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A lower bound on the essential dimension of a connected
linear group

Philippe Gille and Zinovy Reichstein

Abstract. Let G be a connected linear algebraic group defined over an algebraically closed
field k and H be a finite abelian subgroup of G whose order does not divide char.k/. We show
that the essential dimension of G is bounded from below by rank.H/ rankCG.H/0, where
rankCG.H/0 denotes the rank of the maximal torus in the centralizer CG.H/. This inequality,
conjectured by J.-P. Serre, generalizes previous results of Reichstein–Youssin where char.k/ is
assumed to be 0 and CG.H/ to be finite) and Chernousov–Serre where H is assumed to be a

2-group).

Mathematics Subject Classification 2000). 11E72, 20G10, 14L30.
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1. Introduction

Let k be a base field, K=k be a field extension, G=k be a linear algebraic group
and 2 H1.K;G/ be a G-torsor over Spec.K/. We will say that descends to a

subfield K0 K if lies in the image of the natural mapH1.K0; G/ H1.K; G/.
The essential dimension edk. / of is defined as the minimal value of trdegk.K0/,
where descends to K0 and k K0. Throughout this paper we will work over a

fixed algebraically closed field k; for this reason we will write ed in place of edk.)
We also define ed. Il/ as the minimal value of ed. L/, as L=K ranges over all
finite field extensions of degree prime to l Here l is a prime integer. The essential

dimension ed.G/ of the group G respectively, the essential dimension ed.GI l/ of
G at l is defined as the maximal value of ed. / respectively, of ed. I l/), as K=k
ranges over all field extensions and ranges over H1.K;G/. For details on the
notion of essential dimension, its various interpretations and numerous examples,
see [Re], [RY1] and [BF].

Many of the best known lower bounds on ed.G/ and ed.GI l/, for specific groups
G, are deduced from the following theorem.

Z. Reichstein was partially supported by an NSERC research grant.
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1.1 Theorem ([RY1], Theorem 7.8). Let G be a connected semisimple linear
algebraic group defined over an algebraically closed field k of characteristic zero and H
be a finite abelian subgroup of G. Assume that the centralizer CG.H/ is finite. Then

a) ed.G/ rank.H/ and

b) if H is an l-group, then ed.GI l/ rank.H/.

Here by the rank ofa finite abeliangroupH wemean thesmallestpositive integer r
such that H can be written as a direct product of r cyclic groups. Equivalently,
rank.H/ is the minimal dimension of a faithful complex linear representation of H.

The purpose of this paper is to prove the following more general inequality
conjectured by J.-P. Serre e-mail, July 25, 2005).

1.2 Theorem. Let G be a connected reductive linear algebraic group defined over
an algebraically closed base field k. Suppose that H is a finite abelian subgroup
of G and char.k/ does not divide jHj. Then

a) ed.G/ rankH rank CG.H/0.

b) Moreover, if H is an l-group, then ed.GIl/ rankH rank CG.H/0.

Here CG.H/0 denotes the connected component of the centralizer ofH in G, and
by the rank of this connected group we mean the dimension of its maximal torus. In
particular, ifchar.k/ D 0and thecentralizerCG.H/ is finite i.e., rank CG.H/0 D 0),
then Theorem 1.2 reduces to Theorem 1.1. Note, however, that even in this special
case the proof we present here is simpler than the one in [RY1]; in particular, it does

not rely on resolution of singularities.
We also remark that our argument shows a bit more, namely that the essential

dimension of a particular torsor, which we call a loop torsor, is rank.H/
rank CG.H/0. Here by a loop torsor we mean the image of a versal H-torsor under
the natural map H1. ; H/ H1. ; G/. Such torsors come up in connection
with loop algebras; see [GP].)

Chernousov and Serre [CS] used techniques from the theory of quadratic forms
to show that, in the case where H is a 2-group, many of the bounds given by Theorem

1.1 b) remain valid over any algebraically closed field base field k of characteristic

¤ 2. The “incompressible” quadratic forms they construct are closely related
to loop torsors; our arguments may thus be viewed as extending their approach to
abelian subgroups H which are not necessarily 2-groups.

In order to clarify the exposition we will give two proofs of Theorem 1.2. The first
one, presented in Section 4, is quite short but it relies on resolution of singularities
and, in particular, only works in characteristic zero. The second proof, presented in
Section 8 requires a bit more work. The advantage of this more elaborate argument is
that it is entirely independent of resolution of singularities; in particular, it works in
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prime characteristic not dividing jHj. Both proofs rely, in a key way, on the existence
results for wonderful and regular) group compactifications from [Br] and [BK] see

Section 2) and on the “reduction of structure” Theorem 1.1 from [CGR]. The case

where char.k/ divides the order of theWeyl group of G is particularly delicate; here
we use a refined version of [CGR, Theorem 1.1], which is proved in [CGR2].

The following symbols will be used for the remainder of the paper.

k, algebraically closed base field of characteristic p 0;
G, connected reductive linear group defined over k;

xG, a regular compactification of G;
H, finite abelian group;

ed, essential dimension over k;
Fn D k..t1// : : : tn//, iterated Laurent series field in n variables.

2. Regular compactifications

Let G be a connected reductive algebraic group defined over k. Let B and B
be opposite Borel subgroups of G, containing a maximal torus T By the Bruhat
decomposition,G has finitely manyB B orbits. Hence, by[BK, Proposition 6.2.5],
G viewed as a G G-variety) has a “regular” compactification in the sense of
[BDP]; we will denote this compactification by xG. Note that the terms “regular”
and “smooth” are not interchangeable in this context; a regular compactification is
smooth but not the other way around.) In particular, if G is adjoint, then xG is the
wonderful compactification of G constructed in [DP] and in prime characteristic
in [St]). Regular compactifications have many interesting special properties; most

of them will not be used in the sequel. The only property of xG we will need is the
following description of the stabilizers of points in xG from [Br, Proposition A.1].

Every G G orbit O in a regular compactification xG of G has a unique point g
such that B B /g is open in O and g is the limit of some 1-parameter subgroup
of T We shall refer to g as a special point. For example, the special point in the
dense orbit O D G of xG is the identity element g D e.

The stabilizer of a special point g in G G has the following form. Let P be the
projection of StabG G.g/ to the first factor of G G and Q be the projection to the
second factor. Then P andQare opposite parabolicsubgroups. Denote the unipotent
radicals of P and Q by Pu and Qu and their common Levi subgroup P \Q by L.
The stabilizer StabG G.g/ is then given by

StabG G.g/ D f.pulz; qul/ j pu 2 Pu; qu 2 Qu; l 2 L; z 2 Zg; 2.1)

where Z is a subgroup of Z.L/0. Of course, the stabilizer of any other point in O is
conjugate to this subgroup.
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2.2 Proposition. Let g be a special point in the regular compactification xG of G
and be a finite subgroup of StabG G.g/ whose order is prime to char.k/. Then

jrank. 2. // rank. 1. //j rank.Z.L/0/.

Here 1; 2 W G G G denote the projection to the first and second factor,
respectively, P D 1 StabG G.g/, Q D 2 StabG G.g/ and L D P \Q as above,

and rank. / denotes the maximal value of rank.A/, as A ranges over the abelian
subgroups of a finite group

Proof. The proof is based on tracing through the diagram of natural projections

StabG G.g/
1 2

P Q

P Q

L

L=Z.L/0;

where P pul/ D l and Q.qul/ D l for any pu 2 Pu, qu 2 Qu and l 2 L. Since
the kernels Pu and Qu of P and Q are unipotent, we see that P and Q project
the finite groups 1. / and 2. / isomorphically onto subgroups of L, which we
will denote by 1 and 2, respectively. By 2.1), 1 and 2 have the same image in
L=Z.L/0, which we will denote by 0. Since the natural projection

j 2 W 2 0
is surjective with kernel Z2 Z.L/0, we have

rank. 2/ rank. 1/ C rank.Z2/ rank. 1/ C rank Z.L/0:

Bysymmetry, wealso have thereverse inequality rank. 1/ rank. 2/ rank Z.L/0,
and the proposition follows.

3. Compactifications of homogeneous spaces

The following lemma is well known in characteristic zero see [RY2, Lemma 2.1]).

3.1 Lemma. Let be a finite group and let X be a normal quasiprojective -variety.
Then

a) X is covered by affine open -invariants subsets.
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Assume moreover that the order of is invertible in k. Then

b) there is a geometric quotient map
W X X=

c) Moreover, if X is projective, then so is X=

Recall that we areassuming throughout that the base field k isalgebraically closed.

Proof. a) The proof of loc.cit. is characteristic free.
b) Recall first that the group is linearly reductive, see [MFK, §1]. If X is

affine, part b) is proved in [MFK, Theorem 1.1 and Amplification 1.3]. The general

case follows from part a) and the characteristic free glueing assertion in [PV,
Theorem 4.14].

c) See [N, Theorem 3.14].

Let G=k be a connected reductive linear algebraic group, xG be a regular compactification,

and be a finite subgroup of G of order prime to char.k/. We shall denote
by xG= the geometric quotient of xG for the action of the finite group on the right).
It may be viewed as a possibly singular) compactification of the homogeneous space

G= By the properties of geometric quotients

i) the fibers of the natural projection xG xG= are the -orbits of the right
action of on xG, and

ii) the left action of G on xG descends to xG=

3.2 Proposition. Let G be a connected reductive group, xG be a regular compactification

and 1; 2 be finite subgroups of G whose orders are not divisible by char.k/.
If xG= 2 has an 1-fixed point, then

rank. 1/ rank. 2/ rank CG. 1/0:

Proof. Let y be an 1-fixed point of xG= 2 and x be a point of xG lying above y.
After translating x by a suitable element h1;h2/ 2 G G and replacing 1, 2
by h1 1h 1

1 h2 2h 1
2 respectively, we may assume that x is a special point. Then

P D 1.StabG G.x//, Q D 2.StabG G.x// is a pair of opposite parabolics, as

in the previous section. Letting L D P \Q be their common Levi subgroup, we
see that StabG G.x/ is as in 2.1). Here, as before, i W G G G denotes the
projection to the i th factor, where i D 1 or 2.)

Let D Stab
1 2 x/. The fact that y is 1-fixed means that for every g1 2 1,

there is an g2 2 2 such that g1;g2/ 2 StabG G.x/. In other words, 1. / D 1
and, in particular, 1 P. By Proposition 2.2

rank. 1/ rank. 2. // rank Z.L/0:
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Since rank. 2/ rank. 2. //, we have

rank. 1/ rank. 2/ rank Z.L/0:

It remains to show that

rank Z.L/0 rank CG. 1/0:

By the Levi decomposition, P is isomorphic to a semidirect product Pu Ì L; see,

e.g., [H, 30.2]. Now recall that we are assuming that char.k/ does not divide the
order of 1. In particular, 1 is linearly reductive. Thus by [J, Lemma 11.24],

1 is conjugate to a finite subgroup of L. Denote this subgroup by L. The
connected centralizers CG. 1/0 and CG. L/0 will then also be conjugate inG, andsince

Z.L/0 CG. L/0, we see that

rank CG. 1/0 D rank CG. L/0 rank Z.L/0 ;

as claimed.

4. Proof of Theorem 1.2 in characteristic zero

The following lemma is well known; we supply a short proof for lack of a direct
reference.

4.1 Lemma. Consider a faithful action of a finite abelian group A on an irreducible
algebraic variety X, defined over a field k. Assume char.k/ does not divide jAj. If A
fixes a smooth k-point in X, then dim.X/ rank.A/.

Proof. Let x 2 X.k/ be a smooth A-fixed k-point. Then A acts on the regular local
ring R D Ox.X/ and on its maximal ideal M D Mx.X/.

Assume the contrary; dim.X/ D d and rank.A/ > d. Then the A-representation
on the d-dimensional cotangent space Tx.X/ D M=M2 cannot be faithful; denote
its kernel by A0 ¤ f1g. Since jAj is prime to char.k/, the map M M=M2 of
A-representations splits. Thus R has a system of local parameters t1; : : : ; td 2 M
such that each ti is fixed by A0. Then A0 acts trivially on the completion yR D
kOEOEt1; : : :; td hence, on R yR. Since X is irreducible, A0 acts trivially on X. This
contradicts our assumption that the A-action on X is faithful.

For the remainder of this section we will assume that k is an algebraically closed
field of characteristic zero. Before proceeding with the proof of Theorem 1.2, we
recall that every -variety is birationally isomorphic to a smooth projective -variety;
cf. [RY2, Proposition 2.2]. Here is an arbitrary linear algebraic group, not necessarily

connected. This fact, whose proof relies on equivariant resolution of singularities
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and thus requires the assumption that char.k/ D 0, will be used repeatedly for the
remainder of this section.

Let be a linear algebraic group defined over k and K=k be a finitely generated
fieldextension. Recall that elements ofH1.K; / are in a natural 1-1 correspondence
with birational isomorphism classes of generically free primitive -varieties Z, with
K D k.Z/ ; see, e.g., [Po, Section 1.3]. Here by saying that Z is a primitive -

variety, we mean that transitively permutes the irreducible components of Y. We
will denote the class of the generically free -variety Z in H1.K; / by OEZ

4.2 Lemma. Every primitive generically free G-variety X is birationally isomorphic
to a projective G-variety of the form xG Y /=S, where

a) S is a finite subgroup of G,

b) Y is a smooth irreducible projective S-variety,

c) S acts on xG Y by s h;y/ D hs 1;s y/, and xG Y /=S is the geometric
quotient for this action.

Note that in c) S is a finite group acting on the smooth projective variety

xG Y In this situation a geometric quotient exists and is projective; see, e.g., [PV,
Theorem 4.14] or Lemma 3.1. Moreover, the natural left) G-action on xG Y via
the first factor) commutes with the S-action and thus descends to xG Y /=S. In
the statement of the lemma we view xG Y /=S as a G-variety with respect to this
action.

Proof. Let K D k.X/G. By [CGR, Theorem 1.1] there exists a finite subgroup

S G and a generically free primitive S-variety Y such that OEX is the image of
OEY 2 H1.K; S/ under the natural map H1.K;S/ H1.K; G/. In other words, X
is birationally isomorphic to G Y /=S. Since the S-variety Y is only defined up to
birational isomorphism, we may assume without loss of generality that it is smooth
and projective. Moreover, G Y /=S is birationally isomorphic to xG Y /=S, as

in c).
In general, the above construction produces only a primitive S-variety Y. However,

it can be slightly modified to ensure that Y is irreducible, as follows. Let Y0 be

an irreducible component of Y and S0 be the subgroup of S consisting of elements
that leave Y0 invariant. Then it is easy to see that OEY is the image of OEY0 under
the natural map H1.K;S0/ H1.K; S/; cf. e.g., [Re, Example 2.10]. Thus after
replacing S by S0 and Y by Y0, we may assume that Y is irreducible.

4.3 Lemma. Let G be a reductive group, H G be a finite abelian subgroup, and

X be a primitive generically free G-variety. If H fixes a smooth k-point of X, then

dim k.X/G rank.H/ rank CG.H/0 :
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Proof. By Lemma 4.2 there exists a birational G-equivariant isomorphism X 'Ü
xG Y /=S, where Y is a smooth complete S-variety and S G is a finite subgroup,

as in Lemma 4.2. Note that dim.Y / D trdegk k.X/G; we will denote this number
by d. By the Going Down Theorem [RY1, Proposition A.2] xG Y /=S also has

an H-fixed k-point; denote it by x D OEg; y The fiber of the natural projection

X D xG Y /=S Y=S containingx is easily seentobeG-equivariantly isomorphic
to xG=S0, where S0 WD StabS.y/. Now observe that since y is a smooth k-point of Y
S0 can contain no abelian subgroup of rank d; see Lemma 4.1. In other words,
rank.S0/ d. By Proposition 3.2,

rank.H/ rank.S0/ rank CG.H/0

and thus

d rank.S0/ rank.H/ rank CG.H/0:

This completes the proof of Lemma 4.3.

We are now ready to proceed with the proof of Theorem 1.2 in characteristic
zero). Let V be a generically free linear k-representation of G.

a) The essential dimension ed.G/ is the minimal value of trdegk k.X/G, where
the minimum is taken over all dominant rational G-equivariant maps

V ÜX;
such that X is a generically free G-variety; see [Re, Section 3]. Thus our goal is to
show that

trdegk k.X/G rank.H/ rank CG.H/0 : 4.4)

After replacing X by a birationally equivalent G-variety, we may assume that X is
smooth and projective. Since V has a smooth H-fixed k-point namely the origin),
the Going Down Theorem [RY1, PropositionA.2] tells us that X also has an H-fixed
k-point which is smooth, becauseevery k-pointofX issmooth). The inequality 4.4)
now follows from Lemma 4.3.

b) It suffices to show that the inequality 4.4) holds if there is a diagram of
dominant rational G-equivariant maps of the form

V 0

V X ;

where X is a generically free G-variety, dim.V 0/ D dim.V / and OEk.V 0/
W k.V / is

prime to l Note that the G-variety V 0 is not required to be linear.) Once again, we
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may assume without loss of generality that V 0 and X are smooth and complete. Since

H fixes theorigin in V the Going Up Theorem [RY1, Proposition A.4] tells us that V 0

has an H-fixed k-point. Now by the Going Down Theorem [RY1, Proposition A.2],
X has an H-fixed k-point as well, and Lemma 4.3 completes the proof.

5. The field of iterated Laurent series

In this section we will describe the structure of the iterated Laurent polynomial field
Fn D k..t1// : : : tn//. Our proof of Theorem 1.2 in full generality i.e., without
assuming that char.k/ D 0) will make use of these results.

We begin by describing theabsoluteGaloisgroupGal.Fn/. SinceFn DFn 1..tn//
is a complete valuated field with residue field Fn 1, we have an exact sequence

1 In Gal.Fn/
n Gal.Fn 1/ 1

where In stands for the inertia group; see [GMS, §II.7]. Let yZ0 be the prime to p part

of yZ, i.e. yZ0 D Qq6Dp
yZq. In particular, if p D 0, then yZ0 D yZ.

5.1 Lemma. There is a split exact sequence

1 Jn Gal.Fn/ yZ0/n 1; 5.2)

such that

1) Jn D 1 if p D 0,

2) Jn is a free pro-p-group ifp > 0.

Proof. We proceed by induction on n. The group In fits in an exact sequence

n In yZ0 1;0 I wild

where I wild
n is the wild inertia group it is a pro-p-group). Define

Fn;m WD k..
mp

t1// : : :
mp

tn// and Fn;1 WD lim
m;p/D1

Fn;m:

Since

Gal.Fn;1=Fn 1;1..tn/// D yZ0;
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we have the following commutative diagram of profinite groups:

1 1 1

1 Iwild
n Jn Jn 1 1

1 In Gal.Fn/ Gal.Fn 1/ 1

1 Gal.Fn;1=Fn 1;1..tn/// Gal.Fn;1=Fn/ Gal.Fn 1;1=Fn 1/ 1

1 1 1.

If p D 0, then Iwild
n D 1; cf. [GMS, §II.7.1]. Hence, the top row in the above diagram

tells us that J0 Š J1 Š J2 Š : : : On the other hand, since F0 D F0;1 D k, we see

that J0 D f1g. We thus conclude that Jn D 1 for every n. This also follows from
[GP, Corollary 2.10].)

Similarly if p > 0, then Iwild
n is a pro-p group once again, cf. [GMS, §II.7.1]),

and we see by induction that Jn is pro-p-group. The group Jn is the absolute Galois
group of the field Fn;1, so cdp.Jn/ 1 ([Se, II.3.1, Proposition 7]) and Jn is then a

free pro-p-group ibid, I.4.2, Corollary 2).
Finally, since yZ0/n is a prime-to-p group, we conclude that the sequence 5.2)

splits; see [Se, I.5.9, Corollary 1].

We will now show that every finite field extension of Fn is k-isomorphic to Fn.
Recall that the lexicographic order on Zn is defined as follows:

m1; : : :mn/ m01; :: : m0n/

if mi < m0i for the smallest subscript i with mi 6D
m0i A valuation

v D v n/; : : : ; v .1//
W E

on a field E is called n-discrete if the group is isomorphic to a lexicographically
ordered) subgroup of Zn; see [F, 1.1.3]. Then E is a 1-discrete valuation with respect
to the first component v.n/ ofv and the residue fieldEn 1 is a n 1/-discretevaluation
via v.n 1/; : :: ; v.1//. In this way we obtain a sequence of fields E D En, En 1,…,
E1 such that Ei is the residue field of EiC1 with respect to a 1-discrete valuation.
The residue field E0 of E1 then coincides with the residue field xEv.
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The definition of completenessforE is inductiveas follows [F, 1.2.1]. The fieldE
is a complete n-discrete field if En is complete with respect to v.n/ and En 1 is
complete. Assume from now on that E is a complete n-discrete field. Then according to
[W, 3.1], E is henselian, i.e. its valuation ring is a henselian ring. In particular, given
a finite extension E0=E the valuation v extends uniquely to v0

W
E0 1

OEE0WE
Zn, the

formula being v0 D
1

OEE0WE
v BNE0=E Then E0 is a n-discrete field which is complete

by induction).
The field Fn D k..t1//..t2// : :: tn// over iterated Laurent series over a base

field k is n-complete; see [W, §3]. Here the valuation v on Fn is defined by

v X
i1

: : :Xin
ci1;:::;in t i1

n D Min
° i1; : : : ; in/ j ci1;:::;in 6D 0 :1 : : : t in

5.3 Proposition. Let E be a complete n-discrete k-field. Then

1) E is isomorphic to xEv..t1//..t2// : : : tn//;
2) Suppose the valuation v is trivial on a perfect subfield K of E. Then E is

K-isomorphic to xEv..t1//..t2//: : : tn//.

Proof. 1) immediately follows from 2) if we take K to be the prime subfield of E.
To prove 2), first assume that n D 1. In this case Cohen’s structure theorem [Co,

Theorem 10] shows that the valuation ring of E is K-isomorphic to xEvOEOEt1 Thus E
is K-isomorphic to xEv..t1//.

Now suppose that n 2. Let E D En, En 1; : : : ; E1 be the sequence of fields
constructed above. By induction, we may assume that En 1 is K-isomorphic to

xEv..t1//..t2// :: : tn 1//. Since we know part 2) holds for n D 1, we conclude
that E D En is K-isomorphic to xEv..t1//..t2// : : : tn//.

5.4 Corollary. Assume that k is algebraically closed. Then any finite extension of
Fn D k..t1// : : : tn// is k-isomorphic to Fn.

Proof. A finite extension E of Fn is a complete n-discrete field. Its residue field Ev
is a finite extension of k. Since k is algebraically closed, we conclude that Ev D k.
Proposition 5.3 2) now shows that E is k-isomorphic to Fn.

6. Reduction of structure

In this section G=k will denote a linear algebraic group defined over an algebraically
closed field k of characteristic 0, whose identity component G0 is reductive. Fn
will denote the iteratedpower series field k..t1//..t2// : : : tn// in variables t1; :: : ; tn,
as in the previous section. As usual, we will say that 2 H1.K; G/
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descends to a subfield K0 K if lies in the image of the restriction map

H1.K0; G/ H1.K; G/,

admits reduction of structure to a subgroup A G if lies in the image of the
natural map H1.K; A/ H1.K; G/.

6.1 Proposition. Suppose 2 H1.Fn; G/ descends to a subfield K Fn such that
trdegk.K/ D d < 1.

a) Assume that char.k/ D 0. Then admits reduction of structure to a finite
abelian subgroup A G of rank d.

b) Assume that char.k/ D p > 0. Then there exists a finite field extension F 0=Fn
such that OEF 0

W Fn is a power of p and F 0 admits reduction of structure to a

finite abelian subgroup A G of rank d, whose order jAj is prime to p.

Our proof of Proposition 6.1 will make use of the following two simple lemmas.

6.2 Lemma. Suppose K E is a field extension such that K is algebraically closed
in E. Then

a) for every finite Galois field extension K0=K, K0E D K0 K E is a field.

b) The absolute Galois group Gal.K/ is a quotient of Gal.E/.

Proof. a) Bythe primitive element theoremwecan writeK0 asKOEx p.x//for some
irreducible monic polynomial p.x/ 2 KOEx Then K0E D K0 K E D EOEx p.x//,
and we need to show that p.x/ remains irreducible over E.

We argue by contradiction. Suppose p.x/ D p1.x/p2.x/ for some non-constant
monic polynomials p1.x/;p2.x/ 2 EOEx The coefficients of pi x/ are then polynomials

in the roots of p.x/. Here i D 1 or 2.) In particular, they are algebraic overK.
Since K is algebraically closed in E, we conclude that pi x/ 2 KOEx Thus p.x/ is
reducible over K, a contradiction.

b) Let Kx be the algebraic closure of K. Then Gal.K/ D Gal.Kx=K/ D
Gal.KxE=E/, and KxE D Kx K E is an E-subfield of Ex by part a).

6.3 Lemma. Let d 0 be an integer. Let be a finitely generated abelian profinite
group such that cd. / d. Then is a direct summand of yZd

Proof. Without loss of generality, we may assume that is a p-profinite group for
a prime p. Since cd. / < 1, we see that is torsion free, and since is finitely
generated and abelian, we conclude that Š Zmp for some integer m; see [RZ,
Theorem 4.3.4. a)]. Thus cd. / D m. Since we are assuming m d, this shows

that is a direct summand of yZd
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Proof of Proposition 6.1. Let W be theWeyl group of G. We recall that there exists
a finite subgroup S G such that every prime factor of jSj divides jW j and S has

the following property.

i) If Char.k/ does not divide jW j, then the map H1.K; S/ H1.K; G/ is
surjective for every field K=k; see [CGR].

ii) If char.k/ divides jW j, the above map is surjective for every perfect field
K=k; see [CGR2, Corollary 1.4].

We fix a finite subgroup S with these properties for the rest of the proof.

Let
W yZ0/n Gal.Fn/ be a splitting of the exact sequence 5.2) in Lemma 5.1.

Denote the extension of Fn associated by the Galois correspondence to the image of
by En=Fn and its perfect closure by E

perf
n Fn. Note that if char.k/ D 0, then is

perf
n D En D Fn. If char.k/ D p, then the degree of any finitean isomorphism and E

subextension of En=Fn is a power of p and Gal.En/ D yZ0/n. The same is true for
the perfect closure E

perf
n Fn.

Since Galois cohomology commutes with direct limits of fields, in order to establish

parts a) and b) of the proposition, it suffices to show that
E

perf
n

admits reduction

of structure to some abelian subgroup A S of rank trdegk.K/ where jAj is

prime to p, if p D char.k/ > 0). After replacing K by its algebraic closure in Eperf
n

we may assume that K is algebraically closed in E
perf
n In particular, K is perfect.

By our assumption descends to some K 2 H1.K; G/. On the other hand,
by ii) K is the image of some iK 2 H1.K;S/. The class iK is represented by a

continuous homomorphism W Gal.K/ S. Clearly iK and hence, K and perf
En

admit reduction of structure to the subgroup A D Im. / of S. It remains to show
that A is an abelian group of rank d whose order is prime to p.

By Lemma 6.2 we can identify Gal.K/ with a quotient of Gal.E
perf
n / D yZ0/n. In

particular, Gal.K/ is finitely generated, abelian, and the order of every finite quotient
of Gal.K/ is prime to p. Moreover, by Tsen’s theorem, cd.Gal.K// d; cf. [Se,

II.4.2]. Thus Lemma 6.3 enables us to conclude that Gal.K/ is a direct summand of
yZ0/d Hence, the finite quotient A of Gal.K/ is an abelian group of rank d whose

order is prime to p.

6.4 Remark. A minor modification of the above argument in particular, using i)
instead of ii)) shows that the assertion of Proposition 6.1 a) holds whenever Char.k/
does not divide the order of theWeyl group W of G. In other words, in this case we
can take F 0 to be Fn in part b). Since we will not use this result in the sequel, we
leave the details of its proof as an exercise for an interested reader.
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7. Fixed points in homogeneous spaces

Let k is an algebraically closed field of characteristic p 0, t1; : : : tn are independent
variables over k, and H D Z=mZ/n. If p > 0, we will assume that m is prime
to p. We will continue to denote the iterated power series field k..t1//..t2//: : : tn//
by Fn.

The purpose of this section is to establish the following fixed point result which
will be used in theproof ofTheorem 1.2. For notationalconvenience, wewillconsider
an arbitrary not necessarily injective) morphism

W H D Z=mZ/n G 7.1)

of algebraic groups. This is slightly more general than considering a finite abelian
subgroup of G. We will assume that G, H and are fixed throughout this section.

7.2 Proposition. Assume that

1) F0=Fn is a finite field extension of degree prime to jHj,
2) 2 H1.Fn; H/ is represented by an H-Galois field extension E=F, and

3) /F 0 2 H1.F 0;G/ admits reduction of structure to a finite subgroupS ofG.
Then H/ has a fixed k-point in any G-equivariant compactification Y of G=S.

Here by a G-equivariant compactification of G=S we mean a complete but not
necessarily smooth) G-variety, which contains G=S as a dense open G-subvariety.

Proof. By Corollary 5.4, F0 is k-isomorphic to Fn. Thus, after replacing Fn by F 0

and by F0 we may assume that F 0 D Fn. Note that F 0 2 H1.F 0; H/ is
represented by the H-Galois algebra EF 0=F 0, where EF 0 D E F F 0. Since E is
a field and OEF0n W Fn is prime to jHj D OEE

W F EF 0 is again a field.)
By Lemma 5.1, we may assume that E D k..s1// : : : sn//, where smi D ti

and there exists a minimal set of generators 1; : : : ; n of H such that H acts on

k..s1//: : : sn// by

i sj / D ´ sj if i D j
sj if i ¤ j

7.3)

where is a primitive mth root of unity independent of i and j In the sequel we

will denote E by Fn;m; note that we previously encountered this field in the proof of
Lemma 5.1.

Set D / 2 H1.Fn; G/ and consider the twisted Fn-variety Y which is
a compactification of the twisted variety G=S/. By our assumption G=S/ has a

Fn-point, so a fortiori

Y Fn;m/ D °y 2 Y.Fn;m/ j /: y D y for all 2 H ¤ ;:
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Since Y is complete, this implies Y.Fn 1;mOEOE
mp

tn / ¤ ;. Specializing tn to 0, we
see that

°y 2 Y.Fn 1;m/ j /: y D y for all 2 H 6D ;;
where the Galois action of H on Y.Fn 1;m/ is induced by the canonical projection

H Gal.Fn;m=Fn/ Gal.Fn 1;m=Fn 1/. Repeating this process, we finally
obtain

°y 2 Y.k/ j /: y D y for all 2 H 6D ;:
Since k is algebraically closed, we conclude that H/ fixes some k-point of Y

7.4 Corollary. Let k be an algebraically closed field and G=k be a connected reductive

group. Suppose there exists a class 2 H1.Fn;H/ such that is represented by
an H-Galois field extension of Fn. If / 2 H1.Fn; G/ descends to a k-subfield

K Fn, then
trdegk.K/ rank H/ rank CG. H//0:

Here H and are as in 7.1).

Proof. Let trdegk.K/ D d. By Proposition 6.1 there exists a finite extension F 0=Fn
and a finite abelian subgroup A G of rank d such that

jAj is prime to char.k/,
F0 D Fn if char.k/ D 0, and OEF 0

W Fn is a power of p if char.k/ D p, and

/F 0 admits reduction of structure to A.

Let xG be a regular compactification of G. By Proposition 7.2, Y D xG=A has a

H/-fixed point. Now Proposition 3.2, with 1 D H/ and 2 D A, tells us that

rank H/ rank A rank CG. H//0:

Consequently,

d rank A rank H/ rank CG. H//0;

as claimed.

8. Proof of Theorem 1.2

In the statement of Theorem 1.2, we assume that H is a subgroup of G, where
as in the previous section we worked with a homomorphism

W H G instead.
For notational consistency, we will restate Theorem 1.2 in the following clearly
equivalent) form.
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8.1 Theorem. Let G be a connected reductive linear algebraic group defined over
an algebraically closed base field k, H ' Z=mZ/n and

W H G be a not
necessarily injective) homomorphism of algebraic groups. Assume char.k/ does not
divide m. Then

a) ed.G/ rank H/ rank CG. H//0.

b) Moreover, if H is an l-group i.e., m is a power of a prime integer l then
ed.GI l/ rank H/ rank CG. H//0.

Let t1; : : : ; tn be independent variables over k, Kn D k.t1; : :: ; tn/ and Kn;m D
k.s1; : : : ; sn/, where smi D ti The H-Galois field extension Kn;m=Kn gives rise to
a class 2 H1.Kn; H/. We will be interested in the class / 2 H1.Kn; G/,
which we will sometimes refer to as a loop torsor. Such torsors naturally come up

in connection with loop algebras; see [GP].) We are now ready to proceed with the
proof of Theorem 8.1.

a) By the definition of ed.G/, it suffices to show that

ed / rank H/ rank CG. H//0:

Let d D ed. //. Let D Fn 2 H1.Fn; H/. Then is represented by the field
extension Fn;m=Fn. Moreover, / descends to / 2 H1.Kn; G/, which, by
our assumption, further descends to a k-subfield of Kn of transcendence degree d.
Corollary 7.4 now tells us that

d rank H/ rank CG. H//0:

This completes the proof of Theorem 8.1 a).

b) Once again, we will denote the class of theH-Galois field extensionKn;m=Kn
in H1.Kn; H/ by and consider the loop torsor / 2 H1.Kn;G/. By the
definition of ed.GI l/ it suffices to show that

ed. /I l/ rankH rank CG.H/0 :

Equivalently, we want to show that

ed. /E/ rankH rank CG.H/0

for every finite extension E=Kn of degree prime to l Suppose E=Kn is such an
extension and ed. /E/ D d.

By [KM, Lemma 3.1] there exists a finite field extension F 0=Fn of degree prime
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to l and a Kn-embedding E F 0 such that the diagram

E

prime-to-l

F0

prime-to-l
Fn

Kn

commutes. We want to conclude that d rankH rank CG.H/0 by applying
Corollary 7.4 to D F 0 2 H1.F0; H/. Since F 0 is k-isomorphic to Fn see

Corollary 5.4), Corollary 7.4 can be applied to this as long as we can show that

i) / descends to a k-subfield of F 0, of transcendence degree d over k, and

ii) is represented by an H-Galois field extension of F 0.

i) is clear since / 2 H1.F 0;G/ descends to / 2 H1.E; G/, which, by our
assumption, descends to a k-subfield E0 E with trdegk.E0/ D d. To prove ii),
note that Fn is represented by the field extension Fn;m=Fn. Thus D F 0

is
represented by theH-Galois algebra Fn;m Fn F 0 over F 0. Since OEF 0

W Fn is a finite
and prime to l Fn;m Fn F 0 is a field. This concludes the proof of ii) and thus of
Theorem 8.1 b).

9. Examples

This section contains five examples illustrating Theorem 1.2 b).

9.1 Example. If char.k/ ¤ 2, then ed.GOnI 2/ n 1.

Proof. Let H ' Z=2Z/n be the subgroup of diagonal matrices in On. Viewing H
as a subgroup of GOn, we easily see that C0GOn H/ the center of GOn, has rank 1.
Applying Theorem 1.2 b) to this subgroup we obtain the desired bound.

9.2 Example. If p is a prime and char.k/ ¤ p, then

a) ed.SLpr= psI p/ ´2s C 1 if s < r,
2s if s D r;

b) ed.GLpr= psI p/ ´ 2s; if s < r,
2s 1 if s D r.
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Proof. a) The group SLpr= s has a self-centralizing subgroup

H ' Z=pZ/r Z=pr s
ZI

see [RY1, Lemma 8.12]. Now apply Theorem 1.2 b) to this group.
b) We now view H as a subgroup of GLpr= ps The centralizer C0

GLpr s H/
is the center of GLpr= s; it is isomorphic to a 1-dimensional torus. Part b) now
follows from Theorem 1.2 b).

The non-vanishing of the Rost invariant H1. ; G/ H3. ; p/ for a group G
and a prime p implies that ed.GIp/ 3; cf. [Re, Theorem 12.14]. In particular,
one can show that ed.F4I 3/; ed.E6I 2/ and ed.E7I3/ 3 in this way. In Examples

9.3–9.6 below we will deduce these inequalities directly from Theorem 1.2 b)
and show that equality holds in each case.

9.3 Example. If char.k/ ¤ 3, then ed.F4I 3/ D 3.

Proof. F4 has a self-centralizing subgroup isomorphic to 3/3; see [Gr, Theorem

7.4]. Theorem 1.2 now tells us that ed.F4I 3/ 3. To prove the opposite
inequality, recall that H1.K; F4/ classifies the exceptional 27-dimensional Jordan
algebras J=K. After a quadratic extension K0=K, J K K0 is given by the first Tits
construction. Without loss of generality, we may assume that J D A; / where A
is a central simple K-algebra of degree 3 and is a scalar in K. Since A is a symbol
algebra a; b/3, we see that J K K0 descends to the subfield k.a; b; / of K of
transcendence degree 3. We conclude that ed.J I3/ 3 and thus ed.F4I 3/ 3,
as claimed.

9.4 Example. If char.k/ ¤ 2, then ed.E6I 2/ D 3.

Here E6 denotes the simply connected simple group of type E6. By abuse of
notation we will also write E6 for the Dynkin diagram of E6.

Proof. By [Gr, Table II], E6 has a unique up to conjugation) non-toral subgroup H
isomorphic to Z=2Z/5. To compute the rank of its centralizer, we make use of its
Witt–Tits index I.H/ E6 whichdescribes the typeof aminimal parabolic subgroup
containing H; see [GP, Section 3]. The Dynkin diagram for E6 is as follows.

2

1 3 4 5 6
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Set I D f 2; 3; 4; 5g. LetPI be a standard parabolicsubgroupandLI D ZG.TI/
its standard Levi subgroup. Then DLI D Spin8 Since Spin8 has a maximal
nontoral 2-elementary abelian subgroup of rank 5 see [Gr, Table I]), we may assume
that H Spin8 Moreover, CSpin8 H/ is finite, so H is irreducible in LI It follows
that PI is a minimal parabolic subgroup of E6 containing H; theWitt–Tits index of
H is then I By [GP, Proposition 3.11], we have

rank CE6 H/ D jE6 n Ij D 2:

Theorem 1.2 b) now tells us that ed.E6I 2/ 5 2 D 3. In [GP] the base field is
assumed to be of characteristic 0. However, in our situation, [GP, Proposition 3.11]
applies as long as char.k/ ¤ 2.)

To prove the opposite inequality, suppose 2 H1.K; E6/, where K is a field
containing k. LetL E6 be the Levisubgroupof the parabolicE6nf 6g. Weobserve
that the finite groups NL.T /=T and NE6 T /=T have isomorphic 2-Sylow subgroups
of order 27. By [Gi, Lemme 3.a], it follows that there exists a finite odd degree

extension K0=K such that K0 belongs to the image of H1.K0; L/ H1.K0; E6/.
Hence the class K0 is isotropic with respect to the root 6. By the list of Witt–Tits
indices in [T], the class K0 is isotropic with respect to I. So K0 belongs to the
image of H1.K0;LI/ Š H1.K0;PI / H1.K0; E6/.

It thus remains to show that

ed.LI I2/ 3:

To prove this inequality, we need an explicit description of the group LI Recall that
there is a natural inclusion 2 2 D C.DLI/ TI D Gm Gm; see [CP, Proof
of Proposition 14.a]. Hence we have the following commutative exact diagram:

1 1

0 C.DLI / D 2 2 DLI D Spin8 PSO8 1

0 TI D Gm Gm

.2;2/

LI PSO8 1

Gm Gm Gm Gm

1 1.

Taking Galois cohomology of the right square over a field F=k, we obtain the fol-
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lowing commutative exact diagram of pointed sets:

H1.F;Spin8/ H1.F; PSO8/

1 H1.F; LI / H1.F; PSO8/

1.

By the usual twisting argument, H1.F; LI / injects into H1.F; PSO8/, therefore

H1.F;LI/ D Im H1.F;Spin8/ H1.F; PSO8/ It is well known that the image
of H1.F; Spin8/ in H1.F;PSO8/ classifies the similarity classes of 8-dimensional
quadratic F -forms in I3.F /; cf., e.g., [KMRT, pp. 409 and 437]. By the Arason–
Pfister Theorem, every 8-dimensional quadratic form q 2 I 3.F / is similar to a 3-fold
Pfister form hha; b; cii. Thus the similarity class of q is defined over k.a; b; c/. This
shows that ed.LI I 2/ 3, as claimed.

9.5 Remark. One can show that for every 2 H1.K;E6/ there is an odd degree
field extension L=K such that L lies in the image of the natural map H1.L;G2/
H1.L; E6/; see [GMS, Exercise 22.9]. Sinceed.G2/ D 3, this leads to an alternative
proof of the inequality ed.E6I 2/ 3.

9.6 Example. If char.k/ ¤ 3, then ed.E7I 3/ D 3.

Here E7 denotes the simply connected simple group of type E7. By abuse of
notation we will sometimes also write E7 for the Dynkin diagram of E7.

Proof. By [Gr, Table III], E7 has a unique up to conjugation) non-toral subgroup

H isomorphic to Z=3Z/5. To compute the rank of its centralizer, we make use of
its Witt–Tits index I.H/ E7 [GP, Section 3], where E7 is the following Dynkin
diagram.

2

7 6 5 4 3 1

Set I D E7 n f 7g and let PI be the standard parabolic subgroup. Denote by

LI D ZG.TI/ its standard Levi subgroup. Then DLI D E6, where E6 denotes a

simply connected group of type E6. Since E6 has a maximal non-toral 3-elementary
abelian subgroup of rank 4 see [Gr, Table III]), we may assume that H E6.
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Moreover, CE6 H/ is finite, so H is irreducible in LI It follows that PI is a

minimal parabolic subgroup of E7 containing H and thus the Witt–Tits index of H
is I By [GP, Proposition 3.19], the group CE7 H/ is of rank 1. Theorem 1.2 b)
now tells us that ed.E7I 3/ 4 1 D 3.

To prove the opposite inequality, consider 2 H1.K; E7/. By[Ga, Example 3.5],
the natural map

H 1 K; E6 Ì 4/ H 1 K; E7/

is surjective. Here, once again, E6 stands for the simply connected group of type E6.
It follows that there exists a quartic extensionK0=K such that K0 admits reduction of
structure to E6 i.e., lies in the image of the mapH1.K0; E6/ H1.K0; E7/). Thus
we may assume without loss of generality that comes from E6. Now recall that the
natural map H1.K; F4 Ì 3/ H1.K; E6/ is surjective see [Ga, Example 3.5]);
here 3 D C.E6/. Thus there exists a 2 H1.K; F4 Ì 3/ mapping to by the
composite map

H 1 K; F4 Ì 3/ H 1 K; E6/ H 1 K; E7/:

We claim that 2 H1.K; E7/ admits further reduction of structure to F4 i.e.,
depends only of the F4-component of If this claim is established the desired
inequality ed. I 3/ 3 will immediately follow from Example 9.3.

To prove the claim we again view E6 inside E7 as E6 D DLI. We have LI D
CE7 TI/ D DLI:TI where TI D Gm is the standard torus associated to I and

C.LI/ D TI :C.E7/. Since C.E7/ D 2, it follows that 3 D C.E6/ TI LI
We consider the commutative diagram of pairings

H1.K; 3/ H1.K; E6/ H1.K; E6/

H1.K;TI / H1.K; LI / H1.K; LI /.

From thevanishing ofH1.K;TI /, it follows that the mapH1.K;E6/ H1.K;LI/
is H1.K; 3/-invariant. A fortiori, the image of the map

H1 K;F4/ H1 K;E6/ H1 K;LI/

is H1.K; 3/-invariant. We conclude that the image of 2 H1.F4 3/ in
H1.K;LI/ depends only of its F4 component, as claimed.

9.7 Remark. One can show that if G G0 is a central isogeny of degree d, then

ed.GIp/ D ed.G0I p/ for any prime p not dividing d. In particular, the equalities
ed.E6I2/ D 3 and ed.E7I 3/ D 3 are valid for adjoint E6 and E7 as well.
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