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Volume growth, curvature decay, and critical metrics

Gang Tiaiv and Jeff Viaclovsky**

Abstract. We make some improvements to our previous results in [TV05a] and [TV05b], First,
we prove a version of our volume growth theorem which does not require any assumption on
the first Betti number. Second, we show that our local regularity theorem only requires a lower
volume growth assumption, not a full Sobolev constant bound. As an application of these results,
we can weaken the assumptions of several of our theorems in [TV05a] and [TV05b].

Mathematics Subject Classification (2000). Anti-self-dual metrics, ALE spaces, curvature
decay, «-regularity, orbifold compactness, volume growth.

Keywords. Primary 53C21 ; Secondary 58D27, 58E11.

1. Introduction

Riemannian spaces with quadratic curvature decay have been widely studied in the

literature, see for example [Abr85], [Abr87], [AG90], [BKN89], [Kas88], [Kas89],
[GPZ94], [Gro81], (Zhu941. All of these works assume that the curvature decay is

strictly better than quadratic in the sense that

for some <5 > 0, where r (x) d (p, x) is the distance to a basepoint p, or the weaker

assumption that

(meaning all of the sectional curvatures are bounded below accordingly), and the

function k(r satisfies

Rm 0(r -'+!9)_ as r > oo,; (1.1)

Rm > - k(r)
(1.2)

(1.3)

*The research of the first author was partially supported by NSF Grant DMS-0302744.
**The research of the second author was partially supported by NSF Grant DMS-0503506.
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Spaces satisfying such a curvature decay condition are said to have asymptotically
nonnegative curvature. We remark that by standard comparison theory, (1.2) and

(1.3) imply an upper volume growth estimate,

Vol(B(p.r)) < V0r",

for some constant V). Moreover, only a lower bound on the Ricci curvature is needed

for this upper volume growth estimate [Zhu94],
It has been understood that such a volume estimate is the core of extending

orbifold-compactness theorems for Einstein metrics to metrics satisfying more general

equations, such as anti-self-dual or harmonic curvature. To this end, in our
investigation of critical metrics in [TV05a], [TV05b], and in the work of |And05],
spaces arise with curvature decay as in (1.2), but the function k(r) only satisfies

k(r) —> 0 as r —> oo, and standard comparison arguments do not apply. In [TV05a]
we proved an upper volume growth estimate in this case, but our proof required hnite-
ness of the first Betti number to rule out the presence of so-called "bad" amiuli. In
this paper, we show that adding the condition (1.4) below, eliminates this pathology.
For M non-compact, Cs is dehned to be the best constant so that

11/11 % < C5||V/||L2,

for all / g C01(M) with compact support. Let Ric_ denote the negative part of the

Ricci tensor.

Theorem 1.1. Let (M,g) be a complete, noncompact, n-dimensional Riemannian

manifold with base point p. Assume that

Cs < oo,

and that

sup|Rmg| o{r~2).
Sir)

as r —f oo, where S(r denotes the sphere of radius r centered at p. If

j |Ric-|^Vg < A, (1.4)
JM

for some constant A g M, then (M, g) has finitely many ends, and there exists a

Constant C? (depending on g) so that

W(B(p,r» < C2r".

Furthermore, each end is ALE ofordert).
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We have another generalization of our previous results. Consider any system of
the type

ARic Rm*Ric, (1.5)

where the right hand side is shorthand notation for a linear combination of terms of the

form Aj ju Bji, where Am§ depends on the full curvature tensor, and Bp depends only
on the Ricci tensor. We call any metric satisfying a system of the form (1.5) a critical
metric. In [TV05a, Theorem 3.1], we proved an e-regularity theorem in dimension
four which depended on the Sobolev constant. Here we relax this condition and

require only a lower volume grow i l l assumption:

Theorem 1.2. Let (M, g) be a four-dimensional Riefnannian manifold. Assume that
(1.5) is satisfied, let r < diam(M)/2, Bip. r) be a geodesic ball around the point p,
and k > 0. If there exists a constant Vo > 0 so that

Vol(B(q,s)) > V0/

for all q Bip. r/2) and s < r/2, then there exist constants eo, Ca- (depending upon
Vo so that if

llRmllz.Vß(?,H) I / |Rm|2r/V|
1 J Btp.r)

then

i„A-r> I

Va \f lr>
11/2 Ca-êo

sup |V Rm| < -p-j: / |Rm| dVg < -p-j.
B(p,r/2) r2+k {JB{p,r) "

J rZ+k

Theorems 1.1 and 1.2 are the main results in this paper. A consequence is that we
can (i) remove the Betti number assumption from our volume growth theorem from
[TV05b, Theorem 1.2], Or (ii) we can relax the Sobolev constant assumption to only
an assumption on lower volume growth.

Recall that a metric g is called anti-self-dual if Wf 0, and self-dual if Wf 0.

As in [TV05b], we specialize to die class of

(a) self-dual or anti-self-dual metrics with constant scalar curvature,

(b) metrics with harmonic curvature (<5Rm 0),

(c) Kahler metrics with constant scalar curvature.

We have the following notion of local Sobolev constant. For p e M, and r > 0,

we dehne Cs(p. r) to be the best constant such that

ll/lll4<Cy(p,r)||V/||£2,
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for all / e C0,1 with compact support in Bip, r), and define

C$(r) sup CSip. r).
peM

Let b\(M) denote the first Betti number of M.

Theorem 1.3. Let (M, g) be a metric of class (a), (b), or (c) on a smooth, complete
four-dimensional manifold M satisfying

f \Rmg\2dVg<A. (1.6)
JM

for some constant A.
Assume that

Vol(B(q, s)) > %s4 for all q G M, and s < diam(M)/2,
h I .17 -, />',.

where Vq, B\ are constants. Then there exists a constant Vu depending only upon
Vq, A, B\, such that Vol(B(p, r < Vi r*, for all p g M and r > 0.

Assume instead that

Cs{r) < Ci, for r < diam(M)/2,

where C\ is a constant. Then there exists a constant V%, depending only upon Ci, A,
such thai Vol(/A/), r < • r4, for all p g M and r > 0.

We have the following improvement of our compactness theorem [TV05b, Theorem

1.3] (we refer to that work for the dehnition of a multi-fold):

Theorem 1.4. Let {Mi, gf) be a sequence ofunit-volume metrics of class (a), (b) or
(c) on smooth, closedfour-dimensional manifolds Mi satisfying

I \BmK\2dVSi < A, (1.7)
'M:

where A is a constant.
Assume that

Vol(B(q,s)) > Vo-y4. for all q g M. and s < diam(M)/2, (1.8)

M,) < BU

where Ci, A, B\ are constants. Then a subsequence converges to a limit metric

space (Mqq. goo) which is a compact, connected, critical Riemannian multi-fold.
The convergence is smooth awayfrom a finite singular set.
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Ifwe assume instead that

CSgi (r) < Ci, for r < diam(M)/2,

then the same conclusion is true.

Remark. The first Betti number assumption from [TV05a, Theorem 1.1] (which
allows non-compact limits) can similarly be removed, and the Sobolev constant
assumption relaxed to lower volume growth.

Ulis type of uniform volume estimate, compactness theorem, and related
bubbling phenomena follows in a standard fashion from an e-regularity theorem and

a volume growth estimate of the type in Theorem 1.1 and [TV05a, Theorem LT],
This passage was first carried out for Einstein metrics [And89], [BKN89], [Tia90],
[AC91], [Ban90a], [Ban90b], [Nak92] and extends to more general cases with careful

attention to the number of components of geodesic spheres [TV05b], |And05],
[CQY07], In Section 4, we discuss the main technical details of this step under the
weaker assumptions in Theorem 1.3 and 1.4.

Let Rg denote the scalar curvature of the metric g. Using the above in case (a),
we note the following special corollary.

Corollary 1.5. Let (M, gi) be a sequence of unit volume constant scalar cunrnture
anti-self-dual metrics on a fixed closed 4-manifold M. Assume that

Iff*! < c,
Voh /to/, vu > TV4, for all q e M. and s < diam(M)/2,

where C, Vq are constants. Then a subsequence converges to a limit space (M00, g^)
which is a compact, connected, anti-self-dual Riemannian multi-fold.

Acknowledgements. The authors would like to thank Gilles Carron, John Lott and

Joao Santos for enlightening discussions. We also thank Xiuxiong Chen, Edward Fan
and Brian Weber for insightful questions and comments on our previous work.

2. Proof of Theorem 1.1

The space of L2-harmonic T-forms ,Kk(M) is defined to be those o> e Ak(T*M)
satisfying Aw 0, and w e L2(M), It is well-known that Mk{M) ~ Hk2^(M),

the reduced L2-cohomology, see [Car99]. We next quote the following hniteness
theorem.
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Theorem 2.1 (Carron, [Car98], [Car99]>. Let (M, g) be a complete Riemannian
manifold satisfying for p > 2 the Sobolev inequality

pp(M)
'

< f \du\Hx)dVgt for all u e Cj*(M). (2.1)
\JM / JM

If the negative part of the Ricci satisfies

j Rie ; -\/V, < x. (2.2)
JM

then isfinite dimensional. If thefull Riemannian tensor curvature satisfies

f fym\p/2dVg < oo, (2.3)
Ja

then Mk(Mj isfinite dimensionalfor each 1 < I < n.

Remark. For convenience of the reader, we give an indication of the proof in [Car99].
A crucial estimate is that the Sobolev constant bound yields an estimate on the heat

kernel: there exists a constant C such that for all % g M, and any t •- 0,

/.(/.,v..V! < Ct~n/2.

It is then shown that ,Kk(M) is finite dimensional, using the Cwickel-Lieb-Rosen-
bljum estimate adapted to the Riemannian setting. Similar results were also obtained
in [BB90]. The Weitzenbock formula for a 1-form is

V*V Ah +Ric,

so for the case of harmonic 1-forms, only the Ricci assumption (2.2) is necessary. For
k > 1, the Weitzenbock formula depends upon the full curvature tensor, which is why
the full curvature assumption (2.3) is required. We note that this method also gives
an explicit estimate on the dimension of Mk(M) in terms of the Sobolev constant

p.p(M), and the Ln/1 curvature integral.

We recall a definition.

Definition 2.2. We say a component Ao(n, n of an annulus A(n, [q e M j

r\ < dip. q) < ry} is bad if S'(ri) n Ao(ri, rj) has more than one component, where

S(r\) is the sphere of radius r\ centered at p.

For an annulus Ao(ri, rf), we call a component of Sir\ n Ao(ri,r%) an inner
sphere. Note that this may have several components - indeed, this is one of the main
subtleties in proving the volume growth estimate in Theorem 1.1.
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Theorem 2.3. Under the assumption in Theorem 1.1, there exists a constant Nq

(depending upon Cs and A) such that if A\, An is a collection of disjoint
connected bad annuli, then N < Nq.

Proof. From the assumptions in Theorem 1.1, the estimate (2.1 is satisfied for p n,
therefore Theorem 2.1 says that ,K1 is finite dimensional. Letting Hl(M) and //,' (M)
denote the first cohomology and first cohomology with compact support, respectively,
this implies that

Image(Hl(M) -* Hl(M)) (2.4)

has finite dimension, since the space in (2.4) injects into 3Î1 (see [And88]). The
rest of the argument just uses the hniteness of (2.4). Let A; A(r,-, y Without
loss of generality, let us assume that the sequence of radii y is non-decreasing.
Since A; is bad, the inner sphere S (ri) D A; has Ni » 1 components, call them

Gjj, j I..... Ni. Take any two components, say (Su and (?;,%, and let pij be

any point of Gij. For fixed i, let y,'.2.i(0 be a curve in A; connecting pu with pu-
We can always find such a curve since, by assumption, A; is connected. We can also

find a curve o".i.2U » connecting p^i with pu» with image in Bip. ri). Joining these

curves, we find a closed loop ff y;,2,i#«u,2 based at p,u
Next, we find a function J) defined on A| such that fi is supported in a

neighborhood of C|,i, with f 1 on smaller neighborhood of e(-i, and f\ 0 in a

neighborhood of all other components Gj j. Then the 1-form cy df\ clearly has an
extension to a smooth 1-form on M, which is closed (but not exact), and is supported
on A,-. We claim that

f äj I. (2.5)
Jßi

To see this, since cy is supported on A;,

f " / a; f df f(pui) - f(pu2;) 1.
Jßi Jyt,2.1Ü Jyi.2.iG)

Furthermore,

ctj =0, i < j.

Tliis is true since we have assumed the annuli are indexed by increasing radius, the

ctj forms are supported either on a different component, or on an annulus which is

further out. We have shown that the at dehne non-zero independent cohomology
classes in I mage (V/,1 (M) —> H] (M)), and we therefore have

N0 < dim {Imagcj//,1 (M) -* Hl(M))).

L
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Remark. We thank Gilles Carron for providing the above argument, which was
much simpler than our original proof. Note also that the hniteness of the dimension
of (2.4) will be automatically satisfied if either Hl(M), //,' (M), or ,Kl(M) is finite
dimensional.

We quote the following theorem from our previous work.

Theorem 2.4 ([TV05b, Theorem 5.2]). Let (M, g) be a complete, non-compact,
n-dimensional Riemannian orbifold (with finitely many singular points) with base

point p. Assume that there exists a constant C\ > 0 so that

where S(r) denotes the sphere of radius r centered at p. If (M,g) contains only
finitelymany disjoint bad annuli, then (M, g) hasfinitely many ends, and there exists

a constant C2 so that

Vol(B(p,r j) < C2r",

Furthermore, each end is ALE of order 0.

Theorem 1.1 follows from the above, since we have shown there are only finitely
many bad annuli, and rioting that the lower volume growth estimate is implied by the
Sobolev constant bound (see [TV05a, Lemma 6.1]). Note also that there is an explicit
bound on the number of ends in terms of C$ and A, see [Car98, Theorem 3.3].

Theorem 2.5. Theorem 1.1 is valid if(M, g) is assumed to be a smooth orbifold with
finitely many singular points.

Proof. It can be verified that Carron's arguments are valid for smooth orbifolds, and

since Theorem 2.4 is also valid for orbifolds, the proof is identical to the smooth

case. Alternatively, instead of using Carron's result for orbifolds, one can argue,
albeit non-effectively, as follows. Take a smoothing of (M, g) by cutting out a small
ball about each orbifold singularity and gluing in any smooth metric. This can be

done because each boundary S3/ T certainly bounds some smooth manifold. We now
have a smooth manifold (M, g) which is isometric to (M, g) outside of a large ball
B(p, R). The manifold (M, g) has the same asymptotic behaviour as the original
(M, g), so all of the assumptions of Theorem 1.1 are satisfied by (M, g). Applying
Theorem 1.1, we obtain an upper volume estimate for balls in (M. g), which clearly
implies an upper volume estimate for the original (M, g), since the asymptotics are
the same.

Vol />'i </. x i > Cis",

for any q g M, and all s > 0. Assume furthermore that as r -> oo,

(2.6)

sup|Rmg| o(r 2),
Mr)

(2.7)
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3. Sobolev constant and local regularity

Recall from the introduction that we have the following notion of local Sobolev
constant. For p g M, and r > 0, we dehne Cs(p. r) to be the best constant such that

Wfilß <Cs(p,r)\\Vf\\L2,

for all / e C0,1 with compact support in B(p, r}, Clearly

Cs(p, r) is an increasing function of r,

and

lim Cs(p, r) CE, (3.1)
r^O

where CE is the best constant for the Euclidean Sobolev inequality.

Proposition 3.1. Assume that (1.5) is satisfied, and let B(po, 2r) be a geodesic ball
around the point po. Assume there exists a constant Vq > 0 so that

Vol(B(q,s)) >V0s4 (3.2)

for all q G B(pq, r), and s <r.
Then there exists a constant eo (depending upon Vq) so that if

!!RmllL3(ßto.2r)) { f |Rm|2^
I ''•' / Al ¬

then

Cs(P0. rf2) < CV~l/4,

and C does not depend on Vq.

Remark. We conjecture that for (1.5), eo can moreover be taken independent of Vo

and assumption (3.2) is not necessary. Ulis was recently proved for Einstein metrics

by Cheeger-Tian [CT06]. In fact, in [CT06, Section 11] this was already conjectured
to hold for anti-self-dual metrics and Kahler metrics with constant scalar curvature.

Proof. Without loss of generality, rescale so that r 1. The proof goes by
contradiction. Assume we have a sequence of critical metrics gi, i i oo, and a

sequence e, 0 as i He QO, with

!!Rmllz.3(B(p0j2)) - s»>
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and that

Cs(Po, 1/2) > CV~l/4

(we will choose C later).
We hrst choose a "nice" ball, one for which the Sobolev constant is controlled in

the ball, and also for nearby points. The following lemma is for a fixed metric.

Lemma 3.2. There exist a point p00 g B(p, 1) and a radius 0 < roo < 1/2 such

that Cs{poo, roo) > CV0~1/4, and Cs(p, r00/2) < CVq
1/4 for all p G Bip^, '"œ)-

Proof From assumption, wehaveCyi+o, 1/2) » CVq~1/4. If f'v(p. 1/4) < <"V'(j
1 1

for all p g B(po, 1/2), tlien let B B(po, 1/2). Otherwise, there exists a point

Pi g IHpo- 1/2) with Cs(p\- 1/4) > CV~l/4. If (\<ip. 1/8) < ('V(j
1 4. for

all p g B(px, 1/4), then we let B B(pi, 1/4). We continue inductively,
assume we have chosen pj-1 with pi-\ g B{p\-i, 2~!+1) and (f\p |.2 :i >
CVq~1/4. If Cs(p, 2~l) < CVq

1/4 for all p G IT p- |.2 then we stop, and

let B B(pi_i,2~!). Otherwise, there exists a point p\ g /hp- |.2 i and

Cs(Pi,2-i-l) > CV~1'4.

We claim this procedure must stop in finitely many steps. We have

i — 1

d(po. Pi) < d(po, p\ + y^djpi, pi+i)
j=1

i — 1

< 1/2 + V2"7'"1
1=1

< 1/2 + 1/2 1.

The sequence of points {+,:} are therefore all contained in the unit ball Bip, 1). If the

process did not stop, then there would exists a limit point q. Our hrst restriction on C is
— 1/4that CV0 • But from the choices, we would clearly have lim, Csiq ,r)>

Cp, which contradicts (3.1).

Now we apply the lemma to each metric g;, to find points p\ g Bip, 1) (ball in
the gi metric) and r; < 1 /2, with Csipi, n > > C Vq~1/4, and Csip, r(;/2) < C Vq~1/4

for all p G B(pi, r, (Sobolev constant with respect to the g,: metric).
Now we rescale to make r\ unit size, that is, dehne g; r; !g;. and consider the

sequence of balls B(pi, 2). By scale invariance, we have

11®®1 U #pt»,38 - e''
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By our previous «-regularity theorem [TV05a, Theorem 3.1], the curvature and

all of its derivatives are uniformly bounded in B(pf, 3/2)

IVA'Rm| < Cm,

— 1/4where Q depends upon k and CV0 .Since«,: -> 0, we use the theorem of Cheeger-
Gromov to extract a flat limit space, B(p00, 3/2), with smootlr convergence to the

limit. From the assumption Vol(B(p, r)) > Vor", and since the limit space is flat,
— 1/4

we therefore get a bound on the Sobolev constant of the limit space, C$ <Ci V0

Choosing C > C.\, we arrive at a contradiction.

Theorem 1.2 then follows from Proposition 3.1 and [TV05a, Theorem 3.1],

4. Main volume estimate

In this section, we discuss the proof of Theorems 1.3 and 1.4, and Corollary 1.5. We

first prove Theorem 1.3.

Proof of Theorem 1.3. Hie proof is based on the argument from [TV05b], with some
modifications. First, let us assume that the volume growth estimate from Theorem 1.3

holds for r <ro, where ro is some fixed scale. That is, let us assume that

Voh </,. ri) < Vr4 (4.1)

for all p G Mj, and all r < ro.
From the «-regularity Theorem 1.2, (Mj. gj, pj converges to a limiting multi-fold

(Moo, goo, Poo) for some subsequence {/} c {*'}, with finitely many C°-multi-fold
singular points (recall that a C°-multi-fold point means that for each cone at a singular
point, die metric has a continuous extension to the universal cover of the punctured
cone). The argument for this is the same as in [TV05b].

Proposition 4.1. The singular points are smooth orbifold points. That is, if x is a

singular point, then for some 8 > 0, the universal cover of B{x, 8) \ {.r} is diffeo-
morphic to a punctured ball B4 \ {0} in R4, and the lift of g, after diffeomorphism,
extends to a smooth critical metric g on B4.

Proof. In the case we assume a bound on the Sobolev constant (but no Betti number
bound), this follows directly from [TV05b, Theorem 6.4], In the case where we only
assume a lower volume growth bound, we claim that for any singular point p, there
exists a constant Cs so that

llM!!z,4(B(p,ç)) - 11 G ö;1 IB p. i H.
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Indeed, in a neighborhood of a singular point, a C°-orbifold is just a C°-perturbation
of a flat cone, so clearly it satisfies a Sobolev inequality. The result then follows again
directly from [TV05b, Theorem 6.4],

Proposition 4.2. If (4.1) is satisfied, and (My, gj, pß converges to a limiting multifold

(Moo, goo, poo), as j —> oo, then there is a bound on the number of cones at a

singular point of convergence, depending only upon A, % and B\ in the first case,
and depending only upon A and ('s (r) in the second case. The bound does not depend

upon the constant V in (4.1).

Proof. We consider the first case. At any limiting multi-fold point pfa# for S > 0

small, we look at the balls Uj Bf//, % c Mj where p- —> pß as j —> oo. These

are manifolds with boundary components spherical space forms, with the metrics

arbitrarily close to the limiting multi-fold cone metric. We apply the Gauss-Bonnet
Theorem to conclude

where Rm * Rm is a quadratic curvature expression, the second sum is over the

boundary components, and Tg denotes the orbifold group for each cone. Note the
final term is an approximation of the boundary integral, with vanishing error term as
<5 —> 0. In terms of Betti numbers,

1 - bi(Uj) + b2(Uj) - hul'p ~ f Rm * Rm + (4.2)
Juj Y|Jàl

We write Mj Uj U Vj, where

UJnVJ~l
k

The Mayer-Vietoris sequence for Uj and Vj is

o H2(Uj n Vj) > ihjUj) © Up Vj) > ihiMj) > H\(Uj n Vj) o,

which gives bziPiI + ItClfl-
Using (4.2), we can estimate

< 1 + b2(Uj) + C A < 1 + IniMj) + C • A.
k

' A''

Applying the Gauss-Boimet formula to the oriented manifold My,

2 — 2b\(Mj) + bz(Mj) I Rm * Rm,
JMj
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yields the estimate

MMfl < c A + 2hI My i - 2,

so we have

1

> < 2C -A + 2ßi - 1.

r|r*' ~

The lower volume growth estimate (1.8) clearly implies that the orders of the orbifold
groups are bounded strictly from below, so the proposition follows in this case.

hi the second case, we use Carron's bound on the number of ends A' of a complete
space X [Car98, Theorem 0.4]

which, as mentioned above, is also valid for smooth orbifolds. Since we have a volume

growth bound (4.1) we can perform a standard bubbling analysis. This analysis was
carried out for Einstein metrics in [Ban90a], [Ban90b], see also [Nak92] for a nice

description of this bubbling process. Hie same method works in our case, with a few
modifications.

We recall the main steps of the bubbling analysis. Let S denote the singular
set of convergence. Note that in contrast to the Einstein case, a point p g S may
actually be a smooth point of the limit. For 0 < r\ < r%, we let D{r\,r%) denote

B(p, f2) \ B(p, n L Given a singular point x 1 S, take a sequence xj g (Mj, gj)
such that limy xj x and B (xj, 8 converges to B (s, 8) for all <5 >0. We choose

a radius rm sufficiently small and the sequence xj to satisfy

n s i + c c:$ [ |Ric_12dx I r • r.v • a. (4.3)

sup Rm.,,12

ai.»/#«!
\Rgj\2(xi) 00 asi oo,

and

where bo is the constant in the «-regularity Theorem 1.2.

We next choose ro(j) so that

and again Dj(ro, r-^) B(xj, r00) \ B(Xj, ro). An important note, which differs
from the Einstein case, the annulus D(ro, j may have several components.
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Since the curvature is concentrating at x, ro(j') -> 0 as j -> oo, the rescaled

sequence (Mj, ns&ffT 8Jk 'las a subsequence which converges to a complete,
non-compact multi-fold with linitely many singular points, which we denote by

there are no singular points outside of B(x, 1).
On the noncompact ends, since we are assuming an upper volume growth estimate,

the proof of [TV05a, Theorem 1.3] allows us to conclude that the metric is ALE of
order r for any r <: 2. As in [Ban90a, Proposition 4], we conclude that the neck

regions (for large j will be arbitrarily close to a portion of a flat cones M4/ F, possibly
several cones if has several ends (again in contrast with the Einstein case). Hie
convergence at a singular point xq is that the ALE multi-fold Mo0jl is bubbling off,
or scaled down to a point in the limit, with each end of Mx,; corresponding exactly
to a cone at a multi-fold point of the limit (Mx. goo)- An important fact is that the
fundamental group of an end and the group of the orbifold cone onto which the end is

glued must be isomorphic (together with their actions on IE4), this also follows from
the proof in [Ban90a], see also [Nak92, Theorem 2.5]. In particular, the number of
ends of Mo^q is the same as the number of components of .')/>'ix; r^).

To further analyze the degeneration at the singular points, we look at the multifold

M0o.i'j with singular set Si If Sj is empty, then we can stop, as the number of
cones must be bounded. If not, we do the same process as above for each singular
point of Moo,?!, and obtain ALE multi-folds

each of which are just limits of re-scalings of the original sequence around the

appropriate basepoints. If has singularities, then we repeat the procedure.
Iflis process must terminate in finite steps, since in this construction, each singularity
takes at least so of curvature: the L2 -curvature bound (1.6) clearly implies the number
of steps in the procedure is bounded by the number b A/so. As pointed out in
[Ban90b], there could be some overlap if any singular point lies on the boundary of
Iii I at some stage in the above construction. But there can only be finitely many,
and then there must also be a singular point in the interior of ß(l), so we still take

away at least sq of curvature at each step.
Note that in each step of the bubbling process, each end of the multi-fold obtained

in the /oh step will be glued to one of the cones at a multi-fold singular point of the

(k — 1 )st step, along a neck region which is close to a portion of a flat cone. Again,

Moojv 1 < h < #{S}.

Note that by assumption, Mooj, has bounded Sobolev constant. Since

|g>
1 ' À ' {A ].



Vol. 83 (2008) Volume growth, curvature decay, and critical metrics 903

we use the fact that the fundamental group of an end and the group of the orbifold
cone onto which the end is glued must be isomorphic (with isomorphic actions on
®4), Consequently, the bound N on the number of ends (4.3) and the bound b on
the number of steps in the process, together imply that the number of cones at any
singular point must be bounded by Nb.

Remark. As was discussed in [TV05b, page 369 ], in the Kahler case only irreducible
singular points can occur in limit. We remark that this still holds under the weaker

assumptions in this paper. That is, in the Kahler case there are never multiple cones
at a singular point of convergence.

Remark. Hie above proposition was proved using an alternative method in [TV05b,
Proposition 7.2], However, that argument required both a Sobolev constant and a first
Betti number bound.

Next, we have

Proposition 4.3. Let (M, g) be a smooth multi-fold withfinitely many singularpoints
and g a critical metric. Assume that the number of singular points is uniformly
bounded by the number N\, that the number ofcones at any singularpoint is uniformly
bounded by the number Ah, and that there exists a constant Vo > 0 so that

Vol(B(q,s)) > Vo*4

for all q G B{p, 2), and s <2. If

HRmllL?tB0e.2)) j / |Rm|2<7Vg

then there exists a constant Aq such that

Vol(B(p, 1)) < Ao,

where Aq depends only upon Ah, Ah and Vq.

Proof. If (M, g) is smooth, then by Theorem 1.2,

1

sup Ihn' < -Ceo- (4.4)
Bip, l) 4

By Bishop's volume comparison theorem, we must have Vol (Bip, 1)) < A', where
A' depends only lower volume growth constant Vo (since Bp only depends on Vo).

In the case that (M, g) is a smooth orbifold, we claim that the e-regularity theorem
still holds in this setting. This is because the argument in [TV05a, Theorem 3.1 ] uses
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integration by parts. One then performs a similar argument, by cutting out small balls
of radius S around the singular points and verifying that the resulting boundary terms
vanish as 5 —> 0 (note that it is crucial that the orbifold points be smooth for this to
be valid). Furthermore, Proposition 3.1 is remains valid for a smooth orbifold with a

bounded number of singular points. The details, which we omit, are straightforward.
Consequently, the estimate (4.4) holds. Next, Bishop's volume comparison theorem
remains valid for smooth orbifolds (see for example [Bor93]), with the same constant
(or better) as in the smooth case. So for an orbifold (no multiple cone points), we
still obtain

Vol(B(p, fjf < A'.

In the more general situation of a multi-fold, since there are at most N) cones at each

of the Ni singular points, clearly we obtain the estimate

Vol(B(p, 1)) < NiN2A' A0.

We also note the following fact, for any metric,

lim Vol(B{p, r i)r
1

#4,,
r^O

where 004 is the volume ratio of the Euclidean metric on M4. Clearly, Ao > «4.
For any metric (M, g), dehne the maximal volume ratio as

Volt /.'(.v. r))
MV(g) max —^

i6M,r#+ r4

If the theorem is not true, then there exists a sequence of critical manifolds (Mj, g,-),

with M V(jg J -HK 00, that is, there exist points x; G Mi, and t, G M+ so that

Vol /h .v.-. /•• • /.- > X. (4.5)

as i 00. We choose a subsequence (which for simplicity we continue to denote

by the index i and radii r; so that

2 • Ao Vol(5(x,:, r,;)) • r~"' max Vol(5(x;, r)) • r~4,
r<n

We furthermore assume that x, is chosen so that r, is minimal, that is, the smallest
radius for which there exists some p G M; such that Vol(5g (p, r)) < 2Aor4, for all

r < n.
First let us assume that r(; has a subsequence converging to zero. For this

subsequence (which we continue to index by i), we consider the rescaled metric Jg r~2g{,
so that /C, i.v. r,) /f. s.v;. 1). From the choice of x, and r,-, the metrics g; have

bounded volume ratio, in all balls of unit size.
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From the argument above, some subsequence converges on compact subsets to
a complete length space (M^ g<x>> Pm) with finitely many point singularities. The

limit could either be compact or non-compact. In either case, the arguments above

imply that the limit is a Riemannian multi-fold.

Claim 4.4. The conclusions of Theorem 1.1 holdfor the limit (Iw, gœ, pc

Proof. In the case that is compact the claim is trivial. For M00 non-compact,
the remarks at the end of [TV05a, Section 3] shows that assumption (2.7) is satisfied.

Also, from [TV05a, Lemma 6.1], the Sobolev constant bound implies a lower volume

growth bound (this is also valid for orbifolds), so (2.6) is satisfied in both cases.

If we make the assumption on b\(M, (but no Sobolev constant assumption), then
the proof is the same as in our previous work [TV05b, Claim7.1]: since h y M; < bo,
the limit must have finitely many bad annuli. The finiteness of ends and upper volume

growth estimate then follow from Theorem 2.4. In (lie case where we assume the

Sobolev constant bound (but no b\ bound), the result is contained in Theorem 2.5.

From Claim 4.4, we have that has only finitely many ends, and that there
exists a constant A i > 2Ao so that

YoKBgJpoo, r)) < Air4, for all r > 0. (4.6)

If Moo is compact, then clearly the estimate (4.6) is valid for some constant A i > 2Ao,
since the limit has finite diameter and volume, and the estimate holds for r < 1.

The inequality

[ Rim zä% > r(i. (4.7)
JBgj(Xi,2ri)

must hold; otherwise, as remarked above, we would have Yol(Bgi r, < Aor4,
which violates Proposition 4.3.

If tlie n are bounded away from zero then there exists a radius t so that

Vol(Bgi(p, r)) < 2Aor4, for all r < t, p e M;.

We repeat the argument from the first case, but without any rescaling. Since the

maximal volume ratio is bounded on small scales, we can extract an multi-fold limit.
The limit can either be compact or non-compact, but the inequality (4.6) will also
be satisfied for some Ai, Following the same argument, we find a sequence of balls

satisfying (4.7).
We next return to the (sub)sequence M;, gi) and extract another subsequence so

that

2600 • Ai Vol(5(x;, rf)> • (r^~4 max Vol(B(xft, r)) r~4. (4.8)
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Again, we assume that x- is chosen so that r'. is minimal, that is, the smallest radius
for which there exists some p G M) such that Vol(Bg;(p, r j) < 2600Air4, for all

r < rj. Clearly, r(; < r..
Arguing as above, if r' —> 0 as i —> oo, tlien we repeat the rescaled limit

construction, but now with scaled metric jj (r-)~2gi, and basepoint x-. We find a

limiting multi-fold (M!^. g^, and a constant Ai > 2600Ai so that

Voh/C ; r)) < A 2i~
' for all r > 0.

For the same reason as above, we must have

I IRniyl^V/ > so-
JBgj&i,2rp

If r. is bounded below, we argue similarly, but without any rescaling.
We next consider the ratio r|/r;. There are 2 possible cases.
Case (i): there exists a subsequence (which we continue to index with i satisfying

r' < Cri for some constant C.
Case (ii):

r[
lim — oo.
i^oo rj

In Case (i) we proceed as follows: We claim that for i sufficiently large, the balls

B(xi, 2ri) (from the first subsequence) and B(xf, 2rf) (from the second) must be

disjoint because of the choice in (4.8). To see this, if B(.v,:, 2r, n B(x[, 2r[) ^ 0,
then Bipc- 2rp c Bit;, 6rf). Then (4.6) and (4.8) yield

2600AIW:')1 Vol(B(x{, rf$ < Vo1(5(.t/, 2r/))

< Voli />'i.v;. 6/o') < 2Ai(6r/)4 2592Ai(r/)4,

which is a contradiction (note the last inequality is true for i sufficiently large since

(4.6) holds for the limit, which is valid only in Case (i)).
In Case (ii) we argue as follows. If the balls B u;, 2r; (from the hrst subsequence)

and B(x'r 2r') (from the second) are disjoint for all i sufficiently large, tlien we
proceed to the next step. Otherwise, we look again at the scaling so that r- 1 :

gi (r[)~2gi, and basepoint x-. Then in this rescaled metric,

Voli ffi.v;. In 2600A i.

As above, we have a limiting multi-fold (M^, gj^,, p'^), satisfying

VolI n 2600Ai.
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Proposition 4.2 implies the number of cones at a multi-fold point is a priori bounded,
so from Proposition 4.3, we conclude that

There is now a singular point of convergence corresponding to the balls 5 r, in
the first subsequence. But since we are in Case (ii), in the g- metric, these balls must
limit to a point in The only possibility is that the original sequence satisfied

for all I sufficiently large.
We repeat the above procedure, considering possible Cases (i) and (ii) at each

step. At the Ath step, we can always account for at least k • £o of L2-curvature. The

process must terminate in finitely many steps from the bound |[Bm? fljp < A. This

Remark. In the proof of [TV05b, Theorem 1.2], we neglected to consider the possibility

of Case (ii), the above fixes this minor oversight. Another point is that Propositions

4.2 and 4.3 depend crucially on the limiting multi-folds being smooth, which
requires the removable singularity result [TV05b, Theorem 6.4]. It will be interesting
to find a valid proof not using the removable singularity theorem. Furthermore, it has

been proposed long ago that the upper volume growth estimate in Theorem 1.4 should
hold without requiring either a Betti number assumption or a Sobolev constant bound

(only assuming a lower volume growth bound). Flowever, there is no complete proof
of this yet. An extension of the existing techniques will require a highly nontrivial
analysis of the connectedness properties of geodesic spheres and annuli. This paper
overcomes the difficulty in several important cases, but we emphasize that foe result
is still not known in full generality.

Theorem 1.4 is proved in a similar manner as foe corresponding theorem in
[TV05b], using Theorems 1.1, 1.2, and the volume growth estimate in Theorem 1.3.

We next prove Corollary 1.5, which is a simple consequence of foe Gauss-Bonnet
Theorem and Flirzebruch Signature Theorem in dimension four (see [Bes87]):

contradicts (4.5), which finishes foe proof.

8n2x(M)
6 JM 2 JM JM
-A R2~A IRicI2 + / |W|2,
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In the anti-self-dual case, W+ m 0, so we have

8ir2x(M) -l R1
'

; |Rie|2 + / |W"|2,8n2x(M)
6 Jm 2 JM J.\i

12tt2T(M) — I \W~f. (4.9)
Jm

Add these equations together to obtain

6 2 JM

since the scalar curvature is constant, and Vol 1. The topology of the manifold M
is fixed, and the scalar curvature is uniformly bounded, so we find that j J'M |Ric|2 is

bounded. Also (4.9) yields a bound on jM \ W~ |2, so we have the estimate

for some constant A. Therefore the assumptions of Theorem 1.4 are satisfied, which
linishes the proof.

5. ALE metrics and removable singularities

A related problem is to find geometric conditions so that each end of a complete space
will be ALE of order r > 0, and to determine the optimal order of decay. In [TV05a]
we examined this problem for the following cases:

(a) Self-dual or anti-self-dual metrics with zero scalar curvature.

(b) Scalar-flat metrics with harmonic curvature.

By using Theorems 1.1, 1.2, and the volume growth estimate in Theorem 1.3, we
have the following improvement of [TV()5a, Theorem 1.3]:

Theorem 5.1. Let (M, g) be a complete, noncompact four-dimensional' Riemannian

manifold with g of class (a) or (b) satisfying,

/ |Rmg|2<iVg < 00.
JM
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Assume that

Wo\{B{q, s)) > Vos4, for all q g M and s » 0,

b\(M) < oo.

then (M, g) hasfinitely many ends, and each end is ALE oforder r for any r < 2. If
we assume instead that

then the same conclusion holds.

To conclude, we mention that the following removable singularity theorem for
critical metrics is expected:

Let (M, g) be a C°-orbifold with singular point at x, and g be a critical metric
satisfying (1.5). Suppose that

Then the metric g extends to B(x, 1) as a smooth orbifold metric. That is, for some
small 8 > 0, the universal cover ofB(x, 8) \ {x} is diffeomorphic to a punctured ball
B4 \ {0} in K4, and the lift of g, after iiffeomorpMém, extends to a smooth critical
metric g on B4.

Ulis will be addressed in a forthcoming paper1. Such a removable singularity
theorem was proved for the special cases of (a),(b), and (c) in [TV05b, Theorem 6.4],
The above generalization is crucial in extending Theorems 1.3, 1.4, and 5.1 to the

more general class of critical metrics satisfying (1.5), in particular, Bach-flat metrics.
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