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A product formula for valuations on manifolds with applications
to the integral geometry of the quaternionic line

Andreas Bernig

Abstract. The Alesker–Poincaré pairing for smooth valuations on manifolds is expressed in
terms of the Rumin differential operator acting on the cosphere-bundle. It is shown that the
derivation operator, the signature operator and the Laplace operator acting onsmooth valuations
are formally self-adjoint with respect to this pairing. As an application, the product structure of
the space of SU.2/- and translation invariant valuations on the quaternionic line is described.
The principal kinematic formula on the quaternionic line H is stated and proved.
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1. Smooth valuations on manifolds

Let M be a smooth manifold of dimension n. For simplicity, we suppose that M is
oriented, although thewhole theoryworks in the non-orientedcaseas well. Following
Alesker, we set P.M/ to be the set of compact submanifolds with corners.

Definition 1.1. A valuation onM is a real valued map on P.M/ which is additive
in the following sense: whenever X, Y X \ Y and X [ Y belong to P.M/, then

X [ Y / C X \ Y / D X/ C Y /:

AsetX 2 P.M/admits aconormal cyclecnc.X/, which is acompactlysupported
Legendrian cycle on the cosphere bundle S M. Sometimes it will be convenient to
think of S M as the set of pairs p; P/ with p 2 M and P TpM an oriented
hyperplane, at other places it is better to think of it as the set of pairs p; OE / where
p 2 M and 2 Tp M n f0g and the brackets denote the equivalence class for the
relation 1 2 ” 1 D 2; > 0.

Supported by the Schweizerischer Nationalfonds grants PP002-114715/1 and SNF 200020-113199.
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Avaluation onM iscalled smooth if thereexist an n 1/-form! 2
n 1.S M/

and an n-form 2 n.M/ such that

X/ D cnc.X/.!/C Z
X

; X 2 P.X/: 1)

If can be expressed in the form 1), we say that is represented by .!; / The
space of smooth valuations on M is denoted by V1.M/. It is a Fréchet space see

[6], Section 3.2 for the definition of the topology). If M D V is a vector space, the
subspace of translation invariant smooth valuations will be denoted by Valsm.V /.

Let N be another oriented n-dimensional smooth manifold and
W N M an

orientation preserving immersion. Then induces a map QW S N S M, sending

p;P/ to p/; Tp P//. It clearly satisfies B Q D B
The valuation on N such that

X/ WD X//; X 2 P.N/
is again smooth. If is representedby .!; / then is representedby Q ; /
This follows from the fact that cnc. X// D Q cnc.X/. Note also that 1 D Q/

1

if is a diffeomorphism.
We will use some results of [11], which we would like to recall. The cosphere

bundle S M is a contact manifold of dimension 2n 1 with a global contact form
is not unique, but this will play no role here). The projection from S M toM will

be denoted by it induces a linear map fiber integration) on the level of forms.
Given an n 1/-form on S M, there exists a unique vertical form ^ such

that d.! C ^ / is vertical i.e. a multiple of The Rumin differential operatorD
is defined as D! WD d.! C ^ / [18]. The following theorem was proved in [11].

Theorem 1.2. Let 2
n 1.S M/, 2 n.M/ and define the smooth valuation

by 1). Then D 0 if and only if
1) D! C D 0, and

2) D 0 for all p 2 M.
Moreover, if D! C D 0, then is a multiple of the Euler characteristic

The support of a smooth valuation is defined as

spt WD M n fp 2 M W
there exists p 2 U M open such that jU D 0g :

The subspace of V1.M/ consisting of compactly supported valuations will be
denoted by V1c M/.

Let
RW

V1c M/ R denote the integration functional [7]. If has compact
support, then

R WD X/, where X 2 P.M/ is an n-dimensional manifold with
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boundary containing spt in its interior. It is clear that, if is represented by .!; /
with compact supports, then

Z D Z
M D OE 2 H n

c M/ D R:

Before stating our main theorem we have to recall two other constructions of
Alesker.

The first one is the Euler–Verdier involution W V1.M/ V1.M/ [6]. Let
s W S M S M be the natural involutionon S M, sending p; P/ to p; xP/, where

xP is the hyperplane P with the reversed orientation. If a valuation 2 V1.M/ is
represented by the pair .!; / then is definedas thevaluation which isrepresented
by the pair 1/ns ; 1/n /

The second construction is the Alesker–Fu product [9], which is a bilinear map

V1.M/ V1.M/ V1.M/; 1; 2/ 7! 1 2:

We refer to [9] for its construction. It is characterized by the following properties:

1) “ ” is continuous and linear in both variables;

2) if W N M is a diffeomorphism and 1; 2 2 V1.M/, then

1 2/ D 1 2I

3) if m1, m2 are smooth measures on an n-dimensional vector space V A1; A2 2
K.V /convex bodieswith strictly convex smooth boundary and if i 2 V1.V /,
i D 1; 2 is defined by

i.K/ D mi.K C Ai/; K 2 K.V /; 2)

then

1 2.K/ D m1 m2. K/ C A1 A2/;

where
W V V V is the diagonal embedding.

Our first main theorem is the following relation between Alesker–Fu product,
integration functional, Euler–Verdier involution and Rumin differential.

Theorem 1.3. Let 1 2 V1.M/ be represented by 1; 2/; let 2 2 V1 bec M/
represented by 2; 2/. Then

Z 1 2 D 1/n Z 1 ^ D! C2 2/ C Z 1 ^ 2: 3)
S M M
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Let us call the pairing

V1.M/ V1c M/ R;

1; 2/ 7! Z 1 2 DW h 1; 2i
4)

the Alesker–Poincaré pairing. Note that Theorem 1.3 is equivalent to

h 1; 2i D Z
S M

1 ^ s D!2 C 2/ C Z
M

1 ^ 2: 5)

From Theorem 1.3 and from the fact that the Poincaré pairings on M and S M
are perfect, we get the following corollary which was first proved by Alesker).

Corollary 1.4 ([7], Theorem 6.1.1). The Alesker–Poincaré pairing 4) is a perfect
pairing.

Some more operators on V1.M/ were introduced in [11]. For this, we suppose

that M is a Riemannian manifold. Then S M admits an induced metric, the Sasaki

metric [20].
The first operator is the derivation operator ƒ which was denoted by L in [11]).

The metric on S M provides a canonical choice of namely j.p;OE / WD
1

k k
for all p; OE / 2 S M. Let T be the Reeb vector field on S M i.e. T / D 1 and

LT D 0).
If the smooth valuation is represented by .!; / then ƒ is by definition the

valuation which is represented by LT C iT ; 0/.
Let us recall the definitions of the signature operator S and the Laplace operator

Let be the Hodge star acting on S M/. Let 2 V1.M/ be
represented by .!; / Then S is defined as the valuation which is represented by

D! C /;0/.
The Laplace operator is defined as WD 1/nS2.
Our second main theorem shows that these operators fit well intoAlesker’s theory.

In fact, they are formally self-adjoint with respect to the Alesker–Poincaré pairing.

Theorem 1.5. For valuations 1 2 V1.M/ and 2 2 V1c M/, the following
equations hold:

hƒ 1; 2i D h 1; ƒ 2i; 6)

hS 1; 2i D h 1; S 2i; 7)

h 1; 2i D h 1; 2i: 8)

We will apply these theorems in the study of the integral geometry of SU.2/. This
group acts on the quaternionic line H. In this setting, it is more natural to work with
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the spaceK.H/of convex sets instead of manifolds withcorners. By Proposition 2.6.
of [8], there is no loss of generality in doing so.

It was shown by Alesker [3] that the space of SU.2/-invariant and translation
invariant valuations on the quaternionic line H is of dimension 10. For each purely
complex number u of norm 1, let Iu be the complex structure given by multiplication
from the right with u and CP1

u the corresponding Grassmannian of complex lines
with its unique SU.2/-invariant Haar measure). Alesker defined a valuation Zu by

Zu.K/ WD Z
CP1

u
vol. L.K//dL; K 2 K.H/: 9)

He showed thatZi Zj Zk, ZiCjp2
ZiCjp2

ZiCjp2

together with Euler characteristic

thevolumevoland the intrinsic volumes vol1,vol3 formabasisofValSU.2/. Following
a suggestion of Fu, we will state the kinematic formula using a more symmetric
choice. Noting that Zu D Z u for all u 2 S2, the 12 vertices ui i D 1; : : : ;6 of
an icosahedron on S2 define 6 valuations Zui i D 1;: : : ; 6.

We endow SU.2/ with its Haar measure and the semidirect product SU.2/ D
SU.2/ Ë H with the product measure. Let volk denote the k-dimensional intrinsic
volume [15].

Theorem 1.6 Principal kinematic formula for SU.2/). Let K; L 2 K.H/. Then

Z
4

K \ gNL/dgN D K/ vol.L/ C vol1.K/vol3.L/
SU.2/ 3

C
17

4 6X
iD1

Zui K/Zui L/
3

4 X
1 i¤j 6

Zui K/Zuj L/

C
4

3
vol3.K/ vol1.L/ C vol.K/ L/:

This theorem impliesandgeneralizes the Poincaré formulas ofTasaki [19], which
contained an error in some constant) as we will explain in the last section.

1.0.1. Acknowledgements. I wish to thank Joseph Fu for illuminating discussions,
in particular for the beautiful idea of using the vertices of an icosahedron as basis

for ValSU.2/
2

2. The Alesker–Poincaré pairing in terms of forms

In order to prove Theorem 1.3 and Theorem 1.4, we will need three lemmas which
are of independent interest.
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Lemma2.1 Partitionof unity for valuations, [7], Proposition 6.2.1). LetM D Si Ui
be a locally finite open cover of M. Then there exist valuations i 2 V1.M/ such

that spt i Ui and

Xi
i D :

Proof. Let 1 D Pi fi a partition of unity subordinate to M D Si Ui We represent
by .!; / and let i be the valuation represented by fi ^ !; fi /

By inspecting the proof of Theorem 1.2 which uses a local variational argument),
one gets the following lemma.

Lemma 2.2. Let 2
n 1.S M/, 2 n.M/ and define the smooth valuation

by 1). Then

sptD! C
1 spt / and spt spt :

Lemma 2.3. Let 2 V1.M/ be compactly supported. Then can be represented
by a pair .!; / 2

n 1.S M/ n.M/ of compactly supported forms.

Proof. We suppose M is non-compact otherwise the statement is trivial). Let be
represented by a pair 0; 0/. Then D!0

C
0 is compactly supported. Since

Hnc S M/ D R, there exists a compactly supported form 2 nc M/ such that

OED! 0

C
0

D OE 2 Hn
c S M/:

In other words, there is a compactly supported form 2 Hn 1
c S M/ such that

d! D D! D D!0 C 0 By Theorem 1.2, the pair .!; / represents up
to a multiple of Since the valuation represented by .!; / and the valuation are

both compactly supported, whereas is not, they have to be the same.

Proof of Theorem 1.3. Note first that the right hand side of 3) is well defined: since

2 is compactly supported, the same holds true for D!2 C 2 and 2 by
Lemma 2.2.

Next, both sides of 3) are linear in 1 and 2. Using Lemma 2.1, we may
therefore assume that the supports of 1 and 2 are contained in the support of a

coordinate chart. Since theAlesker–Fu product, the Euler–Verdier involution and the
integration functional are natural with respect to diffeomorphisms, it suffices to prove
3) in the case where M D V is a real vector space of dimension n.

Let us first suppose that 1 and 2 are of the type 2). We thus have 1.K/ D
m1.KCA1/ and 2.K/ D m2.KCA2/ with smoothmeasuresm1; m2 and smooth
convex bodies A1; A2 with strictly convex boundary.
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The left hand side of 3) is given by

Z 1 2 D m1 m2. V / C A1 A2/

D Z
V

m1.. V C A1 A2/\V fxg/dm2.x/

D Z
V

m1.x A2 C A1/ dm2.x/

D Z
V

1.x A2/ dm2.x/

D Z
V

cnc.x A2/.!1/ dm2.x/ C Z
V

Z
x A2

1 dm2.x/:

10)

Let A 2 K.V / be smooth with strictly convex boundary. Its support function is
defined by

hA W V R;

7! sup

x2A
x/:

Note that hA is homogeneous of degree 1 and that h A. / D hA. /
Define the map GA W S V S V; x; OE / 7! x C d hA; OE / since hA is

homogeneous of degree 1, d hA 2 V D V only depends on OE GA is an
orientation preserving diffeomorphism of S V

It is easy to show ([10], [12]) that for X 2 K.V /
cnc.X C A/ D GA/ cnc.X/: 11)

We next compute that for all x; OE / 2 S V

GA B s.x; OE / D GA.x; OE / D x C d hA; OE / D x d h A; OE /
D s.x d h A; OE / D s B G 1

A.x; OE /:
12)

Let 2 2 n.V / be the form representing the measure m2. The first term in 10)
is equal to

Z
V

cnc.x A2/.!1/dm2.x/ D Z
V

cnc.fxg/.G A2 1/ dm2.x/

D Z
V

G A2 1/ ^ 2

D Z
S V

G A2 1 ^ 2

D Z
S V

1 ^ G 1
A2/ 2:

13)
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By 11) we have 1/nDs 2 C 1/n 2 D GA 2. Applying s to both
sides and using 12), we get

1/n D!2 C 2/ D s GA2 2 D G 1
A2/ 2:

Hence 13) equals 1/n
RS V 1 ^ D!2 C 2/, which is the first term in 3).

By Fubini’s theorem, the second term in 10) equals

Z Z 1 dm2.x/ D Z
V x A2 V

m2.y C A2/ 1.y/ D Z
V

2.fyg/ 1.y/:

For y 2 V we have s cnc.fyg/ D 1/n cnc.fyg/, since the antipodal map on

Sn 1 is orientation preserving precisely if n is even. Hence

2.fyg/ D 2.y/:

The second term in 10) thus equals
RV 1 ^ 2, which corresponds to the

second term in 3).
This finishes the proof in the case where 1 and 2 are of type 2). By linearityof

both sides, 3) holds true for linear combinations of such valuations. Given arbitrary

1 2 V1.M/ and 2 2 V1c M/, we find sequences j
1 2 V1.M/ and j2 2

V1c M/ such that j
1 1 and j

2 2 and such that j1 and j
2 are linear

combinations of valuations of type 2) compare [5] and [6]).
By definition of the topology on V1.M/ see Section 3.2 of [6]) and the open

mapping theorem, there are sequences j
1 ; j

1 / and j2 ; j2/ representing j
1

j
2

and converging to 1; 1/, 2; 2/ in the C1-topology. By what we have proved,

Z j j D 1/n Z j D!j j / Z j1 2 1 ^ 2 C 2 C 1 ^ j2
S M M

for all j Letting j tend to infinity, Equation 3) follows.

3. Self-adjointness of natural operators

Proof of Theorem 1.5. Note first the following equation:

h 1; 2i D 1/n
h 1; 2i: 14)

This equation is immediate from 5) and the fact that s W S M S M preserves

orientation if and only if n is even.

Let i be represented by i; i/. By Lemma 2.3 we may suppose that 2 and

2 are compactly supported.
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ƒ i is represented by i WD iT D!i C i /. Since D!i C i D ^ i, we
get

hƒ 1; 2i D 1/n Z
S M

1 ^ D!2 C 2/

D 1/n Z
S M

1 ^ ^ 2

D Z
S M

2 ^ D!1 C 1/

D 1/nC1 Z
S M

1 ^ D 2 Z
M

1 ^ 2

D h 1; ƒ 2i:

15)

Since D and s commute and since iT B s D s B iT it is easily checked that

ƒ B D B ƒ: 16)

Now 6) follows from 15) and 16).
Let us next prove 7) 8) is an immediate consequence).
By Lemma 2.3 we may suppose that 2 and 2 have compact support. Then

h 1; S 2i D 1/n Z 1 ^ D D!2 C 2/
S M

C Z
M

1 ^ D!2 C 2/

D Z
S M

D!1 C 1/ ^ D!2 C 2/

D Z
S M

D!1 C 1/ ^ D!2 C 2/

D Z
S M

1/ns D!1 C 1/ ^ s D!2 C 2/

D h S 1; 2i:

17)

Since s changes the orientation of S M by 1/n, we get s B D 1/n B s

on S V /. It follows that B S D 1/nS B Therefore 7) follows from 14)
and 17).

Alesker defined the space V 1.M/ of generalized valuations on M by

V 1.M/ WD V1c M/ ;

where the star means the topological dual. This space is endowed with the weak
topology. By the perfectness of the Alesker–Poincaré pairing, there is a natural dense

embedding V1.M/ V 1.M/.
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Corollary 3.1. Let M be a Riemannian manifold. Each of the operators ƒ;S;
acting on V1.M/ admits a unique continuous extension to V 1.M/.

Proof. Uniqueness of the extension is clear, since V1.M/ is dense in V 1.M/. We
let ƒ act on V 1 by ƒ / WD ƒ / By Theorem 1.5, this is consistent with the
embedding of V1.M/ into V 1.M/ and we are done. The cases of S and are
similar.

4. The translation invariant case

From now on, V will denote an oriented n-dimensional real vector space. We will
consider valuations on the space K.V / of compact convex sets i.e. convex
valuations).

A convex valuation on V is called translation invariant, if x C K/ D K/
for all K 2 K.V / and all x 2 V

A translation invariant convex valuation is said to be of degree k if tK/ D
tk K/ for t > 0 and K 2 K.V /. ByValk V / we denote the space of translation
invariant convex valuations of degree k. Avaluation is evenif K/ D K/ and
odd if K/ D K/, the corresponding spaces will be denoted by a superscript

C or
In [16] it is shown that the space of translation invariant valuations can be written

as a direct sum

Val.V / D nM
kD0

Valk.V /:

Each space Valk.V / splits further as Valk.V / D ValCk V / ° Val
k V /.

The spaces Val0.V / and Valn.V / are both 1-dimensional generated by and a

Lebesgue measure respectively). For 2 Val.V /, we denote by n its component
of degree n.

Let us prove the following version of Theorem 1.3 in the translation invariant
case.

Theorem 4.1. Let 1; 2 2 Valsm.V / be represented by translation invariant forms
1; 1/, 2; 2/ respectively. Then 1 2/n is represented by the n-form

1/n 1 ^ D!2 C 2// C 1 ^ 2 2
n V /:

Proof. The proof is similar to that of Theorem 1.3. Fix a Euclidean metric on V For

R > 0, let BR denote the ball of radius R, centered at the origin. Let us suppose that
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1.K/ D vol.K C A1/ and 2.K/ D vol.K C A2/ for all K 2 K.V /. Then

1 2.BR/ D vol2n. BR/ C A1 A2/

D Z
BR

vol.x A2 C A1/dx C o.Rn/

D Z
BR

1.x A2/ C o.Rn/

D Z
BR

cnc.x A2/.!1/dx C Z
BR

Z
x A2

1dx C o.Rn /:

The first term is given by

Z
BR

cnc.x A2/.!1/dx D Z
BR

G A2 1/dx C o.Rn/

D Z
BR S V /

G A2 1 ^ dx/ C o.Rn/

D Z
G A2 BR S V//

1 ^ G 1
A2/ dx2 C o.Rn/

D 1/n Z
BR S V /

1 ^ D!2 C 2/ C o.Rn/

D 1/n Z
BR

1 ^ D!2 C 2// C o.Rn/:

The second term yields

Z
BR

Z
x A2

1dx D Z
V

vol..y C A2/\BR/ 1.y/

D Z
BR

vol.y C A2/ 1.y/ C o.Rn/

D Z
BR

2.fyg/ 1.y/ C o.Rn/

D Z
BR

1 ^ 2 C o.Rn/:

Therefore we obtain

1 2/n D lim
R!1

1
Rn 1 2.BR/

D lim
R!1

1
Rn

Z
BR

1/n 1 ^ D!2 C 2// C 1 ^ 2:
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This finishes the proof of Theorem 4.1 in the case where 1 and 2 are of type

K 7! vol.KCA/. Using linearity of both sides, it also hold for linear combinationsof
such valuations. Since they aredense inVal.V / byAlesker’s solution of McMullen’s
conjecture [1]), Theorem 4.1 is true in general.

Let us next suppose that V is endowed with a Euclidean product. We can identify
Valn.V /withRbysending vol to1. We get asymmetric bilinear form calledAlesker
pairing)

Valsm V / Valsm V / R;
1; 2/ 7! h 1; 2i WD. 1 2/n:

Corollary 4.2. For valuations 1; 2 2 Valsm.V /, the following equations hold:

hƒ 1; 2i D h 1; ƒ 2i;
hS 1; 2i D h 1; S 2i;
h 1; 2i D h 1; 2i:

Proof. Analogous to the proof of Theorem 1.5.

5. Kinematic formulas and Poincaré formulas

5.1. Kinematic formulas. In this section, we suppose that G is a subgroup of O.V /
acting transitively on theunitsphere. ByaresultofAlesker[3], thespaceof translation
invariant and G-invariant valuations ValG is a finite-dimensional vector space.

Let 1; : : : ; N a basis of ValG. Suppose we have a kinematic formula

Z
xG

K \ gNL/dgN D
N

Xi;jD1

ci;j i.K/ j L/:

Here and in the following, G is endowed with its Haar measure and xG WD G Ë V
with the product measure.

Set

kG. / WD

N

Xi;jD1
ci;j i j 2 ValG ValG D Hom.ValG;ValG /:

The Alesker pairing induces a bijective map

PD 2 Hom.ValG; ValG /:
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Fu [13] showed that these two maps are inverse to each other:

kG. / D PD 1 : 18)

For further use, we give another interpretation of 18). Let G be as above. The
scalar producton thefinite-dimensional spaceValG induces a scalar product onValG
such that PD is an isometry.

Given K 2K.V /, let K 2 ValG be defined by

K. / D K/; 2 ValG :

Proposition 5.1 Principal kinematic formula). Let G be a subgroup of O.V / acting
transitively on the unit sphere. Then for K; L 2 K.V /

Z
xG

K \ gNL/ dgN D h K; Li:

Proof. Let 1; : : :; N be a basis of ValG. Set gij WD h i; j i, i; j D 1;: : : ; N Let
us denote by gij/i;jD1:::;N the inverse matrix. Then

Z
xG K\gNL/dgN DX

i;j
g ij i.K/ j L/DX

i;j
g ij K. i/ L. j/ Dh K; Li:

5.2. Klain functions. Let us suppose additionally that 1 2 G, which implies that
ValG ValC.

For 0 k n, the action of G on V induces an action on the Grassmannian

Grk.V /. We set Pk WD Grk.V /=G for the quotient space. Given u 2 Pk, the space

of k-planes contained in u admits a unique G-invariant probability measure and we
define Zu 2 ValG by

Zu.K/ WD Z
L2u

vol. LK/dL; K 2 K.V /:

Recall that the Klain function of an even, translation invariant valuation of
degree k on a Euclidean vector space V is the function Kl W Grk.V / R such that
the restriction of to L 2 Grk.V / is given by Kl L/ times the Lebesgue measure.

An even, translation invariant valuation is uniquely determined by its Klain function
[14]. If M is a compact k-dimensional submanifold possibly with boundaries or
corners), then

M/ D Z
M

Kl TpM/dp:

Alesker proved the existence of a duality operator or Fourier transform) F on
ValC;sm such that KlF D Kl B for all 2 ValC;sm. F is formally self-adjoint
with respect to the Alesker pairing.
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Proposition 5.2. Let u; v 2 Pk and L 2 v. Then

KlZu L/ D hFZu; Zvi: 19)

Proof. Immediate from Lemma 2.2. of [12].

Lemma5.3. Thereare finitely manyelementsu1; : :: ; uN such thatZui i D1; : :: ; N
is a basis of ValGk

Proof. Let 1; :: : ; N be a basis of ValG
k

Let mi be the push-forward of a Crofton
measure for i on Grk.V / under the projection Grk.V / Pk.

By G-invariance of i, we get

i.K/ D Z
Pk

Z
L2u

vol. LK/dLdmi u/:

Now, for sufficiently close approximations of the mi by discrete measures

P
ki
jD1

ci;j iui; with ui; Pk; ci;j j 2 j 2 R, the valuations Pj ci;jZui; form a basisj
of ValGk Hence fZui;j; i D 1;: : : ; N; j D 1; : : : ; kig is a finite generating set of

k
from which we can extract a finite basis.ValG

5.3. Poincaré formulas. Poincaré formulas for G are special cases of the principal
kinematic formula for G, when K and L are replaced by smooth compact submanifolds

M1 and M2 possibly with boundary) of complementary dimension note that

M1;M2 2 P.V /, so there is no problem in evaluating a valuation in M1 and M2).
Then the right hand side of the principal kinematic formula is the “average number”
of intersections of M1 and gNM2.

Proposition 5.4 General Poincaré formula). Let M1, M2 be smooth compact
submanifolds, possibly with boundaries, of complementary dimensions k and n k.
Then

Z
xG

#.M1 \ gNM2/dgN D Z
M1 M2

TpM1; TqM2/ dpdq

with

W Pk Pn k R;
u;v/ 7! hZu; Zvi:

Proof. Let u1; : :: ; uN be such that Zui i D 1; : : :; N is a basis of ValGk Let

v1; :: : ;vN be such that Zvj ; j D 1; : : : ;N is a basis of ValGn k note that the dimensions

of these two spaces agree by Theorem 1.2.2 in [2]). Setting gij WD hZui ; Zvj i
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and gij/ for the inverse matrix, the principal kinematic formula implies that for all

M1 and M2 as above

Z
xG

#.M1 \ gNM2/dgN DX
i;j

gij Zui M1/Zvj M2/

D Z
M1 M2 Xi;j

g i;j KlZui TpM1/ KlZvj TqM2/dpdq:

This shows that

u; v/ DX
i;j

g ij KlZui u/ KlZvj v/ D hZu; ZviI

where the last equation follows from 19) and the self-adjointness of F.

6. Kinematic formulas for SU.2/

We apply the results of the preceding section to the special case G D SU.2/ acting
on the quaternionic line

H D fx1 C x2i C x3j C x4k W x1; x2; x3; x4/ 2 R4
g:

Since this action is transitive on the unit sphere, ValSU.2/ is finite dimensional
and ValSU.2/

k is one-dimensional except for the case k D 2. The quotient space

P2 WD Gr2.H/=SU.2/ is the two-dimensional projective space RP 2
D S2=f 1g

([19]). Following Tasaki, we denote by 1.L/ W 2.L/ W 3.L// 2 RP2 the class

of L 2 Gr2.H/.
A canonical representative in the preimage of a W

b
W c/ 2 RP2 is given by the

2-plane spanned by 1 and ai C bj C ck.
If u D a; b; c/ 2 S2, then the planes in u are the complex lines for the complex

structure Iu which is defined by multiplication by u from the right on H. We will
therefore write CPu instead of u. Note that CPu D CP u.

The following SU.2/-invariant and translation invariant valuations of degree 2
were introduced by Alesker [3].

Definition 6.1. Given u 2 RP 2, set

Zu.K/ WD Z
CPu

vol. L.K//dL; K 2 K.H/:
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Proof of Theorem 1.6. From Lemma 5.3 we infer that there is a finite number of
points u1; : : : ; uN 2 RP2 such that Zui i D 1; : : : ; N form a basis of ValSU.2/

2
Alesker showed that N D 6 and that Zi Zj Zk, ZiCjp2

ZiCkp2
ZjCkp2

is such a basis.

Our aim is to compute the product hZu; Zvi for u; v 2 RP 2. We will achieve

it by first expressing each Zu as a smooth valuation represented by some 3-form

u 2 3.S H/ and then applying Theorem 4.1.
Since the metric induces a diffeomorphism between S H and SH, we may as

well workwith the latter space. The image of the conormal cycle of a compact convex
set K under this diffeomorphism is the normal cycle nc.K/.

Let us introduce several differential forms on SH, depending on the choice of the
complex structure Iu. We follow the notation of [17].

Let be 1-forms on SH which, at a point x;v/ 2 SH, equal

w/ D hv; d w/i; w2 T.x;v/SH;
u.w/ D hv; Iud w/i; w2 T.x;v/SH;
u.w/ D hv; Iud 2.w/i; w2 T.x;v/SH:

Note that is the canonical 1-form in particular independent of u), whereas u
and u depend on u.

Let be the pull-back of the symplectic form on H; Iu/ to SH, i.e.

u.w1; w2/ WD hd w1/; Iud w2/i; w1; w2 2 T.x;v/SH:

Claim. Zu is represented by the 3-form

u WD

1

8 u ^ d u C
1

4
u ^ u:

Since u is U.2/- and translation invariant and has bidegree .2; 1/ with respect

to the product decomposition SH D H S.H/), it represents some U.2/-invariant,
translation invariant valuation u of degree 2. Here U.2/ is the unitary group for the
complex structure Iu.

Now the space of valuations with these properties is of dimension 2 [2]. It is thus
enough to show that the valuation Zu and the valuation u agree on the unit ball B
as well as on a complex disk Du.

It is clear that Zu.B/ D 2 D It was shown by Fu compare Equation 37) in
[13],) that Zu.Du/ D 2

By [11], the derivation of a smooth translation invariant valuation on a
finitedimensional Euclidean vector space is given by

ƒ K/ D
d

dt tD0
K C tB/:
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It follows that, if is of degree k, then ƒ B/ D k B/.
It is easily checked that LT D LT D 0 and L2T D d so that

L2
T u D

1

2 ^ d :

Note that ^ d is twice the volume form on S3, hence ƒ2 u D 2 It follows
that

u.B/ D
1

2
ƒ2 u.B/ D :

The restriction of u to the normal cycle of the complex discDu clearly vanishes.

u is the length element of the fibers of
W

nc.Du/ Du which are circles),
whereas u is the pull-back of) thevolume formonDu. It follows that!u.Du/ D 2
The claim is proved.

Next, the Rumin operator is easily computed as

D!u D d u C
1

8 ^ u ^ u
1

8 ^ u D
1

2 ^ u ^ d u:

From Theorem 4.1 we infer that u v is represented by the 4-form

1
16 2 u ^ d u C 2 u ^ u/ ^ ^ v ^ d v/ 2

4 H/:

If u D a W b W c/ and v D Qa W
Qb W Qc/, then

u ^ d u C 2 u ^ u/ ^ ^ v ^ d v

D 2 a Qb Qab/
2

C a Qc Qac/
2

C b Qc
Qbc/2 C 2.a Qa C b Qb C c Qc/

2 d volSH

D 2.1 C a Qa C b Qb C c Qc/
2/d volSH :

It follows that

hZu;Zvi D
1
4

1 C a Qa C b Qb C c Qc/
2 : 20)

Let ui i D 1; : : : ;6 be the 12 vertices of an icosahedron I on S2. They induce

6 valuations Zui i D 1; : : : ; 6. Since the edge length a of I satisfies cos a D
p5
5

20) implies that

hZui ; Zuji D ´ 1
2; iD j;
3
10; i ¤ j:

21)

Theorem 1.6 follows easily from 21) and 18).
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The general Poincaré formula Proposition 5.4) implies the following corrected
version of the) Poincaré formula on the quaternionic line.

Corollary 6.2 Poincaré formula for SU.2/, [19]). Let M1; M2 H be compact
smooth 2-dimensional submanifolds. Then

Z #.M1 \ gNM2/dgN D
SU.2/

1

4
Z
M1 M2

.1 C A.TpM1; TqM2// dpdq

with

A.TpM1; TqM2/ D 1.TpM1/!1.TqM2/

C 2.TpM1/!2.TqM2/ C 3.TpM1/!3.TqM2//2:
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