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String topology for spheres

Luc Menichi

With an appendix by Gerald Gaudens and Luc Menichi

Dedicated to Jean-Claude Thomas, on the occasion of his 60th birthday

Abstract. Let M be a compact oriented d-dimensional smooth manifold. Chas and Sullivan

have defined a structure of Batalin–Vilkovisky algebra on H LM/. Extending work of
Cohen, Jones and Yan, we compute this Batalin–Vilkovisky algebra structure when M is a

sphere S d d 1. In particular, we show that H LS2
I F2/ and the Hochschild cohomology

HH H S2/IH S 2// are surprisingly not isomorphic as Batalin–Vilkovisky algebras,
although we prove that, as expected, the underlying Gerstenhaber algebras are isomorphic. The
proof requires theknowledge of the Batalin–Vilkovisky algebraH 2S 3

I F2/ thatwe compute
in the Appendix.
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1. Introduction

Let M be a compact oriented d-dimensional smooth manifold. Denote by LM WD
map.S1; M/ the free loop space on M. In 1999, Chas and Sullivan [2] have shown
that the shifted free loop homology H LM/ WD H Cd.LM/ has a structure of
Batalin–Vilkovisky algebra Definition 5). In particular, they showed that H LM/
is a Gerstenhaber algebra Definition 8). This Batalin–Vilkovisky algebra has been
computed when M is a complex Stiefel manifold [25] and very recently over Q
when M is a K. ; 1/ [28]. In this paper, we compute the Batalin–Vilkovisky
algebra H LMI k/ when M is a sphere Sn, n 1 over any commutative ring k
Theorems 10, 16, 17, 24 and 25).

The author was partially supported by the Mathematics Research Center of Stanford University.
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In fact, few calculations of this Batalin–Vilkovisky algebra structure or even of
the underlying Gerstenhaber algebra structure have been done because the following
conjecture has not yet been proved.

Conjecture 1 due to [2, “dictionary” p. 5] or [7]?). If M is simply connected then
there isan isomorphismof GerstenhaberalgebrasH LM/ŠHH S M/IS M//
between the free loop space homology and the Hochschild cohomology of the algebra

of singular cochains on M.

In[7], [5], Cohen and Jones proved that there is an isomorphism of graded algebras
over any field

H LM/ Š HH S M/IS M//:
Over the reals or over the rationals, two proofs of this isomorphism of graded
algebras have been given by Merkulov [23] and Félix, Thomas, Vigué-Poirrier [11].
Motivated by this conjecture,Westerland[30] has computed the Gerstenhaber algebra

HH S MI F2/IS MI F2// when M is a sphere or a projective space.
What about the Batalin–Vilkovisky algebra structure?
Suppose thatM is formal over a field, then since the Gerstenhaber algebra structure

on Hochschild cohomology is preserves by quasi-isomorphism of algebras [10,
Theorem 3], we obtain an isomorphism of Gerstenhaber algebras

HH S M/IS M// Š HH H M/IH M//: 2)

Poincaré duality induces an isomorphism of H M/-modules

‚ W H M/ H M/_:
Therefore, we obtain the isomorphism

HH H M/IH M// Š HH H M/IH M/_/
and the Gerstenhaber algebra structure on HH H M/IH M// extends to a

Batalin–Vilkovisky algebra [26], [22], [19] See above Proposition 20 for details).
This Batalin–Vilkovisky algebra structure is further extended in [27], [9], [20], [21]
to a richer algebraic structure. It is natural to conjecture that this Batalin–Vilkovisky
algebra on HH H M/IH M// is isomorphic to the Batalin–Vilkovisky algebra

H LM/. We show Corollary 30) that this is not the case over F2 when M is the
sphereS2. See [6, Comments2, Chapter1]or thepapersofTradler andZeinalian [26],
[27] for a related conjecture whenM is not assumed to be necessarily formal. On the
contrary, we prove Corollary 23) that the above conjecture is satisfied for M D S2
over F2.

Acknowledgment. We wish to thank Ralph Cohen and Stanford Mathematics
Department for providing a friendly atmosphere during my six months of “delegation
CNRS”.We would like also to thankYves Félix for a discussion simplifying the proof
of Theorem 10.
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2. The Batalin–Vilkovisky algebra structure on H LM/

We recall here the definition of the Batalin–Vilkovisky algebra on H LMI k/ given
by Chas and Sullivan [2] over any commutative ring k and deduce that this Batalin–
Vilkovisky algebra H LMI k/ behaves well with respect to change of rings.

We first recall the definition of the loop product following Cohen and Jones [7],
[6]. Let M be a closed oriented smooth manifold of dimension d. The inclusion
e W

map.S1 _ S1; M/ LM LM can be viewed as a codimension d embedding
between infinite dimension manifolds [24, Proposition 5.3]. Denote by its normal
bundle. Let e W LM LM map.S1 _ S1; M/ its Thom–Pontryagin collapse
map. Recall that the umkehr Gysin) map eŠ is the composite of e and the Thom
isomorphism:

H LM LMI k/
H eIk/ H map.S1

_ S1; M/ I k/

\u!
k

H 1 1

Š
d map.S _ S ; M/I k/:

The Thom isomorphism is given by taking a relative cap product\with a Thom class

for uk 2 Hd map.S1 _ S1; M/ I k/. A Thom class with coefficients in Z, uZ,
gives rise to a Thom class uk with coefficients in k, under the morphism

Hd map.S1
_ S 1 ; M/IZ/ H d map.S 1

_ S1; M/I k/

induced by the ring homomorphismZ k [16, p. 441]. So we have thecommutative
diagram

H LM LMIZ/
eŠ

H d map.S1 _ S1; M/IZ/

H LM LMI k/
eŠ

H d map.S1 _ S1; M/I k/.

Let W map.S1 _ S1; M/ LM be the map obtained by composing loops. The
loop product is the composite

H LMIk/ H LMI k/ H LM LMI k/
eŠ

H d map.S1
_ S 1; M/I k/

H d Ik/ H d.LMI k/:

So clearly, we have proved

Lemma 3. The morphism of abelian groups H LMIZ/ H LMI k/ induced
by Z k is a morphism of graded rings.
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Suppose that the circle S1 acts on a topological space X. Then we have an action
of the algebra H S1/ on H X/,

H S1/ H X/ H X/:

Denote by OES1 the fundamental class of the circle. Then we define an operator of
degree 1,

W H XI k/ H C1.XIk/, which sends x to the image of OES1 x
under the action. Since OES1 2

D 0, B D 0. The following lemma is obvious.

Lemma 4. Let X be a S1-space. We have the commutative diagram

H XIZ/ H C1.XIZ/

H XI k/ H C1.XI k/,

where the vertical maps are induced by the ring homomorphism Z k.

The circle S1 acts on the free loop space on M by rotating the loops. Therefore
we have a operator onH LM/. Chas and Sullivan [2] have shown thatH LM/
equipped with the loop product and the -operator, is a Batalin–Vilkovisky algebra.

Definition 5. A Batalin–Vilkovisky algebra is a commutative graded algebra A
equipped with an operator W A A of degree 1 such that B D 0 and

abc/ D ab/c C 1/jaja bc/ C 1/.jaj 1/jbjb ac/

a/bc 1/jaja. b/c 1/jajCjbjab. c/:
6)

Consider the bracket f ; g of degree C1 defined by

fa; bg D 1/jaj ab/ a/b 1/jaja. b/

for any a, b 2 A. 6) is equivalent to the followingrelationcalled the Poisson relation:

fa; bcg D fa; bgc C 1/.jajC1/jbjbfa; cg: 7)

Getzler [14, Proposition 1.2] has shown that f ; g is a Lie bracket and therefore that a

Batalin–Vilkovisky algebra is a Gerstenhaber algebra.

Definition 8. A Gerstenhaber algebra is a commutative graded algebra A equipped
with a linear map f ; gW A AG A of degree 1 such that:

a) the bracket f ; g gives to A a structure of a graded Lie algebra of degree 1.
This means that for each a, b and c 2 A,

fa; bg D 1/.jajC1/.jbjC1/fb;ag;
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and

fa; fb; cgg D ffa; bg;cg C 1/.jajC1/.jbjC1/fb; fa; cgg:

b) The product and the Lie bracket satisfy the Poisson relation 7).

Using Lemma 3 and Lemma 4, we deduce

Proposition 9. The k-linear map

H LMIZ/ Z k H LMI k/

is an inclusion of Batalin–Vilkovisky algebras.

In particular, by the universal coefficient theorem,

H LMIZ/ Z Q Š H LMIQ/:
More generally, this proposition tells us that if TorZ.H LMIZ/; k/ D 0 then the
Batalin–Vilkovisky algebra H LMIZ/ determines the Batalin–Vilkovisky algebra

H LMI k/.

3. The circle and an useful lemma

In this section, we compute the structure of the Batalin–Vilkovisky algebra on the
homology of the free loop space on the circle S1 using a lemma whichgives information
on the image of on elements of lower degree in H LM/.

Theorem 10. As a Batalin–Vilkovisky algebra, the homology of the free loop space

on the circle is given by

H LS1
I k/ Š kOEZ ƒa 1:

Denote by x a generator of Z. The operator is

xi a 1/ D i.x i 1/; x i 1/ D 0

for all i 2 Z.

Let X be a pointed topological space. Consider the free loop fibration X j
LX

ev
X. Denote by hurX

W n.X/ Hn.X/ the Hurewicz map.

Lemma 11. Let n 2 N. Let f 2 nC1.X/. Denote by fQ 2 n. X/ the adjoint
of f Then

H ev/ B B H j/ B hur X/ fQ/ D hurX.f /:
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Proof. Take in homology the image of OES1 OESn in the following commutative
diagram:

S1 X
S1 j

S1 LX
actLX

LX

evS1 fQ

S1 Sn S1 ^ Sn f X,

where actLX W
S1 LX LX is the action of the circle on LX.

Proof of Theorem 10. More generally, let G be a compact Lie group. Consider the

homeomorphism ‚G W G G Š LG which sends the couple w; g/ to the free
loop t 7! w.t/g. In fact, ‚G is an isomorphism of fiberwise monoids. Therefore
by [15, Part 2 of Theorem 8.2],

H ‚G/ W H G/ H G/ H LG/

is a morphism of graded algebras. Since H S1/ has no torsion,

H ‚S1/W H S1 / H S1/ Š H LS1/
is an isomorphism of algebras. Since preserves path-connected components,

x i a 1/ D xi 1/

where 2 k. Denote by "kOEZ the canonical augmentation of the group ring kOEZ

Since H ev B‚S1/ D "kOEZ H S1/,

H ev/ B / x i a 1/ D 1:

On the other hand, applying Lemma 11 to the degree i map S1 S1, we obtain that

H ev/ B B H j //.xi / D i1. Therefore D i

4. Computations using Hochschild homology

In this section, we compute the Batalin–Vilkovisky algebra H LSn/, n 2, using
the following elementary technique:

The algebra structure has been computed by Cohen, Jones andYan using the Serre
spectral sequence [8]. On the other hand, the action of H S1/ on H LSn/ can be
computed using Hochschild homology. Using the compatibility between the product
and we determine the Batalin–Vilkovisky algebra H LSn/ up to isomorphism.
This elementary technique will fail for H LS2/.
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Let A be an augmented differential graded algebra. Denote by sAN the suspension

of the augmentation ideal AN, sAN/i D ANi 1. Let d1 be the differential on the tensor
product of complexes A T.sAN/. The normalized) Hochschild chain complex,
denoted C AIA/, is the complex A T.sAN/; d1 C d2/ where

d2aOEsa1j :: : jsak D. 1/jajaa1OEsa2j : : : jsak

C
k 1

X
iD1

1/"i
aOEsa1j :: : jsaiaiC1j : :: jsak

1/jsakj"k 1akaOEsa1j : : : jsak 1 :

Here "i D jaj C jsa1j C C jsai j.
Connes’ boundary map B is the map of degree C1

B W A sAN/
p A sAN/ pC1

defined by

B.aoOEsa1j : : : jsap / D pX
iD0

1/jsa0:::sai 1jjsai :::sapjOEsai j : : : jsapjsa0j : : : jsap 1 :

Up to the isomorphism sp.A pC1// A sA/ p, sp.a0OEa1j : :: jap / 7!
1/pja0jC.p 1/ja1jC Cjap 1ja0OEsa1j: : : jsap oursigns coincides with those of [29].
The Hochschild homology of A with coefficient in A) is the homology of the

Hochschild chain complex:

HH AI A/ WD H C AIA//:

The Hochschild cohomology of A with coefficient in A_) is the homology of the
dual of the Hochschild chain complex:

HH AIA_/ WD H C AIA/_/:

Consider the dual ofConnes’boundary map, B_.'/D. 1/j'j'BB. OnHH AIA_/,
B_ defines an action of H S1/.

Example 12. Let n 2. Let kbe any commutative ring. LetA WD H Sn/ D ƒx n
be the exterior algebra on a generator of lower degree n. Denote by OEsx k

WD

1OEsxj : : : jsx and xOEsx k
WD xOEsxj : : : jsx the elements of C AIA/ where the term

sx appears k times. These elements form a basis of C AI A/. Denote by OEsx k_,
xOEsx k_, k 0, the dual basis. The differential d_ on C AI A/_ is given by
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d_.OEsx k_/ D 0 and d_.xOEsx k_/ D 1 1/k.nC1/ OEsx kC1/_. The dual of
Connes’ boundary map B_ is given by

B_.OEsx k_/ D ´ 1/nC1k xOEsx k 1/_ if k C 1/.n C 1/ is even,

0 if k C 1/.n C 1/ is odd,

and B_.xOEsx k_/ D 0. We remark that OEsx k_ is of lower) degree k.n 1/ and

xOEsx k_ of degree n C k.n 1/.

Theorem 13 ([17]). Let X be a simply connected space such that H XI k/ is of
finite type in each degree. Then there is a natural isomorphism of H S1/-modules
between the homology of the free loop space on X and the Hochschild cohomology
of the algebra of singular cochain S XIk/:

H LX/ Š HH S XI k/I S XIk/_/: 14)

In this paper, when we will apply this theorem, H XI k/ is assumed to be k-free

of finite type in each degree and X will be always k-formal: the algebra S XIk/
will be linked by quasi-isomorphisms of cochain algebras to H XI k/. Therefore

HH S XI k/I S XIk/_/ Š HH H XIk/IH XI k/_/: 15)

Theorem 16. For n > 1 odd, as a Batalin–Vilkovisky algebra,

H LSn
I k/ D kOEun 1 ƒa n;

n 1 a n/ D i.ui 1ui
n 1 1/;

ui
n 1 1/ D 0:

Proof. For the algebrastructure, Cohen,JonesandYan[8]proved thatH LSnIZ/ D
kOEun 1 ƒa n when k D Z. Their proof works over any k alternatively, using
Proposition 9, we could assume that k D Z). Computing Connes’ boundary map
on HH H Sn/IH Sn// Example 12), we see that on H LSnI k/ is null
in even degree and in degree n, and is an isomorphism in degree 1. Therefore

uin 1 1/ D 0, 1 a n/ D 0 and un 1 a n/ D 1 where is invertible
in k. Replacing a n by 1 a n or un 1 by 1un 1, we can assume up to isomorphisms
that un 1 a n/ D 1. Therefore fun 1; a ng D 1. Using the Poisson relation 7),

fuin 1;a ng D iui 1
n 1 a n/ D i.ui 1

n 1 Therefore ui n 1 1/:
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Theorem 17. For n 2 even, there exists a constant "0 2 F2 such that as a Batalin–
Vilkovisky algebra,

H LSn
IZ/ D ƒb

ZOEa; v
a2;ab;2av/

D
C1

M
kD0

Zvk
2.n 1/ °

C1

M
kD0

Zb 1vk °Za n °
C1

M
kD1

Z
2Z

avk;

for all k 0, vk/ D 0, avk/ D 0 and

bvk/ D ´ .2k C 1/vk C "0avkC1 if n D 2;

.2k C 1/vk if n 4:

Proof. For the algebra structure, Cohen, Jones andYan [8] proved the equality.
Computing Connes’boundary map on HH H Sn/IH Sn// Example 12), we see that

on H LSn Ik/ is null in even degree and is injective in odd degree.

Case n ¤ 2. This case is simple, since all the generators of H LSn/, vk, bvk
and avk, k 0, have different degrees. Using Example 12, we also see that for all
k 0,

W H 1C2k.n 1/ D Zb 1vk H2k.n 1/ D Zvk

has cokernel isomorphic to Z
.2kC1/Z

Therefore bvk/ D .2kC1/vk. By replacing

b 1 by b 1, we can assume up to isomorphims that b/ D 1. Let k 1. Let

k 2 f 2k 1; 2kC1g such that bvk/ D kvk. Using formula 6), we obtain that
bvkvk/ D .2 k 1/v2k. We know that bv2k/ D .4k C 1/v2k. Therefore

k must be equal to 2k C 1.

Case n D 2. This case is complicated, since for k 0, vk and avkC1 have the
same degree. Using Example 12, we also see that

W H 1C2k D Zb 1vk H2k D Zvk °
Z
2Z

avkC1

has cokernel, denoted Coker isomorphic to Z
.2kC1/Z ° Z

2Z There exists unique

k 2 Z and "k 2
Z
2Z such that bvk/ D kvk C "kavkC1. The injective map
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fits into the commutative diagram of short exact sequences Noether’s Lemma)

0 0 0

0 H 1C2k
id

2

H 1C2k 0 0

0 H 1C2k H2k Coker

Š

0

0 Z
2Z

x Z
2 kZ ° Z

2Z Cokerx 0

0 0 0.

The cokernel of x denoted Coker x is of cardinal 2j kj. Soj kj D 2kC1. Therefore

bvk/ D .2k C 1/vk C "kavkC1.
By replacing b 1 by b 1, we can assume up to isomorphims that b/ D

1 C "0av. Using formula 6), we obtain that

bvkvl/ D k C l 1/vkCl C ."k C "l "0/avkClC1 :

Therefore

bvkvk/ D .2 k 1/v2k
C "0av2kC1 D .4k C 1/v2k

C "2kav2kC1 :

So k D 2k C 1, "2k D "0 and "2kC1 D "2k C "1 "0 D "1.

The map ‚ W H LS2/ H LS2/ given by ‚.b 1vk/ D b 1vk, ‚.vk/ D
vk C kavkC1, ‚.avk/ D avk, k 0 is an involutive isomorphism of algebras.
Therefore, by replacing v by v C av2, we can assume that "1 D "0. So we have
proved

bvk/ D .2k C 1/vk
C "0avkC1; k 0:

These two cases "0 D 0 and "0 D 1 correspond to two non-isomorphic Batalin–
Vilkoviskyalgebraswhose underlying Gerstenhaber algebras are the same. Therefore
even if we have not yet computed the Batalin–Vilkovisky algebra H LS2IZ/, we
have computed its underlying Gerstenhaber algebra. Using the definition of the
bracket, straightforward computations give the following corollary.

Corollary 18. For n 2 even, as Gerstenhaber algebra

H LSnIZ/ D ƒb 1
ZOEa n; v2.n 1/

a2; ab; 2av/
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with fvk;vlg D 0, fbvk; vl g D 2lvkCl fbvk;bvl g D 2.k l/bvkCl fa; vlg D 0,

favk; bvlg D .2l C 1/avkCl and favk; avl g D 0 for all k; l 0.

5. When Hochschild cohomology is a Batalin–Vilkovisky algebra

In this section, we recall the structure of Gerstenhaber algebra on the Hochschild
cohomology of an algebra whose degrees are bounded. We recall from [26], [22], [27],
[19] the Batalin–Vilkovisky algebra on the Hochschild cohomology of the cohomology

H M/ of a closed oriented manifold M. We compute this Batalin–Vilkovisky
algebra HH H M/IH M// when M is a sphere.

Throughout in this section we will work over the prime field F2. Let A be an
augmented graded algebra such that the augmentation ideal AN is concentrated in degree

2 and bounded below or concentrated in degree 0 and bounded above). Then
the normalized) Hochschild cochain complex, denoted C A; A/, is the complex

Hom.T sAN; A/ Š Lp 0 Hom..sAN/ p; A/

with a differential d2. For an element f in Hom..sAN/ p; A/, the differential d2f in
Hom..sAN/ pC1; A/ is given by

d2f /.OEsa1j :: : jsapC1 / WD a1f OEsa2j : : : jsapC1 /

C pX
iD1

f OEsa1j : : : js.aiaiC1/j :: : jsapC1 / C f OEsa1j : : : jsap /ap:

The Hochschild cohomology of A with coefficient in A is the homology of the
Hochschild cochain complex:

HH AI A/ WD H C AI A//:
We remark that HH AIA/ is bigraded. Our degree is sometimes called the total
degree: sum of the external degree and the internal degree. The Hochschild cochain
complex C A; A/ is a differential graded algebra. For f 2 Hom..sAN/ p;A/ and

g 2 Hom..sAN/ q; A/, the cup) product of f and g, f [ g 2 Hom..sAN/ pCq; A/
is defined by

f [ g/.OEsa1j : : : jsapCq / WD f OEsa1j : : : jsap /g.OEsapC1j : : : jsapCq /:
The Hochschild cochain complex C A; A/ has also a Lie bracket of lower)
degree C1.

f NB g/.OEsa1j : : : jsapCq 1 /

WD pX
iD1

f OEsa1j : : : jsai 1jsg.OEsai j : : : jsaiCq 1 /jsaiCqj: : : jsapCq 1 :
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ff; gg D f NB g g NB f Our formulas are the same as in the non-graded case [13].
We remark that ifAis notassumed to be bounded, the formulas aremore complicated.
Gerstenhaber has shown that HH AIA/ equipped with the cup product and the Lie
bracket is a Gerstenhaber algebra.

Let M be a closed d-dimensional smooth manifold. Poincaré duality induces an

isomorphism of H MI F2/-modules of lower) degree d:

‚ W H MI F2/ \OEM

H MIF2/ Š H MI F2/_: 19)

More generally, let A be a graded algebra equipped with an isomorphism of

Abimodules of degree d, ‚ W A Š A_. Then we have the isomorphism

HH A;‚/W HH A; A/ Š HH A; A_/:

Therefore on HH A; A/, we have both a Gerstenhaber algebra structure and an
operator given by the dual of Connes’ boundary map B. Motivated by the Batalin–
Vilkovisky algebra structure of Chas–Sullivan on H LM/, Thomas Tradler [26]
proved that HH A; A/ is a Batalin–Vilkovisky algebra. See [22, Theorem 1.6] for
an explicit proof. In [19] or [27, Corollary 3.4] or [9, Section 1.4] or [20, Theorem B]
or[21, Section 11.6], this Batalin–Vilkoviskyalgebra structureonHH A; A/extends
to a structure of algebra on the Hochschild cochain complex C A; A/ over various
operads or PROPs: the so-called cyclic Deligne conjecture. Let us compute this
Batalin–Vilkovisky algebra structure when M is a sphere.

Proposition 20 ([30] and [31, Corollary 4.2]). Let d 2. As Batalin–Vilkovisky
algebra, for the Hochschild cohomology of H SdI F2/ D ƒx d we have

HH H Sd
I F2/IH Sd

I F2// Š ƒg d F2OEfd 1

d 1/ D k.1 f k 1with g d f k
d 1 /and 1 f k

d 1/ D 0; k 0. In particular, the

underlying Gerstenhaber algebra is given by ff k; f l
g D 0, fgf k; f l

g D lf kCl 1

and fgf k;gf l
g D k l/gf kCl 1 for k, l 0.

Proof. Denote by A WD H Sd I F2/. The differential on C AI A/ is null. Let

f 2 Hom.sAN; A/ C AI A/ such that f OEsx / D 1. Let g 2 Hom.F2; A/ D
Hom..sAN/ 0; A/ C AI A/ such that g.OE / D x. The k-th power of f is the
map f k

2 Hom..sAN/ k; A/ such that f k.OEsxj : : : jsx / D 1. The cup product

g[f k
2 Hom..sAN/ k; A/ sends OEsxj : :: jsx to x. Sowehave proved that C AI A/

is isomorphic to the tensor product of graded algebras ƒg d F2OEfd 1
The unit 1 and x d form a linear basis of H Sd /. Denote by 1_ and x_

the dual basis of A_ D H Sd /_. Poincaré duality induces the isomorphism

‚W H Sd / Š H Sd /_, 1 7! x_ and x 7! 1_. The two families of elements of



Vol. 84 2009) String topology for spheres 147

the form 1OEsxj : :: jsx and of the form xOEsxj :: : jsx form a basis of C AI A/.
Denote by 1OEsxj :: : jsx _ and xOEsxj : :: jsx _ the dual basis in C AI A/_. The isomorphism

‚ induces an isomorphism of complexes of degree d, y‚ W C AI A/
C AI‚/

Š
C AIA_/

Š C AI A/_. Explicitly [22, Section 4] this isomorphism sends

f 2 Hom..sAN/ p; A/ to the linear map ‚y.f / 2 A sAN/ p/_ C AIA/_
defined by

y‚.f /.a0OEsa1j : : : jsap / D ‚ B f /OEsa1j : : : jsap a0/:

Here with A D ƒx, y‚.f k/ D xOEsxj : : : jsx _ and y‚.g [ f k/ D 1OEsxj: : : jsx _
Computing Connes’ boundary map B_ on C AI A/_ Example 12) and using that

y‚ B D B_ B y‚ by definition of we obtain the desired formula for

6. The Gerstenhaber algebra H LS2 I F2)

Using the same Hochschild homology technique as in Section 4, we compute, up

to an indeterminacy, the Batalin–Vilkovisky algebra H LS2I F2/. Nevertheless,
this will give the complete description of the underlying Gerstenhaber algebra on

H LS2I F2/.

Lemma 21. There exists a constant " 2 f0; 1g such that as a Batalin–Vilkovisky
algebra, the homology of the free space loop on the sphere S2 is

H LS2
I F2/ D ƒa 2 F2OEu1 ;

1/ D k.1 uk 1a 2 uk
1 C "a 2 ukC11 / and 1 uk1/ D 0; k 0:

Proof. In [8],Cohen,JonesandYanproved that theSerrespectralsequence for the free

loop fibration M j LM
ev

M is a spectral sequence of algebras converging
toward the algebra H LM/. Using Hochschild homology, we see that there is
an isomorphism of vector spaces H LS2I F2/ Š H S2I F2/ H S2 IF2/.
Therefore the Serre spectral sequence collapses. Since there is no extension problem,
we have the isomorphism of algebras

H LS2
IF2/ Š H S2

IF2/ H S2
I F2/ D ƒ.a 2/ F2OEu1 :

Computing Connes’ boundary map on HH H S2 I F2/IH S2 IF2// see Example

12), we see that on H LS2 IF2/ is null in even degree and that

W H2k 1 H2k
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is a linear map of rank 1, k 0. In particular is injective in degree 1.

Applying Lemma 11 to the identity map id
W

S2 S2, we see that the composite

H1.jH1. S2
I F2/ IF2/ H1.LS2

I F2/ H2.LS2
IF2/

H2.evIF2/ H2.S2
I F2/

is non-zero. Since H ev/ is a morphism of algebras, H0.ev/.a 2u21 / D 0. And so

a 2u1/ D 1 C "a 2u21 with " 2 F2.
We remark that when b D c, formula 6) takes the simple form

ab2/ D a/b 2
C a b 2/: 22)

Using this formula, we obtain that

a 2u2kC1
1 / D a 2u1/.uk

1 C "a 2u2kC21/2/ D u2k
1 ; k 0:

Since
W H1 D F2a 2u31° F2u1 H2 is of rank 1 and a 2u31/ ¤ 0, u1/ D

a 2u31/ with D 0 or D 1. Using again formula 22), we have that

u2kC1
1 / D u1.uk 1/u2k

1 D a 2u2kC31/2/ D a 2u3
1 /; k 0:

So finally

1/ D kuk 1a 2uk
1 C "ka 2ukC1 1/ D a 2ukC2

1 and uk
1 /; k 0:

The cases D 0 and D 1 correspond to isomorphic Batalin–Vilkovisky algebras:

Let ‚ W H LS2I F2/ H LS2IF2/ be an automorphism of algebras which is
not the identity. Since ‚.a 2/ ¤ 0, ‚.a 2/ D a 2. Since ‚.a 2/ and ‚.u1/
must generate the algebra ƒa 2 F2OEu1 ‚.u1/ ¤ a 2u31 Since ‚.u1/ ¤ u1,

‚.u1/ D u1 C a 2u31 Therefore there is an unique automorphism of algebras

‚W H LS2I F2/ H LS2 I F2/ which is not the identity. Explicitly, ‚ is given
by ‚.uk1/ D uk1 C ka 2ukC2

1 ‚.a 2uk1/ D a 2uk1 k 0. One can check that

‚ is an involutive isomorphism of Batalin–Vilkovisky algebras who transforms the
cases D 0 into the cases D 1 without changing ". Therefore, by replacing u1 by

u1 C a 2u31 we can assume that D 0.

Consider the Batalin–Vilkovisky algebras ƒa 2 F2OEu1 with a 2 uk1/ D
1 C "a 2 ukC1k.1 uk 1

1 /, 1 uk1/ D a 2ukC2
1 /, k 0, given by

the different values of ", 2 f0; 1g. These four Batalin–Vilkovisky algebras have

only two underlying Gerstenhaber algebras given by fuk1; ul1g D 0, fa 2uk1;ul1g D
lukCl 1

Cl." /a 2ukClC1 and fa 2uk1 1g D k l/a 2ukCl 1 for k, l 0.; a 2ul
Via the above isomorphism ‚, these two Gerstenhaber algebras are isomorphic.

Corollary 23. The free loop space modulo 2 homology H LS2I F2/ is isomorphic
as Gerstenhaber algebra to the Hochschild cohomology of H S2I F2/,

HH H S2
I F2/IH S2

I F2//:
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7. The Batalin–Vilkovisky algebra H LS2/

In this section, we complete the calculations of the Batalin–Vilkovisky algebras

H LS2I F2/ and H LS2 IZ/ started respectively in Sections 6 and 4, using a

purely homotopic method.

Theorem 24. As a Batalin–Vilkovisky algebra, the homology of the free loop space
on the sphere S2 with mod 2 coefficients is

H LS2
I F2/ D ƒa 2 F2OEu1 ;

1/ D k.1 uk 1a 2 uk
1 C a 2 ukC1

1 / and 1 uk
1/ D 0; k 0:

Theorem 25. With integer coefficients, as a Batalin–Vilkovisky algebra,

H LS2
IZ/ D ƒb

ZOEa; v
a2; ab; 2av/

D
C1

M
kD0

Zvk
2 °

C1

M
kD0

Zb 1vk ° Za 2 °
C1

M
kD1

Z
2Z

avk

for all k 0, vk/ D 0, avk/ D 0 and bvk/ D .2k C 1/vk C avkC1.

Denote by s
W X LX the trivial section of the evaluation map evW LX X.

Lemma 26. The image of
W H1.LS2I F2/ H2.LS2I F2/ is not contained in the

image of H2.sI F2/ W H2.S2IF2/ H2.LS2I F2/.

Lemma 27. The image of
W H1.LS2IZ/ H2.LS2IZ/ is not contained in the

image of H2.sIZ/W H2.S2IZ/ H2.LS2 IZ/.
Proof of Lemma 27 assuming Lemma 26. Consider the commutative diagram

H1.LS2 IZ/ Z F2 Š

ZF2

H1.LS2I F2/

H2.LS2 IZ/ Z F2 Š H2.LS2I F2/

H2.sIZ/ ZF2

H2.S2IZ/ Z F2 Š

H2.sIF2/

H2.S2I F2/.

Since H1.LS2IZ/ Š H0.LS2IZ/ Š Z, the horizontal arrows are isomorphisms by
theuniversalcoefficient theorem. The top rectanglecommutesaccording toLemma4.
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Suppose that the image of
W H1.LS2IZ/ H2.LS2IZ/ is included in the

image of H2.sIZ/. Then the image of Z F2 is included in the image of
H2.sIZ/ Z F2. Using the above diagram, the image of W H1.LS2I F2/
H2.LS2I F2/ is included in the image of H2.sI F2/. This contradicts Lemma 26.

Proof of Theorem 24 assuming Lemma 26. It suffices to show that the constant " in
Lemma 21 is not zero. Suppose that " D 0. Then by Lemma 21, a 2 u1/ D 1.

It is well known that H s/ W H M/ H LM/ is a morphism of algebras.

In particular, let OES2 be the fundamental class of S2, H2.s/.OES2 / is the unit of
H LS2/. So a 2 u1/ D H2.s/.OES2 / This contradicts Lemma 26.

The proof of Theorem 25 assuming Lemma 27 is the same. To complete the
computation of this Batalin–Vilkovisky algebra on the homology of the free loop
space of a manifold, we will relate it to another structure of a Batalin–Vilkovisky
algebra that arises in algebraic topology: the homology of the double loop space.

LetX bea pointed topological space. ThecircleS1 actson the sphereS2 by “rotating

the earth”. Hence the circle also acts on 2X D map S2;North pole/; X; /
So we have an induced operator W H 2X/ H C1. 2X/. With Theorem 32
and the following proposition, we will able to prove Lemma 26.

Proposition 28. Let X be a pointed topological space. There is a natural morphism

r W L X map S2; X/ of S1-spaces between the free loop space on the pointed
loops of X and the double pointed loop space of X such that:

If we identify S2 and S1 ^ S1, r is a retract up to homotopy of the inclusion

j W X/ L. X/.
The composite r Bs W X L. X/ map S2;X/ is homotopically trivial.

Proof. Let
W

S2 S1 S1
S1 D S1C ^ S1 be the quotient map that identifies the

North pole and the South pole on the earth S2. The circle S1 acts without moving the
based point on

S1C ^ S1 by multiplication on the first factor. On the torus S1 S1,
the circle can act by multiplication on both factors. But when you pinch a circle to
a point in the torus, the circle can act only on one factor. If we make a picture, we
easily see that W

S2
S1C ^ S1 is compatible with the actions of S1. Therefore

rW Dmap ; X/W L X map S2; X/ is a morphism of S1-spaces.
S1

Let
W S1C ^ S1 S1^S1 D

C^S1

S1
be the quotient map. The inclusion map

j W X/ L. X/ is map ; X/. The composite B W
S2 S1 ^ S1 is the

quotient map obtained by identifying a meridian with a point in the sphere S2. The
composite B can alsobe viewed as the quotient map from the non-reduced suspension

of S1 to the reduced suspension of S1. So the composite B W S2 S1 ^ S1

is a homotopy equivalence. Let‚W S1 ^ S1 Š S2 be any given homeomorphism.
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The composite‚B B W
S2 S2 is of degree 1. The reflection through the equatorial

plane is a morphism of S1-spaces. By replacing eventually by its composite
with the previous reflection, we can suppose that‚ B B W S2 S2 is homotopic
to the identity map of S2, i.e. B ‚ is a section of up to homotopy. Therefore
map B ‚;X/ D map ‚;X/ B r is a retract of j up to homotopy.

Let W S1C ^ S1 D
S1 S1
S1

S1 be the map induced by the projection on

the second factor. Since 2.S1/ D the composite B is homotopically trivial.
Therefore r B s, the composite of r D map ; X/ and s D map ; X/ W X
L. X/ is also homotopically trivial.

Proof of Lemma 26. Denote by adSn
W Sn SnC1 the adjoint of the identity map

idW
SnC1 SnC1. The map L.adS2/W LS2 L S3 is obviously a morphism

of S1-spaces. Therefore using Proposition 28, the composite r B L.adS2/ W
LS2

L S3 2S3 is also a morphism of S1-spaces. Therefore H r B L.ad S2//
commutes with the corresponding operators in H LS2/ and H 2S3/.

Consider the commutative diagram up to homotopy:

S2
j

adS2 /

LS2

L.adS2 /

S2
s

adS2

2S3
j

id

L S3

r

S3
s

2S3.

29)

Using the left part of this diagram, we see that 1.r B L.ad// maps the generator of
1.LS2/ D Z.j B

adS1/ to the composite ad S2/ B
adS1 W

S1 S2 2S3
which is thegenerator of 1. 2S3/ Š Z. Therefore 1.r BL.ad// is an isomorphism.

So we have the commutative diagram

1.LS2/ F2
hur

Š
1.rBL.adS2 // F2 Š

H1.LS2IF2/

H1.rBL.adS2/IF2/

H2.LS2IF2/

H2.rBL.adS2/IF2/

1. 2S3/ F2
hur

Š
H1. 2S3 I F2/ H2. 2S3 IF2/.

By Theorem 32,
W H1. 2S3I F2/ H2. 2S3I F2/ is non-zero. Therefore

using the above diagram, the composite H2.r B L.adS2// B is also non-zero. On
the other hand, using the right part of diagram 29), we have that the composite

H2.r B L.adS2 // B H2.s/ is null.
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Corollary 30. The free loop space modulo 2 homology H LS2I F2/ is not isomorphic

as Batalin–Vilkovisky algebra to the Hochschild cohomology of H S2 IF2/,
HH H S2IF2/IH S2I F2//.

This means exactly that there exists no isomorphism between H LS2I F2/ and
HH H S2IF2/IH S2I F2// which at the same time

is an isomorphism of algebras and

commutes with the -operators,

although separately

there exists Corollary 23) an isomorphism of algebras between H LS2I F2/
and HH H S2I F2/IH S2 I F2// and

thereexists alsoan isomorphismcommutingwith the -operators between them.

Proof. ByProposition20,HH H S2/IH S2// is the Batalin–Vilkoviskyalgebra
given by " D 0 in Lemma 21. On the contrary, by Theorem 24, H LS2I F2/ is the
Batalin–Vilkovisky algebra given by " D 1. At the end of the proof of Lemma 21,
we saw that the two cases " D 0 and " D 1 correspond to two non-isomorphic
Batalin–Vilkovisky algebras.

More generally, we believe that for any prime p, the free loop space modulo p of
the complex projective space H LCPp 1

I Fp/1 is not isomorphic as Batalin–
Vilkovisky algebra to the Hochschild cohomology

HH H CPp 1
IFp/IH CPp 1

IFp//:

Such phenomena for formal manifolds should not appear over a field of characteristic

0.
Recall that by Poincaré duality, we have the isomorphism cf. Equation 19))

‚W H S2/ Š H S2/_:

Therefore we have the isomorphism

HH H S 2/I‚/ W
HH H S2/IH S2 // Š HH H S 2/IH S2/_/:

Consider any isomorphism of graded algebras

H LS2/ Š HH S S2/I S S2//: 31)

1Bökstedt and Ottosen [1] have recently announced the computation of the Batalin–Vilkovisky algebra

H LCPn
IFp/.
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By Corollary 23, such isomorphism exists. Cohen and Jones ([7, Theorem 3] and [5])
proved that such isomorphism exists for any manifold M. Since S2 is formal, we
have the isomorphism of algebras cf. Equation 2))

HH S S2 /I S S 2// Š HH H S2/IH S2//:

By [17], we have the isomorphisms of H S1/-modules

H LS2/
.14/

Š HH S S2/I S S2/_/
.15/
Š HH H S2/IH S2 /_/:

Corollary 30 implies that the following diagram does not commute over F2:

HH S S2/I S S2/_/
.15/

HH H S2/IH S2/_/

H LS2/

.14/

.31/

HH S S2/I S S2//
.2/

HH H S2/I‚/

HH H S2/IH S2//.

This is surprising because as explained by Cohen and Jones [7, p. 792], the composite
of the isomorphism 14) given by Jones in [17] and an isomorphism induced by
Poincaré duality should give an isomorphism of algebras between H LS2/ and

HH S S2/IS S2//.

8. Appendix by Gerald Gaudens and Luc Menichi

Let X be a pointed topological space. Recall that the circle S1 acts on the double
loop space 2X. Consider the induced operator W H 2X/ H C1. 2X/.
Getzler [14] has shown that H 2X/ equipped with the Pontryagin product and

this operator forms a Batalin–Vilkovisky algebra. In [12], Gerald Gaudens and the
author have determined this Batalin–Vilkovisky algebraH 2S3 I F2/. The keywas
the following theorem. In [18, Proposition 7.46], answering to a question of Gerald
Gaudens, Sadok Kallel and Paolo Salvatore give another proof of this theorem.

Theorem 32 ([12]). The operator
W H1. 2S3I F2/ H2. 2S3 IF2/ is non-

trivial.

Both proofs [12] and [18, Proposition 7.46] are unpublished and publicly unavailable

yet. So the goal of this section is to give a proof of this theorem which is as

simple as possible.
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Denote by the Pontryagin product in H 2X/ and by B the map induced in
homology by the composition map 2X 2S2 2X. Denote by 2nS2, the
path-connected component of the degree n maps. Denote by v1 the generator of
H1. 20 S2I F2/ and by OE1 the generator of H0. 21S2I F2/.

Lemma 33. For x 2 H 2XI F2/, x D x B v1 OE1 /:

Proof. The circle S1 acts on the sphere S2. Therefore we have a morphism of
topological monoids ‚ W

S1; 1/ 21S2; idS2 /. The action of S1 on 2X is

the composite S1 2X ‚ 2X
21 S2 2X B 2X. Therefore for x 2

H 2XI F2/, x D x B H1.‚/OES1 /
Suppose that H1.‚/OES1 D 0. Then for any topological space X, the operator

on H 2XI F2/ is null. Therefore, for any x and y 2 H 2XI F2/, fx; yg D
xy/ x/y x. y/ D 0. That is the modulo 2 Browder brackets on any

double loop space are null. This is obviously false. For example, Cohen in [3]
explains that the Gerstenhaber algebra H 2†2Y / has in general many non-trivial
Browder brackets. So the assumption H1.‚/OES1 D 0 is false.

Since the loop multiplication by idS2 in theH-group 2S2 is a homotopy equivalence,

the Pontryagin product by OE1 OE1
W H 20S2/ Š H 21S2/ is an isomorphism.

Therefore v1 OE1 is a generator of H1. 21S2/, hence H1.‚/OES1 D v1 OE1

So finally

x D x B H1.‚/OES
1 / D x B v1 OE1 /:

Recall that v1 denotes the generator of H1. 20S2I F2/.

21

Lemma 34. In the Batalin–Vilkovisky algebra H 2S2 IF2/, v1/ D v1 v1.

Proof. Recall that OE1 is the generator of H0. S2/. By Lemma 33,

OE1 D OE1
B v1 OE1 / D v1 OE1 /:

nS2/ H2qC1.
2Denote by QW Hq. 2
2nS2/ the Dyer–Lashof operation. It is well

known that QOE1 D v1 OE2 So by [4, p. 218, Theorem 1.3 4)]

fv1 OE2 ; OE1
g D fQOE1 ; OE1

g D fOE1 ; fOE1 ; OE1 gg:

By [4, p. 215, Theorem 1.2 3)], fOE1 ; OE1
g D 0. Therefore on one hand, fv1 OE2 ; OE1 g

is null. And on the other hand, using the Poisson relation 7), since
fOE2 ; OE1

g D
fOE1

OE1 ; OE1 g D 2fOE1 ; OE1
g

OE1 D 0,

fv1 OE2 ; OE1 g D fv1; OE1 g OE2 C v1 fOE2 ;OE1 g D fv1; OE1 g OE2 :
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Since OE1
W H 2S2/ Š H 2S2/ is an isomorphism, we obtain that the Browder

bracket fv1; OE1 g is null. Therefore,

v1 OE1 / D v1/ OE1 C v1 OE1 / D v1/ v1 v1/ OE1 :

But v1 OE1 / D B / OE1 / D 0. Therefore v1/ must be equal to v1 v1.

Proof of Theorem 32. We remark that since preserves path-connected components
and since the loopmultiplication of two homotopically trivial loops is a homotopically
trivial loop, H 20S2/ is a sub Batalin–Vilkovisky algebra of H 2S2/.

Let S1 S3 S2 be the Hopf fibration. After double looping, the Hopf

fibration gives the fibration 2S1 2S3
2

20S2 with contractile fiber 2S1

and path-connected base 20S2. Therefore 2
W

2S3 ' 20S2 is a homotopy

equivalence. And so H 2 / W H 2S3/ ' H 20S2/ is an isomorphism of
Batalin–Vilkovisky algebras.

Let u1 be the generator of H1. 2S3/. Lemma 34 implies that u1/ D u1 u1.
Since u1 u1 is non-zero in H 2S3 IF2/, u1/ is non-trivial.
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