham

e. Qk/ D k e. Q/; j e. Q Q / e. Q/ e. Q /j C:
2When AM is semisimple, it is tempting to think that e is a quasimorphism for every idempotent, and

in particular for e D 1. However, this is not true, as is shown by the example of the small one point blow
up of CP2. The calculations in [17] see also [25]) show that there is an element Q 2 AM such that

Qk/ C Q k/! 1. See §2 for notation.) Further there is a constant c and an element 2 1.Ham/
such that 1. k/ D Qk/ C ck for all k 2 Z. But if 1 were a quasimorphism it would restrict to
a homomorphism on the abelian subgroup 1.Ham/ and we would have Qk/ C Q k/ D 0. Hence

it cannot be a quasimorphism. Rather it is related to the maximum of two different quasimorphisms: since

1 D e1 C e2 where each ei is minimal, 1 max. e1 ; e2 / with equality at all elements where the ei
take different values; cf. equation 20) in [5].
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In particular, the restriction of e to the abelian subgroup 1.Ham/ eHam is a

homomorphism. Therefore, e descends to a quasimorphism on Ham exactly if it
vanishes on 1.Ham/. It has the Calabi property of [3] by construction.

There are rather few known manifolds besides CPn) for which AM contains an
idempotent e such that both eAM is a field and e descends. For these conditions
work in opposite directions; we need many nontrivial Gromov–Witten invariants for
eAM to be a field, but not too many or at least the Seidel representation of §3.1
should be controllable) if e is to descend. In this paper the one set of new examples
with a suitable idempotent e are those of Proposition 1.8 ii). Indeed, the calculations
in [19, §2] see also [6]) show that in this case there is an idempotent e 2 AM such

that eAM is a field, while we show here that e descends.

However, even if eAM is not a field, Entov–Polterovich show in [4, §7] that e
interacts in an interesting way with the geometry of M. For example, it provides a

lower bound for the so-called fragmentation norm3 k kU on Hame of the form

ej e. Q Q / e. Q/ e. Q /j K minfk QkU ; k Q kU g; for all Q; Q 2 Ham;

where K is a constant that depends only on the open set U and U is assumed
displaceable, i.e. there is 2 HamM such that U \ U/ D ;. If eAM is a field then
the quantity on LHS is bounded and e is a quasimorphism as in ii) above. On the
other hand, if this quantity is unbounded then the fragmentation norm k kU is also
unbounded on eHam. Theorems 1.1 and 1.3 allow one to transfer these results to Ham
in many cases; cf. Burago–Ivanov–Polterovich [2, Example 1.24].

Remark 1.11. i) Properties of the spectral norm and its variants.) Consider the

function V on eHam given by

V. Q/ WD c.1; Q/ C c.1; Q
1/;

and the corresponding function v induced on Ham:

v. / WD inf°V. Q/ j Q lifts :

Schwarz and Oh showed that v is a conjugation invariant norm on Ham, called the
spectral norm. As noticed by Entov–Polterovich [3], this norm is bounded when

M D CPn or, more generally, when QH M/ is a field with respect to suitable
coefficients.4 For these hypotheses imply that c.1; / is an inhomogeneous)
quasimorphism on eHam, so that

V. Q/ D jc.1; id/ c.1; Q/ c.1; Q
1/j const:

3 IfU is an open subset ofM, k Q kU is defined to be the minimal number k such that Q can be written as a

product of k symplectomorphisms each conjugate to an element in eHamc.U /, the universal cover of the group

of compactly supported Hamiltonian symplectomorphisms of U.
4 Cf. Albers [1, Lemma 5.11]. In this context it matters which coefficients are used for quantum homology;

compare the approaches of Ostrover [25] and Entov–Polterovich [6].
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Note that Ostrover’s argument does not apply here since V. Q s/ remains bounded on
the path Q s; s 0, defined in equation 2.9).

The supremum of v. / for 2 Ham is called the spectral capacity of M, cf.
Albers [1, equation 2.47)]. Since V. Q/ c.1; Q/ c.pt; Q/ > 0 for Q ¤ id, this
capacity can be thought of as a measure of spectral spread. When M is the standard

torus T 2n it is well known that there are normalized) functions H W M R whose
flow QHt has the property that V. QHk / D kV. Q H1 / ¤ 0; see the discussion after
Question 8.7 in [4]. Since Theorem 1.3 implies that V D v in this case, the spectral
capacity of T 2n is infinite. In general the spectral capacity is poorly understood. For
example, it is not known whether it is always infinite when QH M/ is very far from
being a field, for example if M; !/ is aspherical.

As we explain in the proof of Lemma 2.8, c.1; Q/ C. Q 1/. Hence one might
think of minimizing c.1; Q/ and c.1; Q 1/ separately over the lifts of as we did for
the Hofer norm. However, in general this procedure gives nothing interesting since

c.1; Q/ certainly can be negative and may well have no lower bound over a set of lifts.
Instead, one can consider the functions

xV W
eHam R; Q 7! cN.1; Q/ CcN.1; Q 1/;

and

vN W Ham R; 7! inf fVx. Q/ j Q lifts g:

Thus Vx is a symmetrized version of the function 1 considered in the previous
remark.) If c.1; / is a quasimorphism then

Nc.1; / is a homogeneous quasimorphism
and hence satisfies cN.1; Q/ D cN.1; Q 1/. Therefore, in this case, Vx 0. On the
other hand, aswe pointed out in Remark 1.10, Vx doesnot vanish on e1.Ham/ Ham
when M is a small blow up of CP2. Our remarks above imply that T 2n has infinite
xV -diameter, but again very little is known about xV for general M.

Although these variants of v havesome uses, theyareunlikelytobe pseudo)norms,
since, as we explain in Remark 2.2 iii), they probably never have the property
m.fg/ m.f / C m.g/. One might also think of replacing the class 1 by some
other idempotent e. But it is easy to see that e/ > 0 for any such e. Hence the
resulting function would not take the value 0 at the identity id e2 Ham.

ii) The proof of Corollary 1.6 compares C C with the Schwarz–Oh norm v.
Since there are Q ¤ 1 such that c.1; Q/ 0 see equation 2.9)) this approach does

not help with the other problem left open in [17], namely the question of whether C
ever vanishes on some ¤ 1.

Acknowledgements. Many thanks to Leonid Polterovich for very helpful comments
onan earlier draft of this paper, andalsotoPeterAlbers, Alvaro Pelayo and the referee
for detailed comments that have helped improve the clarity of the exposition.
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2. Spectral invariants

In this section we discuss the basic properties of spectral invariants and prove Lemmas

2.7 and 2.8 concerning the Hoferdiameter of Ham, as well as Proposition 1.7. We
assume throughout that M is closed unless explicit mention is made to the contrary.

2.1. Quantumhomology. To fixnotationwelistsome facts about the smallquantum
homologyQH M/ WD H M/ ƒ. We shall take coefficientsƒ WD

ƒunivOEq; q 1

where q is a variable of degree 2 and ƒuniv is the field5 of generalized Laurent series

in t 1 with elements

DX
i 0

ri t"i; ri; "i 2 R; "i > "iC1; "i 1:

Thusƒuniv has a valuation
W

ƒuniv OE 1;1/ given by / WD maxf"i W ri ¤ 0g.
Observe that .0/ D 1, and for all ; 2 ƒ

C / max /; / ; / D / C /; 1/ D /:

Thisvaluation extends toQH M/ in the obviousway: namely, for any ai 2 H M/
we set

Xai qdi t "i D maxf"i W ai ¤ 0g:

The quantum product a b of the elements a;b 2 H M/ QH M/ is defined
as follows. Let i ; i D 0; : : : ;m, be a basis for H M/ with dual basis f

M
i g. Thus

M
i M j D iij :

We use this slightly awkward notation to reserve i for later use; cf. equation 4.3).
Also M which is often simplified to denotes the intersection product

Hd.M/ H2n d.M/ H0.M/ R:

Further, denote by HS2 M/ the spherical homology group, i.e. the image of the
Hurewicz map 2.M/ H2.M/. Then

a b WD X
i; 2HS

ha; b; iiM
2 M/

M
i q c1. /t / ; 2.1)

where ha; b; iiM denotes the Gromov–Witten invariant that counts curves in M
of class through the homological constraints a;b; i Note that deg.a b/ D

5We use the ground field R here since later on we use homology with R coefficients, but could equally well
take ri 2 C as in Entov–Polterovich [5].
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deg a C degb 2n, and the identity element is 1 WD OEM The product is extended
to H M/ ƒ by linearity over ƒ.

Later it will be useful to consider the ƒ-submodule

Q WD M
i<2n

Hi.M/ ƒ:

Here as usual 2n D dimM.) The following easy) result was proved in [19].

Lemma 2.1. i) If M is not strongly uniruled then Q is an ideal in QH M/.
ii) If Q is an ideal and if u 2 QH2n.M/ is invertible, then u D 1 C x for

some nonzero 2 ƒ and some x 2 Q

Note that if quantum multiplication is undeformed then the elements of Q are

nilpotent so that all elements 1 C x with ¤ 0 and x 2 Q are invertible.
However, if we assume only thatQ is an ideal, then an element of the form 1 Cx
might not be invertible. For example it could be a nontrivial idempotent. See [19]
for further details.

Note. Whenever we write a unit as 1 C x we assume, unless explicit mention is
made to the contrary, that ¤ 0 and x 2 Q

2.2. Spectral invariants and norms. One way to estimate the length of a Hamiltonian

path is to use the Schwarz–Oh spectral invariants; see [27], [22] and Usher [29].
They are also explained in [21, Chapter 12.4].) For each element Q 2 eHam and each

nonzero element a 2 QH M/ the number c.a; Q/ 2 Rhas thefollowing properties:

k Qk c.a; Q/ D c.a; Q Q Q
1/ k Qk for ea 2 H M/; Q 2 Ham; 2.2)

c. a; Q/ D c.a; Q/ C / for all 2 ƒ; 2.3)

c.a; Q B / D c.S. / a; Q/ for all 2 1.Ham/; 2.4)

c.a b; Q B Q / c.a; Q/ C c.b; Q / for all a; b 2 QH M/; Q; Q 2 eHam: 2.5)

The third property explains how these numbers depend on the path Q. Here, the
element S. / 2 QH M/ is called the Seidel element of the loop see [28], [16]).
It is an invertible element of degree 2n D dimM in QH M/; we give a brief
definition in §3 below. Further, 2.2) implies that c.a; id/ D 0 for all a 2 H M/,
where id denotes the constant loop at the identity. Hence, for all 2 1.Ham/

c.1; / D c.S. /; id/ D S. //; Nc.1; / D lim
k!1

S. k//
k

:

Remark 2.2. i) Equation 2.2) implies that the lim inf defining the asymptotic
invariants Nc.a; / always exists. When a2 D a standard arguments based on 2.5)
show that one can replace the lim inf by an ordinary limit; cf. [3, §4.2].
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ii) The first two properties 2.2), 2.3) of the spectral invariants are obviously
inherited by the asymptotic invariants. The third is too, because 1.Ham/ lies in the
center of Heam; cf. the proof of Proposition 2.3 below. Moreover, if Q; Q commute
then the fourth property is also inherited by Nc. This is the basis for the discussion in
[4] of partial symplectic quasi-states.)

iii) If e is an idempotent it is easy to see that cN.e; Q Q / c.e; Q/ Cc.e; Q / for all
Q; Q But in general the asymptotic invariants only have good algebraic properties
when e is an idempotent such that eAM is a field; cf. Remark 1.10. However even in
this case it is impossible to have cN.e; Q Q / cN.e; Q/ CcN.e; Q / for all Q; Q Indeed, as

Polterovich points out,6 because cN.e; Q 1/ D cN.e; Q/ for such e, if this inequality
did always hold one would have

cN.e; Q Q / D cN.e; Q Q / 1/ cN.e; Q
1/ CcN.e; Q

1/ D cN.e; Q/ cN.e; Q /:

But then we would have equality, i.e. Nc.e; / would be a surjective homomorphism.
It would then descend to a nontrivial homomorphism Ham R= where is the
image of the countable7 group 1.Ham/. Since Ham is perfect, this is impossible.
Incidentally, this argument also shows that when eAM is a field it is impossible that

c.e; Q/ D cN.e; Q/ for all Q. This is obvious from the explicit calculation in formula
2.9) below. On the other hand, the current argument is structural and hence might

apply in other situations as well.)

Much of following proposition is implicit in Entov–Polterovich [3].

Proposition 2.3. i) The following conditions are equivalent:

a) The spectral invariants c.a; /; a 2 QH M/; a ¤ 0, descend to Ham.

b) One spectral invariant c.a; /;a ¤ 0, descends to Ham.

c) c.1; / D S. // D 0 for all 2 1.Ham/.

d) For all 2 1.Ham/, S. / D 1 C x where / D 0 and x/ 0.

ii) The following conditions are equivalent:

a) The asymptotic spectral invariants Nc.a; / a 2 QH M/, a ¤ 0, descend to
Ham.

b) One asymptotic spectral invariant Nc.a; / a ¤ 0, descends to Ham.

c) For all 2 1.Ham/,

c.1; / 0; and
Nc.1; / D lim

k!1
S. k//

k D 0:

6Private communication.
7 A proof of this classical result is sketched in [21, Remark 9.5.6].
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iii) If the spectral invariants descend then so do the asymptotic invariants.

Proof. Consider i). The equivalence of the first three conditions is immediate from
2.3) and 2.4). Part ii) of the next lemma shows that c) implies d). Conversely,

suppose that d) holds, i.e. all the S. / may be written as 1 C x where / D
0 x/. Then S. // 0 for all Moreover, if S. // < 0 for some then

0 D 1/ D S. / S. 1/ S. / C S. 1/ < 0

which is a contradiction. Hence c) holds.
Now consider ii). If the invariants

Nc
descend then in particular we must have

Nc.1; / D Nc.1; id/ D 0 for all Further, if c.1; / D " < 0 then c.1; k/ k"
which implies that Nc.1; / < 0. Therefore condition c) is necessary. To prove the
converse,observe thatbecause 2 1.Ham/ is in the centerof eHam, thesubadditivity
relation 2.5) for c implies that

k c.a; Q k k/ cN.a; Q/ CcN.1; /:cN.a; Q B / D lim inf 1

Hence if Nc.1; / D 0 always,

cN.a; Q B / cN.a; Q/ D cN.a; Q B / B
1/ cN.a; Q B /:

Thus we must always have cN.a; Q B / D cN.a; Q/. Therefore a) and c) are equivalent.
Since a) implies b) it remains to check that b) implies c). But the inequality

cN.a; Q B / cN.a; Q/ CcN.1; /
implies that Nc.1; / 0, while the second part of c) follows easily from the fact that

c.a; Qk k/ D c.a; Qk/ C S. k//. Thus ii) holds. iii) is immediate.

Lemma 2.4. i) Every element of the form u D 1 C y with / y/ is
invertible in QH M/.

ii) Let u 2 QH M/ be an invertible element of the form u D 1 Cy where
might be zero, and suppose that u/ D 0. Then either / D 0 D u 1/ or
u 1/ > 0.

Proof. First note that by the definition of the quantum product

x z x \ z/ x/ C z/ i for all x; z 2 QH M/; 2.6)

where i > 0 is the minimal energy / of a class ¤ 0 with nonzero Gromov–
Witten invariant ha1;a2; a3i Hence, because all elements in the undeformed ring
H<2n.M/ are nilpotent of order n C 1,

anC1/ i for all a 2 H<2n.M/:
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Here and subsequently ak denotes the k-fold quantum product a a.) Hence

if z 2 Q has z/ 0 then z.nC1/k/ ki 1as k 1. Because zi/
is a nonincreasing sequence when z/ 0, it also diverges to 1. Thus Pi 0 zi
is a well defined element of QH M/. Hence 1 C y is invertible with inverse

u 1
WD

1.1 C
1y/ 1

D
1X. 1/i 1y/i 2 QH M/:

This proves i).
To prove ii) suppose that u D 1 Cy is a unit with u/ D 0. Because 1 and

the components of y are linearly independent, u/ D max. /; y//. Similarly,
if we write u 1

D 1 C x, we have u 1/ D max. /; x//.
If / D 0 then the above formula for u 1 shows that u 1/ D 0. So suppose

that / < 0. Because uu 1
D 1, at least one of the terms 1 and xy must contain

1 with a nonzero rational coefficient. If it is the former then / D / > 0,
while if it is the latter then we must have x/C y/ > 0 so that x/ i. In either
case u 1/ > 0.

Corollary 2.5. The asymptotic spectral invariants descend to Ham if for all there
is m such that S. m/ D 1 C x where / D 0 and x is nilpotent.

Proof. Suppose that xN D 0. Let K D maxf xk/ j 0 k Ng. Then because S
is a homomorphism and is subadditive

S. mk/ D S. m//k D
k
Ck xC: : : / maxfk /; x/; :: : g K;

for all k 2 Z and all Hence Nc.1; m/ D 0, and hence Nc.1; / D 0.

Remark 2.6. It is not hard to find conditions under which every invertible element
in QH M/ has the form 1 Cx where x is nilpotent. For example, as we noted
above, this is always true if the quantum multiplication is undeformed. For other
cases see Lemma 3.2. Therefore the main difficulty in showing that the asymptotic)
spectral invariants descend lies in ensuring that the condition / D 0 holds.

The numbers c.a; Q/ are defined by looking at the filtered Floer complex of the
generating mean normalized Hamiltonian H, and turn out to be particular critical
values8 of the corresponding action functional AH; cf. Oh [23] and Usher [29].
Thus each c.a; Q/ corresponds to a particular fixed point of the endpoint 1 2 Ham
of Q.

8 In fact this property is essential to the existence of the spectral invariants as functions on eHam; the spectral
invariants are first defined as functions on the space of Hamiltonians H and one needs the spectrality property

to conclude that they actually depend only on the element ineHam defined by the flow ofH.
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It is usually very hard to calculate them. However, if Q WD Q
H is generated by a

C2-small mean normalized Morse function H W M R, then

c.a; Q
H/ D cM.a; H/; a 2 QH M/; 2.7)

where cM.a; H/ are the corresponding invariants obtained from theMorse complex
of H. These are defined as follows. Denote by CM M; K/ the usual Morse
complex for the Morse functionK. For each 2 R, ithas a subcomplexCM M; K/
generated by the critical points p 2 Crit.K/ with critical values K.p/ Denote
by the inclusion of the homology H of this subcomplex into H1 Š H M/.
Then for each a 2 H M/

cM.a; K/ WD inff W a 2 Im g: 2.8)

Ostrover’s construction. As pointed out by Ostrover [24], one can use the continuity
properties of the c.a; Q/ to find a path s 7! Q s in eHam whose spectral invariants tend

to1as s! 1.
Normalize so that RM

n
D 1. Let H be a small mean normalized Morse

function, choose an open set U that is displaced by H
1 i.e. H

1 U /\U D ;) and let
F W M Rbe a functionwith support inU and with nonzero integral I WD RM F!n,

so that F I is mean normalized. Denote the flow of F by ft and consider the path
Q es WD ffts

H
gt2OE0;1 in Ham ast s 1. For each s, Q is generated by thes

Hamiltonian
Fst # H WD sF C H B fst:

The corresponding mean normalized Hamiltonian is

Ks WD sF C H B fst sI:

By construction, fs H
1 has the same fixed points as H

1 namely the critical points
of H. Hence the continuity and spectrality properties of c.a; Q s/ imply that for
each a the fixed point pa whose critical value is c.a; Q s/ remains unchanged as s

increases. But the spectral value does change. In fact, if a 2 H M/, then when
s D 0 there is a critical point pa ofH such that c.a; Q 0/ D cM.a; H/ D H.pa/.
Hence

c.a; Q s/ D Ks.pa/ D H.pa/ C sI; for all s 2 R; a 2 H M/: 2.9)

By 2.2) it follows that eHam has infinite Hofer diameter.
The next result is well known.

Lemma 2.7. Ham has infinite diameter if either a spectral number or an asymptotic
spectral number descends to Ham.
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Proof. Let
W
eHam Ham denote the projection. We will show that, for the above

path Q s

k Q s/k D k sk! 1 as s! 1:
By definition, for each s

k sk D inffk Q s B k W 2 1.Ham/g inffc.a; Q s B / W 2 1.Ham/g;

where the inequality follows from equation 2.2). If the spectral number c.a; /
descends to Ham then c.a; Q s B / D c.a; Q s/ for all so that the result follows
from equation 2.9).

Now suppose that the asymptotic spectral number
Nc.e; / descends to Ham for

some idempotent e. We first claim that there are elements gQi; i D 1; : :: ; k 1, ineHam that are conjugate to Q
H
1 and such that Q skgQ1 : : : gQk 1 D Q s/k. To see this,

denote a WD fQs; b WD Q
H
1 so that Q sk D akb and Q s/k D ab/k. Then use the fact

that

ab/k D akb b 1a kab : : : ab

D akb b 1 a kC1bak 1/.a kC2bak 2/ : : : a 1ba/ b:

Next, observe that by 2.5) we have c.e; Q /k/ kc.e; Q / for all k > 1. Hence

cN.e; Q s B / D lim 1
kc.e; Q s B /k/ c.e; Q s B / k Q s B k:

On the other hand,

k c.e; Q sk/gQ

1
cN.e; Q s B / D cN.e; Q s/ D lim 1

k 1 : :: gQ

1
1 /

k c.e; Q sk/lim 1
k 1

X
iD1

c.e; gQi/ ;

sI k Q
H
1 k;

where the first inequality uses the identity c.e;fg/ c.e; f / c.e; g 1/ which
follows from 2.5), and the second uses 2.9) and the fact that the gQi are conjugate

to H
Q 1

Lemma 2.8. The function C C is unbounded on Ham whenever the asymptotic
spectral numbers descend to Ham.

Proof. The proof of the inequalities in 2.2) actually shows that

Z
1

0
min. Ht/ dt c.1; Q/ Z

1

0
max. Ht/ dt
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for every mean normalizedHt thatgenerates Q; see forexample [21, Theorem 12.4.4].
Now suppose that cN.1; / descends. Equation 2.5) implies that cN.1; Qk/ kc.1; Q/.
Hence if Q is any lift of

cN.1; / D cN.1; Q/ Z
1

0
max. Ht/ dt:

Therefore, because H1 t generates Q 1, we have cN.1; / C. 1/. Applying
this to the image s 2 Ham of the element Q s of 2.9) we find that

Nc.1; s/ D s C. s
1/:

Thus, because 0, the function C C is not identically zero and hence is a

norm. Moreover it is clearly unbounded.

Remark 2.9. As remarked in the introduction, the Hofer pseudonorm k k is a norm
on eHam if and only if it restricts to a norm on 1.Ham/. The only way that I know
to estimate k k for 2 1.Ham/ is via the spectral invariant c.1; / D S. //
which is a lower bound for k k by 2.2). If the spectral invariants descend to Ham
then c.1; / D 0 for all and one gets no information. For example, there are no
current methods to detect the Hofer lengths of the elements of 1.Ham/ when M; !/
is the standard 2n-torus. Of course, in this case if n > 1 it is also unknown whether

1.Ham/ itself is nonzero.) On the other hand, there are manifolds such as certain
blow ups of CP2 and S2-bundles over S2 for which 1.Ham/ is known and S/
does restrict to an injective homomorphism; see [20], [17] and the references cited
therein.

We end this section by proving Proposition 1.7 about the behavior of C in the
noncompact case. We need to prove:

Lemma 2.10. ForeachH W M Rwith support inU ¤ M there is i D i.H;U/ >
0 such that

C
U tH/ D t max H; 0 t i:

Proof. We will prove this for open sets U with smooth boundary. Since any precompact

open set U0 is contained in such U the result for U0 follows easily, since C
U0 is

defined by taking an infimum over a smaller set than C
U

Put a collar neighborhood Y OE 1; 1 M round the boundary of U so that

U \ Y OE 1;1 / D Y OE 1; 0/:

Let U WD U [ Y OE 1; / Choose any !-compatible almost complex structure
J0 on M and choose r > 0 so that for each y 2 Y f1=2g there is a symplectic
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embedding fy of the standard ball of radius r into Y OE1=4; 3=4 with center at

fy.0/ D y. Then by monotonicity there is i0 > 0 so that every J0-holomorphic
sphere uW S2 U1 whose image meets both Y f1=4g and Y f1=2g has energy

i0.
One condition on the constant i is that ikHk < i0, where kHk D maxH

minH. The other is that when 0 < t i the function tH should be sufficiently
small in the C2 norm for it to be possible to embed a ball of capacity ktHk in R tH ."/,
the region “under the graph” of tH. This region is described in [17, §2.1], and the
ball embedding is constructed in [15, II, Lemma 3.2].

Now let us suppose that the lemma does not hold with this choice of i. Thus if
F WD tH for some t 2 OE0; i we suppose that there is another Hamiltonian path K

t
in HamcU with K

1 D F
1

that is generated by a Hamiltonian Kt with support in U
and such that

Z
1

0

Z max
x2M

Kt/ n dt < Z max
x2M

F/ n:

Under these conditions we show in [17, §2] that there is a Hamiltonian bundle

U1;!/ P1; / S2

with the following properties:

i) P1 is trivial outside U. More precisely, P1; / S2 contains a subbundle

P; / S2 with fiber U; !/ such that P1XP; / S2 may be identified
with the product bundle U1XU/ S2; / where is an area form on S2.

ii) RS2 < kF k.
iii) P; / contains a symplectically embedded ball B of capacity kF k.

P1 is constructed as the unionRK;F .2"/ of two bundles overD2, one a smoothing
of the region in M OE0; 1 R between the graphs of Kt and of the function t 7!
maxKt and with anticlockwise boundary monodromy f

K
t gt2OE0;1 and the other

a smoothing of the region between the graphs of F and of the constant function
t 7! min F and with clockwise boundary monodromy f F

t gt2OE0;1 The bundle is
trivial outside U because F; K have support in U. Property ii) is an immediate
consequence of the construction. The region below the graph of F contains the ball,
which is embedded near the maximum of F

Now consider the Gromov–Witten invariant that counts holomorphic spheres in
P1 in the class D OEp S2 2 H2.P1/ for p 2 U1XU and through one point p0. If
we restrict the class of allowable almost complex structures to those that are -tame
and equal to J0 j outsideP and choose p0 2 U1=4, then this invariant iswelldefined
because the energy / D RS2 of each curve is less than i0, the amount of energy
needed for a curve to enter the boundary region P1XP1=2 Š Y .1=2; 1 / S2.
Note that because P1XP;J0 j / is a product, the energy of any curve that enters
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this region is at least as much as the energy of its projection to a fiber.) We shall
call this invariant hpti

P1 though in principle it might depend on the product structure
imposed near the boundary of P1.

Since there is a unique -sphere though each point in P1=4XP, hpti
P1

D 1. But
then, by a standard argument, the nonsqueezing theorem of [17, §1.4] holds for this
fibration, i.e. every ball of radius r embedded in Int P has capacity r2 /
But this contradicts properties ii) and iii) of P1.

We conclude with a sketch proof of the nonsqueezing theorem. Let f W Br
Int P1 be a symplectic embedding of the standard r-ball with center f .0/ and image

B. Choose an -tame almost complex structure J on P1 that is normalized on P1XP
and equal to f jn/ on B, where jn is the standard structure on Cn. By hypothesis
there is a J-holomorphic sphere C in class through f.0/, and so

/ D
Z

C
> Z

C\B
Z

f 1.C\B/
0 r2 ;

where the last inequality holdsbecause f 1.C\B/ is a properly embeddedholomorphic

curve through the centerofBr Cn. For more details, see [21, Chapter 9].

Remark 2.11. Because the homology of M has no fundamental class when M
is noncompact, it is not clear how to understand quantum homology and the Seidel
representation in this case. Nevertheless, as we will see below, for the problems under
consideration here we do not need to know everything about the Seidel element S. /
but just some facts about the coefficient of the fundamental class 1 in S. / This
coefficient is given by counting the number of sections of the corresponding fibration
P S2 that go through a point, i.e. by a Gromov–Witten invariant of the form

hpti
P Therefore the above argument fits naturally into the framework developed

below for the closed case.

3. The main argument

This section explains the main ideas and proves Theorems 1.1 and 1.3 modulo some
calculations of Gromov–Witten invariants that are carried out in §4.

3.1. The Seidel representation. Our aim in this section is to prove the following
result.

Proposition 3.1. i) If vanishes on 2.M/ then the spectral invariants descend to
Ham.
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ii) If rankH2.M/ D 1, n C 1 N < 1 and M; !/ is not strongly uniruled
then the spectral invariants descend. The same conclusion holds if N n 1 and
M; !/ is negatively monotone.

iii) If rankH2.M/ D 1 and n C 1 N < 1 then the asymptotic spectral
invariants descend.

The main tool is the Seidel representation S. We will see that the stringent
hypotheses above guarantee that the relevant moduli space of sphereshas no bubbling
so that it is compact. The argument goes back to Seidel9 though it was first published
by Schwarz, who showed in [27, §4.3] that the spectral invariants descend when both

and c1 vanish on 2.M/. We generalize this result in i) above. Part iii) is a mild
generalization of a result of Entov–Polterovich [3] who proved that the asymptotic
spectral invariants descend when M D CPn.

AfterdefiningS, we shallcalculate it under the conditions of the aboveproposition
see Lemma 3.2). Finally we prove the various cases of the proposition.

We shall think of the Seidel representation as a homomorphism

S W 1.Ham.M;!// QH2n.M/ ;

to the degree 2n multiplicative units of the small quantum homology ring, where

2n WD dimM. To define it, observe that each loop D f tg in HamM gives rise to
an M-bundle P S2 defined by the clutching function :

x/; e2 it/C x;e2 i t / :P WD M DC/ [ M D / ; t
Here D are two copies of the unit disc with union S2.) Because the loop is

Hamiltonian, the fiberwise symplectic form extends to a closed form on P
that we can arrange to be symplectic by adding the pullback of a suitable form on the
base S2.

The bundle P S2 carries two canonical cohomology classes, the first Chern
classcVert

1 of the vertical tangent bundle and thecoupling class u which is the unique
class that extends the fiberwise symplectic class OE! and is such that unC1 D 0. Then,
with notation as in 2.1), we define

S. / WDX
;i

M
h ii

P
i q

cVert
1 /t u /

2 H M/ ƒ; 3.1)

cf. [21, Definition 11.4.1].) Thus S. / is obtained by “counting” all section classes

in P through one fiberwise constraint i As in Seidel’s original paper [28], one can

also think of it as the Floer continuation map around the loop ; cf. [21, §12.5]. We

also note for later use that for all b 2 H M/

S. / b DX
;i

M
hb; ii

P
i q

cVert
1 /t u /; 3.2)

9Private communication.
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i.e. it is given by counting section classes with two fiberwise constraints.
We will also often use the fact that if 0 is the homology class of a section of

P S2, then every other section in H2.P / may be written as 0C for a unique

2 H2.M/ H2.P / Note that

cVert
1 0 C / D cVert

1 0/ C c1. / 3.3)

where as usual c1 denotes c1.TM/.
The first parts of the following lemma are due to Seidel [28].

Lemma 3.2. Let N be the minimal Chern number of M and 2 1.HamM/.

i) If N 2n C 1 then S. / D 1

ii) If n C 1 N 2n then S. N/ D 1 Moreover S. / D 1 provided
that M; !/ is not strongly uniruled.

iii) If N D n and if M; !/ is not strongly uniruled then S. / D 1 Cpt qn
for some ¤ 0.

iv) If M; !/ is negatively monotone then S. / D 1 r0t"0 C x where x 2 Q
x/ < "0.

v) If D 0 on 2.M/ then S. / D .1 C x/ r0t "0 where x 2 H<2n.M/OEq

Proof. Suppose that N 2n C 1 and that ha; b; ciM ¤ 0, where a; b;c 2 H M/
have degrees 2da, 2db, 2dc respectively. Then n C c1. / C da C db C dc D
3n. This equation has no solution if jc1. /j 2n C 1. Hence c1. / D 0, and

da C db C dc D 2n. Moreover, if a D pt then db D dc D n which is impossible
because hpt; M; MiM D 0 when ¤ 0. Hence M is not strongly uniruled, and so

by Lemma 2.1 all units in QH M/ have the form 1 Cx where ¤ 0, x 2 Q
Therefore to prove i) it suffices to show that x D 0.

Next observe that the Seidel element is given by invariants of the form h i
P

where 2 H M/. If is a section class, then c1.TP/. / D cVert
1 / C 2, where

the 2 is the Chern class of the tangent bundle to the section. Hence the dimension
over C of the moduli space of parametrized -curves in P is n C 1 C cVert

1 / C 2.
Therefore the above invariant can be nonzero only if

2c
Vert
1 / C deg D 0: 3.4)

In particular, we must have n cVert
1 / 0.

Now suppose that the coefficient of 1 in S. / is nonzero. Then there is a nonzero

invariant of the form hpti
P

0 which implies that the corresponding section 0 has
cVert

1 0/ D 0. Equation 3.3) then implies that every other section 0 C either has
cVert

1 0C / D 0 so that this section also contributes to the coefficient of 1, or is such
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that cVert
1 0 C / D c1. / has absolute value at least N. Hence ifN > n equation

3.4) shows that the class 0 C cannot contribute to S. / Thus S. / D 1
This proves i).

In case ii) the argument in the previous paragraph shows that all sections of P
contributing to S. / have the same value of cVert

1 say d For short let us say that

is at level d If d > 0 then S. / 2 Q Since S. / is invertible, it follows from
Lemma 2.1 that this is possible only if M;!/ is strongly uniruled. This proves the
second statement in ii). To complete the proof of ii) we must show that N always
lies at level 0 even if M;!/ is strongly uniruled.

To see this, observe that for any loops ; 0 one can form the fibration corresponding

to their product 0 by taking the fiber connect sum P # P 0 Thus if is a

section of P and 0 is a section of P 0 one can form a section of P 0 by taking
their connected sum # 0 Under this operation the vertical Chern class adds.
Thus the sections that contribute to S. 0/ either have level d C d 0 or have level
d Cd 0 N, depending on which of these numbers lies in the allowed range OE0; n
Hence if lies at level d, for all k 1 there is m 0 such that kd mN 2 OE0; n
SinceN > n the only possible solution of this equation when k D N is m D d.
Therefore S. N / lies at level 0. This proves ii).

Almost the same argument proves iii). Note that if there is a section at level
d > 0 then all sections that contribute to S. / lie at this level. On the other hand

if there is a section at level 0 there might also be a section at level n. It follows as

before that S. / must have a section at level 0. Therefore S. / D 1 Cpt qn
Moreover, our assumption on QH M/ implies that ¤ 0.

To prove iv) note that M;!/ is not uniruled, so that by Lemma 2.1 S. / D
1 C x where ¤ 0. Moreover, if 0 is a section class of P of minimal energy
with hpti ¤ 0 then every other section class with hai ¤ 0 for some a 2 H M/
has the form D 0C where c1. / 0. If c1. / D 0 then / D 0 and a D pt.
These invariants contribute to the coefficient of t "0 in where "0 D u 0/. On
the other hand if c1. / < 0 then / > 0 and hence these invariants contribute to
terms in x with valuation < "0 /

Finally, if vanishes on 2.M/, then, because all Gromov–Witten invariants
vanish, the quantum multiplication is undeformed. Moreover, all sections of P have

the same energy. Hence S. / D .1 C x/ r0t"0 where 0 ¤ r0 2 Q and x 2 Q
This proves v).

Definition 3.3. If S. / D 1 C x we define 0 to be the section class of P of
minimal energy that contributes nontrivially to the coefficient Moreover we write

D Pi 0 ri t "i where r0 ¤ 0 and "i > "iC1 for all i

Thus

r0 D hpti
P

0 ; / D "0 D u 0/: 3.5)
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Note that cVert
1 0/ D 0 by equation 3.4). The conditions in Proposition 3.1 are

chosen so that the moduli space of sections in class 0 is compact. In what follows
we shall often simplify notation by writing P instead of P

Proof of Proposition 3.1. Suppose that j 2 D 0. Then S. / D .1 C x/ r0t"0

by Lemma 3.2 v). We will show that "0 D 0. The claimed result then follows from
Proposition 2.3 i) d).

Since j 2.M/ D 0 the spaces of sections that give the coefficients of S. / are

compact when parametrized as sections) since there is no bubbling. To be more
precise, note that it suffices to consider almost complex structures J on P WD P
that are compatible with the fibration W P S2 in the sense that is holomorphic
and the restriction Jz of J to the fiber over z 2 S2 is !-compatible for each z 2 S2.
Then all stable maps in the compactification of a space of sections consist of a section
together with some bubbles in the fibers. But if j 2.M/ D 0 there are no
Jzholomorphic spheres for any z. Hence in this case the sections in class 0 form a

compact 2n-dimensional manifoldM WD M. 0/. Here we assume that the elements

ofM are parametrized as sections.) Therefore there is a commutative diagram

S2 M
eval

pr1

P

S2 S2

where the top arrow is the evaluation map. Moreover, 0 D eval OES2 fptg
Now observe that the Gromov–Witten invariant r0 D hpti

P
0

of equation 3.5)

is just the degree10 of the map fzg M M D 1.z/ that is induced by eval.
Thus our hypotheses imply that eval has nonzero degree. Since the coupling class u
satisfies u jM D OE! and unC1 D 0, it easily follows that there is a class a 2 H2.M/
such that eval u / D pr2 a/. Hence

"0 D / D u 0/ D
Z

S2 fptg

eval u D 0

as required. This proves i).
Next consider case ii). Lemma 3.2 implies that in all cases considered here

S. / D 1 C x where x/ < / Hence the spectral invariants descend
provided that / D 0. But for generic -compatible J on P we claim that the
moduli spaceMis again compact. Hence the previous argument applies to show that

/ D 0.
To prove the claim, note that the only possible stable maps in the compactification

Mx ofM consist of the union of a section in the class 0 k where k > 0 together

10In fact, since r0 must be an integer it must be 1. For its product with the corresponding integer for 1

must be 1.
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with some bubbles in classes ki Suppose first that c1.M/ D OE! where < 0.
Then because / > 0, c1. / N. But if J is generic it induces a generic
2-parameter family Jz;z 2 S2, of almost complex structures on M. Therefore such
a class could be represented only if N c1. / 2 n, which is possible only
if N n 2. Since we assume N n 1 there are no bubbles in this case. On
the other hand if c1.M/ D OE! on 2.M/ where > 0 then c1. / N. Hence

c1. 0 k / 2 N. But the section is embedded and hence is regular for generic J
Thus for such a section to exist we must have n C 1 C .2 N/ 3, i.e. n N.
This is precisely the argument in [3].) This proves ii).

If N n C 1 but M; !/ is strongly uniruled, then we can apply the above
argument together with Corollary 2.5 to N to conclude that the asymptotic spectral
invariants descend.

3.2. Calculating the coupling class. An essential ingredient of Schwarz’s argument

is that the vanishing of on 2 implies that there is no bubbling so that the
moduli space M is a compact manifold. One cannot replace S2 M here by the
universal curveMx0;1. 0/ over some compactified virtual moduli cycleMx. 0/ since
the “bundle” f W Mx0;1. 0/ Mx. 0/ is singular over the higher strata of Mx. 0/.
The argument we give below shows that if the relevant Gromov–Witten invariants
of M and P WD P vanish then this potential twisting does not effect eval u / too
much, so that this class still has zero integral over the fiber of f Observe that it is not
enough here that the invariants of M vanish; we need some control on the invariants
of P in either section or fiber classes.

Our reasoning is very similar to that in [16, §3]; see also [17]. There we were
investigating conditions under which the ring H P / splits as a product, i.e. it is
isomorphic as a ring to H M/ H S2/. As the next lemma makes clear, what
we need here is a partial splitting of this ring.

Lemma3.4. SupposeS. / D 1 Cx and that there isanelementH 2 H2n.P IR/
such that

a) H \ OEM is Poincaré dual in M to OE! ;
b) H 0 D 0;

c) HnC1 D 0.
Then / D 0.

Proof. Let u WD PDP H/, the Poincaré dual in P WD P to the divisor class H.
Then a) implies that ujM D OE! while c) implies that unC1 D 0. Hence u is the
coupling class u Therefore

/ WD u 0/ D u. 0/ D H 0 D 0;

as required.
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It is possible that an element H 2 H2n.P / with the above properties exists
whenever N nC1 and S. / D 1 However, we can only prove this under an
additional assumption11 on the structure of QH M/ that we now explain. Roughly
speakingwe require that thedivisor classes inH M/carry all the nontrivialquantum
products. To be more precise, we make the following definition.

Definition 3.5. Let D be the subring of Hev.M/ generated by the divisors, i.e. the
elements in H2n 2.M/. We say that QH M/ satisfies condition D) if D has an

additive complement V in Hev.M/ such that the following conditions hold for all
d 2 D;v 2 V and 2 H2.M/

a/ d v D 0I and b/ hd; vi
M

D 0:

This condition is used in Lemma 4.8 in order to allow certain computations to be
done recursively.

Remark 3.6. i) This condition is trivially satisfied if either the quantum product is
undeformed since then hd; viM D 0 always) or if D D Hev.M/.

ii) When N n C 1 the only classes for which hd;viM could be nonzero
have c1. / D 0. If N D n C 1 there is one potentially nonzero invariant with two
insertions and c1. / ¤ 0, namely hpt; pti

M But pt 2 D and so this does not affect
condition b) in Definition 3.5.)

By condition a) in Definition 3.5 we may choose a basis i;0 i m, for
Hev.M/ so that the first m1 elements span the subring D while the others span V
Hence the firstm1 elements of the dual basis f M

i g will also spanD. In other words,
for all d 2 D and 2 H2.M/

¤ 0 H) M
hd; iiM i 2 D for all i: 3.6)

Notice also that because there is an open subset ofH2n 2.M/ consisting of elements

D such that Dn ¤ 0 we may assume that 0 D 1 and that for 1 i m1 each

i D Dk for some such D. Then each of the corresponding dual elements i is also
a sum of elements of the form Dk.

Now consider the map s W H M/ H C2.P/ defined by the identity

r0 ha; vi
Ps.a/ P v WD

1
0; v2 H P /; 3.7)

where r0 is as in equation 3.5).

11 This condition, though essential to the proof, is very technical and there seems no intrinsic reason why it
should be necessary.
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Proposition 3.7. Suppose that S. / D 1 Cx, let 0 be as in Definition 3.3 and
define s as above. Then the element H WD s.PDM.!// satisfies the conditions of
Lemma 3.4 in each of the following situations:

i) N n C 1, S. / D 1 and QH M/ satisifies condition D).

ii) N D n, M; !/ is not strongly uniruled, rankH2.M/ > 1 and condition D)
holds.

iii) M; !/ is negatively monotone and condition D) holds.

iv) QH M/ is undeformed and M; !/ is not spherically monotone with
rankH2.M/ D 1.

We defer the proof to §4.

Corollary 3.8. Theorems 1.1 and 1.3 hold.

Proof. Theorem 1.1 concerns the case when QH M/ is undeformed. Then S. /
always has the form 1 0 C x where x is nilpotent, since these are the only
invertible elements in QH M/. Moreover, if N n C 1, then S. / D 1 by
Lemma 3.2 i). Hence, we may suppose that the conditions of either part i) or part
iv) of Proposition 3.7 hold. Therefore this result, together with Lemma 3.4 and

Corollary 2.5, prove the theorem. Note that if N n we cannot conclude that the
spectral invariants descend, since it is possible that x/ > 0 for some

Similarly, part iv) of Theorem 1.3 follows from part iii) of Proposition 3.7. Next
suppose that N n C 1 and, if N 2n, that M; !/ is not strongly uniruled. Then

S. / D 1 by Lemma 3.2. Moreover / D 0 by Lemma 3.4. Hence the spectral
invariants descend by part i) of Proposition 2.3. This proves part i) of Theorem 1.3.
Parts ii)and iii) of this theorem followsimilarly. Incase ii) we haveS. N/ D 1
while in case iii) S. / D 1 C pt qn In either case / D 0. Therefore
the asymptotic spectral invariants descend by Corollary 2.5.

4. Calculations of Gromov–Witten invariants

This section contains the proof of Proposition 3.7.

4.1. Preliminaries. We shall use the following identity of Lee–Pandharipande [12]:

evali H/ D evalj H/ C H/ j X
1C 2D

1 H/ Di; 1 j j; 2; 4.1)

where i is the first Chern class of the cotangent bundle to the domain at the i th
marked point and H 2 H2n.P / Š H2.P / is any divisor.12 Lee–Pandharipande
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were working in the algebraic context and hence interpreted both sides as elements of
an appropriate Picard group. Thus provided that weareworking with stable maps that
haveat least three marked points,Di; 1 jj; 2 is thedivisor consisting ofall stable maps
with two parts, one in class 1 and containing zi and the other in class 2 D 1

containing zj
We shall interpret 4.1) as an identity for Gromov–Witten invariants. Thus taking

i;j D 1; 2 this equation states that for all classes u; v; w 2 H P/ and all 2
H2.P /,

hHu; v; wi D hu; Hv; wi C H/hu; v; wi

X
j; 1C 2D

1 H/hu; j ; : : :i 1h j ;v; : : : i 2 ; 4.2)

where the sum isover the elementsof abasisf j g ofH P / with dual basis f j g) and

all decompositions 1 C 2 D of and where the dots indicate that the constraint

w may be in either factor except if 2 D 0 in which case it must be in the second
factor for reasons of stability. Note that here denotes a descendent invariant. In
fact we shall only use 4.1) in cases when H D 0 so that this term vanishes. If
it does not, one should get rid of the insertion by using the identity i D Di jjk,
where Di jjk denotes the divisor consisting of all stable maps with two parts, one
containing the point zi and the other containing the points zj ; zk. But often one
then gets no information since the term on LHS appears in the expansion for For
further discussion of this point as well as a brief proof of 4.1) in the symplectic
context see [19].

Notice that if we apply an identity such as 4.2) to even dimensional classes ai we
only need to consider even dimensional j ; j We will make this restriction now in
order to avoid irrelevant considerations of sign. Also, we will simplify the arguments
that follow by choosing a basis f j g forHev.P/ of special form. We start with a basis

i ; i 2 I for Hev.MIR/ that satisfies the condition in 3.6) and extend this to a basis

for Hev.P IR/ by adding elements j ;j 2 I so that for all i j
i P j D iij; i P j D 0: 4.3)

Thus i is a fiber class but j is not. Note that this basis f i; j g for Hev.P / is

self-dual. Further, M
i D i \M.

With this choice of basis the sum in 4.2) breaks into two, depending on which of

j ; j is a fiber class. To analyze the resulting product terms, we frequently use the
following fact about invariants of P in a fiber class

12 Here H denotes the intersection number of two homology classes ;H that lie in complementary
degrees. If u 2 Hi.P/ where i is arbitrary, we shall denote by Hu the cap product H \ u 2 Hi 2.P /.
Further, when H D M is the class of the fiber, we shall write u \M for the cap product when considered as

an element in Hi 2.M/. This last distinction is not very important since H M/ injects into H P/ by the

result of [16].
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Lemma 4.1. Suppose that a; b 2 H M/, v;w 2 H P / and 2 H2.M/. Then:

i) ha;b; viP D 0.

ii) ha;v; wi
P

D ha; v \M; w\MiM :

Proof. This is part of [16, Proposition 1.6]. These statements hold because, as is
shown in [16], one can calculate these invariants using an almost complex structure
and perturbing 1-form that are compatible with the fibration W P S2. Hence
every element in the virtual moduli cycle is represented by a curve that lies in a single
fiber. i) is then immediate, sincea; b can be represented in different fibers. Similarly,
ii) holds because every -curve through a must lie in the fiber containing a. The

fact that v \M; w\M do not vanish means that these cycles take care of the needed
transversality normal to this fiber.

To make our argument work we also need information about certain section
invariants of P. When N nC1 the following lemma suffices; the proof is easy since

it is based on a dimension count.

Lemma 4.2. Suppose that N n and that if N D n then M; !/ is not strongly
uniruled. Suppose further that S. / D 1 Cpt qn and let D 0 where

/ > 0. Then for all a 2 H<2n.M/:
i) For all w 2 H P /, ha; w; Mi D 0 unless cVert

1 / D 0 and degw Cdeg a D
2n.

ii) ha;b; Mi D 0 for all b 2 H M/.

iii) For all w 2 H P /, ha;w;Mi depends only on w \M.

Proof. Statement i) holds by a dimension count as in the proof of Lemma 3.2. ii)
holds because an invariant of this form with only two nontrivial fiber insertions is
determinedbyS; namely by 3.2) ha; i is thecoefficient of M q

cVert / t u /i 1i
in

S. / a D .1 C pt q n / a D a :

Since u / > / this vanishes. Note that for this argument to apply we need
that either D 0 which happens when N nC1) or pt a D 0, i.e. M not strongly
uniruled.

Statement iii) is an immediate consequence of ii) because any two classes w;w0

with w \M D w0\M differ by w w0 2 H M/.
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4.2. Technical lemmas. This section contains two rather technical results about
the vanishing of certain Gromov–Witten invariants needed for some of the cases

considered by Proposition 3.7. However, they are not needed when N n C 1, and
the reader might do well to read the next section first, coming back to this section
later.

If N D n we also need the following lemma about the fiber invariants of P.

Lemma 4.3. Suppose that N D n, that M;!/ is not strongly uniruled, and that
rankH2.M/ > 1. Suppose further thatS. / D 1 Cpt qn where ; 2 ƒuniv.

Then for any classes s1; s2 2 H2.P / and any 2 H2.M/, hs1;s2i D 0.

Proof. A dimension count shows that the invariant is zero unless c1. / D n. If there
are any nonzero invariants of this form, choose with minimal energy / so that

hs1; s2i ¤ 0.

If s1; s2 are both fiber classes then the invariant vanishes by Lemma 4.1. If just
one say s1) is a fiber class then the same lemma implies that the invariant equals

hs1; pti
M which vanishes because M is not strongly uniruled. Hence hs1; s2i does

not depend on the choice of section classes si
We nowmakea specific choice of s1. Since rankH2.M/ > 1there isa 2 H2.M/

such that a. / D 0. Let F 2 H2n.P / be any extension of PDM.a/ 2 H2n 2.M/.
Since H M/ injects into H P / by [16] such a class exists.) Choose b 2 H2.M/

such that F P b D pt, and let v 2 H4.P/ be any extension of b. Then vF WD

v\F 2 H2.P/ is a section class of P. Therefore if is any section class, it suffices
to show that

hvF; ;Hi D 0;

where H 2 H2n.P / is chosen so that H D 1.
To prove this, apply 4.1) with i D 1; j D 2. We obtain

hvF; ; Hi D hv;F ; Hi C F/ hv; ; Hi
X

i; 1C 2D

1 F/ hv; i; : : : i 1h i ; ; : : : i 2

C hv; i ; :: : i 1h i; ; : :: i 2 ;

where the dots indicate that the H insertion could be in either factor. The first term
in RHS vanishes because F is a multiple of a point. Hence Lemma 4.1 implies
that hv; F ; Hi D hv \ M; pt;H \MiM which vanishes because M; !/ is not
uniruled. The second term on RHS vanishes since F D 0. Further in the sum

neither 1 nor 2 is zero because of the factor 1 F Since c1. / D n D N one of
the i has c1 D 0 and the other has c1 D n. Other possibilities such as c1. i/ D n
can be ruled out by dimensional considerations as in the proof of Proposition 3.1.)
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Consider the first sum. Since i is a fiber class and dim.v \ M/ D 2 there are

two possibilities; either c1. 1/ D 0 and dim i D 2n or c1. 1/ D n and dim i D 0.
In the first case, i is a section class so that h i ; ; Hi 2 D 0 by the minimality of

/ Therefore such a term does not contribute. But the second case also does not
contribute because M; !/ is not strongly uniruled. Therefore the first sum vanishes.

Now consider the second sum. Applying Lemma 4.1 again, we find that because

i is a fiber class the second factor here equals h i; pt; H \MiM2
Hence it vanishes

by hypothesis on M.

When all 3-point Gromov–Witten invariants inM vanish the same argumentgives
the following conclusion.

Lemma 4.4. Suppose that the quantum multiplication in M is undeformed and that
rankH2.M/ > 1. Then for all nonzero 2 H2.M/, v 2 H P/ and F 2 H2n.P/
we have:

i) hF k; vi D 0.

ii) h ; vi D 0 for all section classes

Proof. Consider i). If any of Fk; v are fiber classes then the invariant reduces to
an invariant in M and hence vanishes by assumption. Therefore, as above we may
assume that F D 0. Now suppose that there is some nonzero invariant as in i)
and choose a minimal k such that hF k; vi ¤ 0. Then k > 1 by the divisor axiom.
Now choose H so that H D 1 and expand hF k; v;Hi as before. The first term
vanishes by the minimality of k and the second since F D 0. Moreover, in the
sum neither of 1; 2 vanish. Therefore, because each term in the sum has a fiber
constraint in at least one of its factors the sum vanishes. This proves i).

Toprove ii) letF be any extension of thePoincaré dual to OE! ThenF n\M D pt.
Hence Fn

D is a section class. Therefore h ;vi D hF n; vi D 0 by i).

4.3. Proof of Proposition 3.7. For simplicity we will now assume that OE! is
normalized so that RM

n
D 1. Further, we set h WD PDM.!/ so that hn D pt.13 Recall

that we define s W H M/ H C2.P / by:

r0 ha; v; Mi
Ps.a/ P v WD

1
0; v2 H P /:

In particular, s.M/ P pt D
1
r0 hM; pt;MiP0 D 1 so that s.M/ D P.

Lemma 4.5. Suppose that S. / D 1 Cx where for all b 2 H<2n.MIR/ either

x b/ < / or x b D qy where y 2 QH M/ involves only nonnegative
powers of q. Then:

13 Since OE! 2 H2.M/ need not be a rational class, h 2 H2n 2.MIR/. Therefore, in this section one

should assume that homology groups have coefficients R unless otherwise indicated.
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i) s.pt/ D 0,

ii) s.a/ \ M D a for all a 2 H M/.

Proof. 0 was chosen so that hpt;Mi
P

0 D hpti
P

0 D r0 ¤ 0. A count of dimensions

shows that hpt; vi
P

0 ¤ 0 only if v is a divisor class. Thus for all v 2 H2n.P/ the
divisor axiom implies that

r0 hpt;vi
Ps.pt/ v D

1
0 D

1
r0 0 v/hpti

P
0 D 0 v:

This proves i).
Since we have already checked the case a D OEM in ii), it suffices to take

a 2 H<2n.M/. Observe that byequation 3.2)ha; ii 0
is the coefficient of M

i t"0

in

S. / a D .1 C x/ a D a C x a;

The hypothesis on x implies that x a does not contribute to this coefficient. Hence

ha; ii 0 D r0 a M i; and so

r0 s.a/\M/ M i D r0 s.a/ P i
def

D ha; ii 0 D r0 a M i

where the second equality holds by the definition 3.7) of s. Hence s.a/ \M D a
as required.

There are many different cases in Proposition 3.7. In an attempt to avoid confusion
we will first prove parts i) and ii). Thus we assume that N n, with some further
conditions when N D n.

Lemma 4.6. Suppose that the hypotheses of Lemma 4.2 hold, and that if N D n
those of Lemma 4.3 hold as well. Then hh; 0; Mi 0 D 0.

Proof. Given any divisor class in P extending h we may add a suitable multiple of

M to obtain a class K 2 H2n.P / such that

K \M D h; K 0 D 0:

We then find by formula 4.1) that

hh; 0;Mi 0 D hKM; 0; Mi 0

D hM; K 0;Mi 0 C 0 K/hM; 0; Mi 0

X 0 / K hM; i ; : : : i 0 h i ; 0;: : : i
C hM; i ; : : : i 0 h i; 0; : : : i ;
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where the dots indicate that the M insertion could be in either factor. Note that the
first two terms vanish because K 0 D 0. Suppose there is a nonzero contribution
from the first sum. Because the first factor has two fiber constraints, Lemma 4.1
implies that 0 must be a section class. Moreover

0 ¤ 0 / K D M h D /:
Thus / > 0 since there is a nonzero -invariant. But then

hM; i i 0 D hM; i;Mi 0

vanishes by Lemma 4.2 ii) except possibly if dim i D 2n. But this case can occur
only if N D n and c1. / D n. But then i is a section class, so that the second
factor h i ; 0; : : : i vanishes by Lemma 4.3. Therefore in all cases this sum makes
no contribution.

Now consider the second sum. Suppose first that WD 0 were a fiber class.
Note that ¤ 0 because the sum is multiplied by K. Then, because M is a fiber
constraint, Lemma 4.1 implies that the invariant is either hM; i \ M; M \Mi
or is hM; i \ Mi which both vanish when ¤ 0 because the first marked point
is not constrained. Thus the only nonzero terms have 0 a section class, and
hence have the form hM; i ;MiP0 h i ; ptiM where / ¤ 0 since K 0 D 0.
Again there are two cases. If N > n then Lemma 4.2 i) implies that this can be
nonzero only if deg i D 0. But i ¤ pt since it is not a fiber class. Therefore this
is impossible. On the other hand if N D n then the first factor might be nonzero, but
the second has to vanish since M is not uniruled. Therefore in all cases the second
sum vanishes as well.

Corollary 4.7. Under the conditions of the above lemma, if H WD s.h/, we have

H 0 D 0.

Proof. By the definition of s in 3.7), s.h/ 0 D hh; 0; Mi 0 D 0.

Lemma 4.8. Suppose that M; !/;S. / and N satisfy the hypotheses of Lemma 4.6
and that QH M/ satisfies condition D). Then:

i) For all section classes D 0 where / > 0 and all k we have

hF k; a; Mi D 0 whenever F 2 H2n.P / and a 2 H<2n.M/.
ii) hHnC1 k; hk; Mi 0 D 0 for all k.

Proof. Consider i). Choose of minimal energy i.e. / is maximal) and then
the minimal k so that hF k; a; Mi ¤ 0 for some a and F Note that k > 1 since

hF;a; Mi D F /ha; Mi vanishes by Lemma 4.2 ii).
Again by Lemma 4.2 ii) we may add an arbitrary fiber class to F k without changing

hF k; a;Mi Hence, by replacing F by F cM for suitable c, we may arrange
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that F D 0. Now use 4.1) as in the previous lemma, moving F from the first
constraint to the second. Because F D 0 we find as before that

hF
k; a; Mi D hF

k 1 ; Fa;Mi X. F/ hF
k 1 ; i ; : : : i h i ; a; : : :i

C hF
k 1; i ; : : : i h i; a; : : : i :

The first term is zero by our choice of k. Consider the first sum. If is a section
class, then because of the factor F we may assume that ¤ But then has less

energy than since / > 0 so that the invariant vanishes by the minimality
of the energy of So we may suppose that is a fiber class, in which case the other
factor is an invariant h i ; a; Mi in a section class with smaller energy than We

claim that condition D) implies that the product of these factors must still vanish.
For suppose not. Then by Lemma 4.1

hF
k 1; i iP

D hf
k 1; i iM ¤ 0

where f WD F\M. Therefore 3.6) implies that M
i D i \M 2 D. Thus i \M

is a linear combination of elements of the form gk; g 2 H2n 2.M/. But if we write
g D G \M for some G 2 H2n.P / all invariants of the form hGk; a; Mi vanish
by the minimality condition on the energy of But i \ M D Gk \ M. Hence

h i ; a; Mi D 0 by Lemma 4.2 iii).
Thus the first sum vanishes. Now consider the second sum. The second invariant

has at least two fiber constraints. Hence must be a section class, so that the
invariant vanishes by Lemma 4.2 ii). This proves i).

Now consider ii). When k D n the invariant is hH;pt; Mi 0
which vanishes

becauseH 0 D 0. Suppose that it does not vanish for all k and choose the maximal

k for which it is nonzero. Expand hHnC1 k; hk;Mi 0 by transferring one H to the
second constraint. As usual the first two terms in the expansion vanish and we obtain

hHnC1 k; hk ; Mi 0 D X. H/ hH
n k ; i ; :: : i h i ;hk ; : : : i 0

C hH
n k ; i ; : : :i h i; hk; : : : i 0 :

P

Consider the first sum. If is a section class then we may suppose ¤ 0 because

of the factor H. Therefore it has smaller energy than 0 so that the -invariant
vanishes by part i) of this lemma. On the other hand if is a fiber class then as

above condition D) implies that i 2 D and the second factor is a sum of terms of
the form hKn kC1; hk; Mi where has less energy than 0. Therefore this factor
vanishes by part i). Therefore the first sum vanishes. But the second factor in the
second sum has at least two fiber constraints. Therefore 0 is a section class, and

its energy is less than that of 0 since / ¤ 0. Hence this factor must vanish by
Lemma 4.2 ii). Thus the RHS of the above expression vanishes. Therefore the LHS
is zero also, contrary to hypothesis. The result follows.



128 D. McDuff CMH

Corollary 4.9. If the hypotheses of Lemma 4.8 hold then HnC1 D 0.

Proof. Putting k D 1 into claim ii) of Lemma 4.8 we find that hh; Hn;MiP0 D 0.
But by equation 3.7) this is a multiple of the intersection s.h/ Hn. Since s.h/ D H,
we obtain HnC1 D 0.

Proof of Proposition 3.7. If N n C 1, condition D) holds and S. / D 1

then the hypotheses of Lemma 4.2 hold. Hence we may apply Lemmas 4.6
and 4.8. Therefore, the conditions of Lemma 3.4 hold by Corollaries 4.7 and 4.9
and Lemma 4.5. This proves i). To prove ii) note that the extra conditions here

precisely match the conditions of Lemma 4.3. Hence the proof goes through as

before.
Now consider part iii) of the proposition. The assumption here is that M; !/ is

negatively monotone and that condition D) holds. We saw in Lemma 3.2 that in this
case S. / D 1 rt"0 C x where x/ < "0. Hence the conclusions of Lemma 4.5
hold.

Further Lemma 4.2 ii) holds though part i) may not). To see this, recall that

ha;
M

i ; Mi is the coefficient of i q c1Vert. / t u / in S. / a. Because

x/ < / in S. / this must vanish when u / > u 0/. Therefore if we
write D 0 the invariant vanishes when / > 0. Therefore part iii) of this
lemma also holds.

It is now easy to check that the proof of Lemma 4.6 goes through. The argument
for the vanishing of the first sum needs no change note that c1. / < 0here so there is
no exceptional case); while that for the second sum works using the fact that M; !/
is not uniruled instead of Lemma 4.2 i). It remains to check the proof of Lemma 4.8.
But this holds as before, provided that condition D) hold. This completes the proof
of part iii).

Finally consider part iv). The assumption here is that QH M/ is undeformed,
and if rankH2.M/ D 1 that M; !/ is not positively monotone. Since condition D)
holds when QH M/ is undeformed, the latter case follows from i) if c1 D 0 and

from iii) otherwise. Hence we may assume that rankH2.M/ > 1. Therefore the
conditions of Lemma 4.4 hold. Further, because S. / D 1 C x has degree 2n,
all terms in x have a positive coefficient of q. When x b D x\ b this remains true
for x b. Hence the conclusions of Lemma 4.5 hold.

Next we claim that Lemmas 4.6 and 4.8 hold. To see this, we go though the
proofs of these lemmas using Lemma 4.4 instead of Lemma 4.2 to show that the
requisite terms vanish. Note for example that the fiber invariants in the expansion
in Lemma 4.6 contain factors of the form h ; i which vanish by Lemma 4.4 ii).
Similarly, in Lemma 4.8 we may use Lemma 4.4 i). We do not need condition D)
because in a product such as

hH
n k ; i;Mi h i ; hki 0
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with 2 H2.M/ the first factor vanishes, and so we do not need to worry about the
second factor. Hence the proof goes through as before.

5. Examples

We now prove Proposition 1.8. We shall calculate in the subring QH2n.M/ Š
H M/ ƒuniv, i.e. by fixing the degree of the elements considered we can forget
the coefficients qi

Recall the following construction from Kȩdra [11] and [18]. Let X; X/ be a

symplectic manifold. For each map
W

S2 X, let gr be the graph z; z// 2
S2 X of and let be an area form on S2 of area 1. Choose a constant 0 so that

WD 0 pr1 / C pr2.!/ 5.1)

is nondegenerate on gr Denote by Pz; z i/ the i-blow up of S2 X; / along gr
The parameter i refers to the symplectic area of a line in the exceptional divisor.)

Then the symplectic bundle W Pz S2 has fiber M WD Xz; Qi/ and corresponds
to a Hamiltonian loop 2 1.Ham.M//.

Lemma5.1. Let X; X/be a symplectic manifold of dimension 2n 4. Givenamap

W
S2 X define WD RS2 X and ` WD cX / Suppose that `1 0 and

that at least one of ; ` is nonzero. Then the Seidel element S. / 2 QH2n.M/ of
the loop defined above has the form 1 Cx where / ¤ 0 for small nonzero i.

Proof. Let D be the exceptional divisor in Pz. Denote the trivial section of S2 X
by 1 WD S2 fpg. If p … gr this lifts to a section Q 1 of Pz S2. If " denotes the
class of the line in the fibers of the exceptional divisor, then every section class may
be written as Q 1 m" C where 2 HS X/. If m D 0 then this class is pulled2
back from S2 X, and because Pz is obtained from S2 X by blowing up along a

complex) curve with nonnegative Chern class, we may apply the results of Hu [9].
Thus for all a 2 H X/

hai
z

PQ1C D hai
S2 X
1C

: 5.2)

Hence hai
z

PQ1C D 1 if D 0 and vanishes otherwise.
Define WD u Q 1/. The above argument shows that the coefficient of 1 in

S. / contains the term t There might be other classes
Q 1 m" C that contribute

to the coefficient of 1 in S. / but these all appear with the coefficient t Cmi /
where m ¤ 0. Thus / either equals or equals C mi / for some m ¤ 0
and 2 H2.X/.

We now calculate The coupling class u has the form zi C ci pr1 where ci
is chosen so that RPz unC1 D 0. Further, because z i jQ X D j X by construction and
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R D 0 by equation 5.1),
1

WD u Q 1/ D ci C 0:

nŠ RX
n thenWe showed in [18] see also [20]) that if V WD

1

1
RPz z /n1

nC1/ i D 0.V vi/ vi `
Š nC1i ;

where vi WD
in
nŠ

is the volume of the ball cut out of X. But

nC1/Š RPz z i C ci pr10 D
1 /nC1 D

1

nC1/Š RPz z i/nC1 C ci V vi/;

since V vi is the volume of M; Qi/. Therefore

V vi
`

WD ci C 0 D vi
nC1i :

Thus, provided that at least one of ;` are nonzero, is a rational function of i
with isolated zeros. Therefore neither nor C mi / vanish for sufficiently
small i ¤ 0. The result follows.

Proof of Proposition1.8. Theprevious lemmaproves i), and so it remains to consider
the case when X has dimension 4 and OE! and c1 vanish on 2.X/. It is shown in
[18, Proposition 6.4] that under the given hypotheses on X every Hamiltonian bundle

M; Qi/ Pz; z/ S2 is constructed by blowing up some section X of some

Hamiltonian bundle X;!/ P; / S2.

P

Let us denote by QX the loop in 1.HamM/ corresponding to the M-bundle

Pz S2 and by X that corresponding to its blow down P S2. As in the proof
of Proposition 3.1, S. X/ D r01 for all X 2 1.Ham X/. Therefore there is at least
one14 section X0 WD X C of P such that hpti X0 ¤ 0. Moreover both cVert and1
the coupling class uX of X vanish on the section X0, and hence on all other sections

of P, in particular on X.
The section classes in Pz have the form QX0 m" C where QX0 is the lift of

X0 and 2 HS2 M/. For such a class to contribute to the corresponding Seidel
element S. Q/ we need 2 cVert

1 Q X m" C / D m 0. Moreover, since we
may choose so that the section X of P; / is symplectic, Hu’s results15 imply
that

hpti
z

PQX0 D hpti
P
X0 ¤ 0:

14There may be several such since each coefficient of S. Q / is a sum of contributions from all sections with
given values of cVert

1 and Q
15 We do not need to use Hu[9] here. All that matters is that the coefficient of 1 inS. QX/ is nonzero, which

follows from the fact thatM is not uniruled.
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Therefore if WD uQX Q X0/

S. QX/ D r01 t C t Ci C r pt t C2i; where 2 H2.M/:

Wecan now repeat the calculation of inLemma 5.1. All we need change is the
interpretationof the constant 0, whichwenowdefine to be the areaVol.P; / Vol.X; X/
of the fibration P S2. Hence D 0.

Now observe that as in [19, §2]

" " D pt C " t i ;

and that quantum multiplication in M) by the elements of H 2.X/ H 2.M/ is
undeformed. In particular, pt " D 0 so that

" t i/k D i; k 1:

Hence, if we decompose the class appearing in S. QX/ as D s" C 0 for some

s 2 Q; 0

2 H2.X/, we have 0 " D 0 pt D 0, and we easily find that

0 S. Q
k// 2i; k 1:

Hence the asymptotic invariants descend by Proposition 2.3.

Remark 5.2. i) It is perhaps worth pointing out that the equality in 5.2) does not
always hold if you blow up along the graph of a class with c1 negative. For example,
suppose that you take WD L to be the line in X WD CP2. Then it is not hard to
check that S. / D 1 t C L E/ t Ci where E denotes the exceptional
divisor inM. The second term comes from counting sections in class Q 0 E.) Let
us normalize the symplectic form on X so that X.L/ D 1. Since 1

D we
must then have

S. / D S. / 1
D E C pt ti/t 1 2i :

Thus which is formed by blowing up along the graph of L, has a Seidel element
in which the coefficient of 1 vanishes. These calculations are carried out in detail in
[17, §5]. Observe that is three times the generator of 1.HamM/ that is called

in [17]. Thus the element of QH M/ called Q 3 in [17] has the form S. /t
0

for appropriate 0. See also [18, Remark 1.8].
ii) One should be able to use the methods of [19] and Lai [13] to show that in

the situation of Lemma 5.1 classes with m ¤ 0 do not contribute to S. / This
calculation will be carried out elsewhere.
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