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Jenkins-Strebel differentials with poles

Jinsong Liu*

Abstract. Given any compact Riemann surface with finitely many punctures, we show that there
exists a unique Jenkins-Strebel differential on the Riemann surface with prescribed heights. In
addition, the differential has second order poles at the distinguished punctures with prescribed
leading coefficients. As a corollary, we obtain the solution of the moduli problem.
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Keywords. Jenkins-Strebel differentials, moduli, heights.

Introduction

The theory of quadratic differentials has long played a central role in the study of
Teichmüller spaces. One aspect of quadratic differentials is their geometric properties.

At present, Jenkins-Strebel differentials (quadratic differentials with closed
trajectories) turn out to be useful. For example, the solutions of a large variety of
function theoretic extremal problems on Riemann surfaces can be described by these

differentials. See e.g. [12], [30], [31].
In particular, Jenkins-Strebel differentials with second order poles are also of

interest. They show up in the Penner-Strebel triangulation of the moduli space,
which is important in computing its homology. String theorists care about these

cases too.
With respect to Jenkins-Strebel differentials with second order poles, characteristic

punctured disks take the place of amiuli around the distinguished punctures.
There are several types of existence theorems for these differentials. For example,
one can prescribe the lengths of the circumferences of the aimuli, their heights or
the moduli of (lie annuli. For punctured disks, one can prescribe reduced moduli or
circumferences.

K. Strebel [28], [31] obtained the existence and uniqueness theorems for Jenkins-
Strebel differentials with characteristic punctured disks. Later B. Zwiebach [35]

* Partially supported by the Post-doctor fellowship of China.
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extended the existence and uniqueness theorem to Jenkins-Strebel differentials with
punctured disks and annuli.

In [17] we discussed Jenkins-Strebel differentials on compact Riemann surfaces

by geometrical methods. By extending Strebel's methods, and using the geometrical
methods, in this paper we will describe the most general situation for closed Riemann
surfaces with possible punctures. It shows that the geometrical methods is also useful
when constructing Jenkins-Strebel differentials with second order poles.

Suppose S is a compact Riemann surface of genus g with n punctures. Also we

suppose that S is hyperbolic, that is, 3g + n — 3 > 0. Denote by {ßi. 02 Qq}
(q < ri the distinguished punctures on the Riemann surface S.

A system of simple closed curves {yk}\<k<p on S is called admissible if none of
the yk is homotopic to zero, and if any two distinct curves neither intersect nor are

freely homotopic. For the definitions, please see [17], [31].
The following theorem claims that the height problem on S is always solvable if

one prescribes the heights of annuli and the negative leading coefficients.

Theorem 3.1. For arbitrary hk > 0, 1 < k < p, and aj > 0, 1 < j < q, there is a
Jenkins-Strebel differential <p on S with the following properties:

(i) The differential q> has p characteristic annuli {Rk} with type {yk}. In the

(p-metric these annuli have heights {hk}.

(ii) ip has q punctured disks {Dj} which are swept out by closed trajectories around
the marked punctures {Qj}. The closed horizontal trajectories in Dj have the same

(p-length aj. Equivalents, q> has a second order pole at Qj with leading coefficient

-(f)2- i 1-2

Moreover the quadratic differential <p is uniquely determined.

As a special case, Theorem 3.1 implies the following result due to Strebel [31].

Theorem 3.4. There is a unique Jenkins-Strebel differential <p on S whose characteristic

domains are q punctured disks with specified circumferences ah 1 < j < q.

Theorem 3.1 can be applied to prove the following result, which claims the moduli
problem is solvable if and only if the given array of moduli is admissible. For the

definitions, please see Section 4.

Theorem 4.6. If M mp) is admissible on S, then for any given
A (ai, «2. %) S there is a Jenkins-Strebel differential <p which has p
characteristic annuli with homotopic type {yk} and with conformai moduli {ink}. At
the puncture Qj the differential <p has a second order pole with leading coefficient

-(f)2, ;=1.2,...;*.
Moreover the differential <p is uniquely determined.
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Furthermore, Strebel [31] solved an extremal problem associated with punctured
disks on Riemann surfaces. He dealt with the case when there are finitely many
punctured disks (no additional annuli). Also he showed that the solutions can be

described by the Jenkins-Strebel differentials with second order poles. We will deal

with the general cases. That is, there are not only punctured disks but also annuli.
Let 'Çj be a fixed local parameter on S near the distinguished puncture Qj, I <

j < q. Then we have

Theorem 4.7. Suppose that M mp) is admissible. Then, for any
real number ihj, 1 < j < q, there is a Jenkins-Strebel differential q> which has
characteristic annuli {R/,} with type {/a-}. The characteristic annulus R/( has modulus mj-,
1 < k < p.

Around the puncture Qj, the differential q> has a characteristic punctured disk Dj
with reduced modulus (with respect to the given local parameter ty)

Mj ihj + c. 1 < j < q,

for some constant c independent of j.
In addition, ç is uniquely determined up to apositive constantfactor. In particular,

the annuli {/?&} tind the punctured disks {Dj} are uniquely determined.

The paper is organized as follows.
In Section 1 we introduce some terminologies and develop various background

necessary for our proofs. In Section 2 we describe Jenkins-Strebel differentials
with poles on Riemann surfaces. The object of Section 3 is to give the proof of the
existence and uniqueness of the height theorem. The solution of moduli problems is

left to Section 4. In the last section we give the proofs of some basic results.

Notational conventions. Throughout the paper we follow the conventions in [31].
Thai is, annuli are denoted by the letter k and punctured disks by the letter j.

Denote by Qj the puncture on Riemann surfaces and by cij the circumference
of a punctured disk. Moreover, 9k denotes the twisting angle and k denotes the
circumference of a characteristic annuli.

Denote by A the unit disk f]^[ < 1], and denote the unit punctured disk by

A* [0 < ]-Z] < 1}.

For any annulus R, we denote by MAR) its conformai modulus.

if ft if ¥ V is a quasiconformal homeomorphism, then we let K\f\ be the

maximal dilatation of /.
Acknowledgements. I would like to express my indebtedness to Professor Zhong Li
for his encouragement and help during this work. I also thank Professor Guizhen Cui,
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1. Preliminaries

A punctured disk on the complex plane C always has infinite conformai modulus. It
is, however, possible to assign it a finite number which is called the reduced modulus,
introduced by Teichmüller.

Suppose that I) is a punctured disk in the z-plane with puncture zo- For any
sufficiently small r > 0, we denote by D(r the 2-connected region

D\{z 1 \z - sol < r}.

Let m(r) denote the conformai modulus of Dir). Then for any 0 < r' < r we
have

1 r
m(r) H log — < m(r

2n r'
or equivalently

1 t s
m (r H log r < m(r H I02 r

2tï ' ' 2TÏ

Hence the function mir) + log r is increasing as r 0+ and thus the limit

lim log/
r^Ö+ \ 2tï /

exists. This limit is called the reduced modulus of the punctured disk D c C with
respect to the local parameter z near zo, see e.g. [13], [31], [33].

The definition of reduced modulus can be extended to general Riemann surfaces.

Suppose that Q is a puncture of a Riemann surface U and suppose

z:U^C, 2(0) =0,

is a local patch near Q, For any punctured disk D c S around Q, as above, for any
sufficiently small r > 0 we denote

D(r) m »\|x| < r}.

Denote by m(r) M(D(r)) the modulus of the domain D(r).
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Definition 1.1. The limit

logt"

is called the reduced modulus of the punctured disk D (with respect to the local
uniformizer z),

Suppose that h is a holomorphic analytic homeomorphism between the punctured
disk I) and die punctured disk {0 < |z| < p} with h(Q) =0 and ^ê(O) 1. Then
the number p is called the mapping radius of the punctured disk I) with respect to
the local parameter t,

Lemma 1.2 ([31]). The reduced modulus ofa punctured disk D with respect to the

local parameter z is equal to log p.

For our purpose, in the remainder of this paper we need the notions of canonical
modulus and canonical local parameter.

Recall that A* is the unit punctured disk. For any hyperbolic Riemann surface S,

let

be an annular (unbranched) covering map induced by a simple loop around the puncture

Q. Then tt is unique up to rotations of A*. The local parameter q =tt~] j^can
be regarded as a local uniformizer at the neighborhood of Q.

Then we have the following definition.

Definition 1.3. For any punctured disk D c S around the puncture Q, the local

parameter q jt ~11 d is cal led the canonical local parameter of S at the neighborhood

The canonical modulus MD s is defined to be the reduced modulus of I) with

respect to the canonical local parameter q =tt'~1\d.
Evidently we have MDS < 0. In comparison with the reduced modulus, the

canonical modulus of a punctured disk is independent of the choice of local parameters
near the puncture. Hie number

is called the canonical mapping radius of the punctured disk I) c S.

Note that an orientation preserving homeomorphism f:U-^V between two
regions in C is a K -quasiconformal homeomorphism if and only if

jt : A* —s* S, 7T(0) Q

Of Q.

lim sup
max|j_f|=r \f (z) - f(f )\

im sup
r^o+ nvni|-_(- |=r I /(z) fUil

< K. a.e. e t/.
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Since Riemann surfaces have conformai structures, it makes sense to speak of
quasiconformal homeomorphisms between two Riemann surfaces. With respect to

quasiconformal maps we have the following result.

Lemma 1.4. Let Q c S (resp. Q' c $') be a marked puncture on S (resp. $*% Let

f : S -> 5' be a K-quasiconformal homeomorjihism with f(Q) Q'.

If D c S is any punctured disk around Q, then f(D) c S' is a punctured disk
around the puncture f(Q). In addition, the canonical moduli Mdm and Mf D s, of
the punctured disks D and f(D) satisfy that

2K -1 Md s 2 log 2
AT -— tog 1 Ï «„„ < + J tog 2 -

In particular M/(D) s, -> — oo ifand only if Mvs -> —cx>.

Proof. Recall that n : A* —* I is the annular covering map and q tt~1\d is the
canonical parameter of S near Q.

Similarly, there is an annular covering map A* .S" induced by a simple loop
around the puncture f(Q).

Denote by D (resp. &} the lifting image of D (resp. D') which encloses the center
0 g A. Let

^ D -v fe ; 0- < |z| < e2nM}

be the holomorphic homeomorphism, where (0) 1 and M MD s is the canonical

modulus of the punctured disk D.
By applying the Koebe-| Theorem, we obtain that

gljT M

Ï)\ 0 •< M < [ c D C A*

,i-r ' ^

Lift / : S —>- S' to a K-quasiconformal homeomorphism F : A* —A* with F (0)
0. By applying Mori's Theorem (see the Appendix), we have

\F(ri)\>41~K\ri\K, q G A*.

From tire fact /'(D) /)', it follows that

PinM \ K

~4

Hence the canonical modulus M ' M,, n satishes

1 TP f \\0o^-K(e \ 2K — 1

M > — 4 ' K M log 2.
2tï 71

Interchanging M and M', we obtain the desired result.

q : 0 < \q\ < 41-Ä j ——J cD'cA'
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Lemma 1.5. Let yo C S be a simple loop around the puncture Q which encloses

a punctured disk Do. Then there exists a positive constant m m(S, yo) with the

following property:
Any annulus R c S ofhomotopie type yo with modulus M(R) > m has at least

one of its boundary components lying inside the punctured disk Do.

Proof. For any 0 < r < 1, we denote by A, the conformai modulus of the 2-con-
nected region A\[0, r].

Using the annular covering sr.; A* —*• S we can lift yo to a simple closed curve

yo C A* which surrounds 0. If we set

Note that a quadratic differential q> (p(z)dz2 on the Riemann surface S is a

holomorphic section of the square (T*)® 2 of (he tangent bundle 7' \
Obviously, <p induces a 'singular' metric ds ff\<p{z)\\dz\ on S. For any piece-

wise smooth curve y c S, the inhmum

where y varies over all piecewise smooth curves in the homotopy class of y, is called
the (p-height of y.

If a quadratic differential </> has a double pole at zo> then </> has the form

The local parameter § is uniquely determined up to a complex constant factor. It is

called the normalized uniformizer near zo- The leading coefficient a_2 is an invariant
datum, i.e. it is independent of the choice of coordinate patches near the puncture zo-

Figure 1 shows the local trajectory structures near a double pole. Depending on
the leading coefficient a-2,, we have three cases to distinguish.

e inf{ C| : £ e y0}.

then the positive constant m Ac has the desired property.

V z2 z " / ' i

2 < 0 2 > 0 Im 2 A 0

Figure 1

If zo is a double pole of a quadratic differential with leading coefficient —a2

(a > Oi, then horizontal hajectories near zo are closed and they have the same

^-length 2na.
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Note that a non-zero quadratic differential is called a Jenkins-Strebel differential
if its non-closed trajectories cover a set of measure zero. Hence a Jenkins-Strebel
differential decomposes the Riemann surface into characteristic regions, which are

swept out by closed trajectories. These characteristic regions consist of amiuli or
punctured disks.

If a quadratic differential has a pole of order > 3, then there is a neighborhood
of the pole such that each trajectory ray entering it tends to it. Therefore a Jenkins-
Strebel differential has only simple poles or double poles, and the leading coefficient
of the double pole must be negative. See e.g. [31].

In [17] we considered Jenkins-Strebel differentials with only characteristic amiuli.
In this paper we allow that Jenkins-Strebel differentials have characteristic punctured
disks near the distinguished punctures.

The next two lemmas on the inequalities of weighted sum of moduli and weighted
sum of the reciprocals of moduli are well known. For their complete proofs we refer

Lemma 1.6 ([31]). Let f # 0 be a non-zero Jenkins-Strebel differential on S with
type {yk}i<k<p, and its characteristic annuli {Rk} have heights {hk}. If {Rk} Ê
a system of non-overlapping annuli on S with the homotopy type {/a-}, then their
conformai moduli Mt M(R$ satisfy

with equality holds ifand only if Rk Rk for each k.

Lemma 1.7 ([31]). Letq> 0 be a Jenkins-Strebel differential on S. Suppose that its
characteristic regions consist of afinite number ofannuli {Rk} with finite conformai
moduli {Mk} and a finite number ofpunctured disks {Dj} around the distinguished
punctures {Qj}. Furthermore, suppose that {Dj} have reduced moduli {Mj} (with
respect to a fixed system of local coordinates near the punctures {Qj}).

Suppose that <p has finite reduced norm

where ak, 1 < k < p, is the <p-length of closed horizontal trajectories homotopic to

Yk, and cij, 1 < j < q, is the cp-length ofclosed horizontal trajectories around Qj.
Let {Rk} and {Dj} be non-overlapping regions homotopic to the annuli {RQ

and the punctured disks {Dj), respectively. Moreover we suppose that {Rk} have

conformai moduli {MQ and {Dj} have reduced moduli {Mj} (with respect to the

to [31],

Y.aîMk + J2ajML
k J
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same system ofcoordinates near {Qj}). Then we have

J2 a\Mk + V a)Mj > V a\Mk + £ ajMy.
k j k j

The equality holds ifand only if Rk Rk, Dj Dj for all k and j. In addition, (is
an easy consequence, we obtain that

M{Mk - Mk, Mj - Mj} < 0.
id

The equality holds ifand only if Rk Rk, Dj Dj for all k, j.

Remark 1.8. Lemmas 1.6 and 1.7 can be extended, in a rather straightforward manner,

to the case when S is a Riemann surface with boundaries and cp is a Jenkins-Strebel
differential which is real along the boundary curves.

In fact, we can construct the double surface of S, denoted by S. Since <p is real along
the boundary curves, by reflection it can be continued to a Jenkins-Strebel differential
on S. Therefore we have the corresponding results on the bordered Riemann surface.

2. Differentials with poles

Suppose that IP is a pair of 'pants', namely it is a bordered surface by cutting off the

interiors of 3 disjoint closed disks from the Riemann sphere. Denote by [y\, yi, 3/3}

its boundary components.
Then we have the following result.

Lemma 2.1. Let (hi, I12,113) 7^ 0 be afixednon-zero triple ofnumbers, where hj > 0.

If (h, h, h) is a non-negative triple such that h 7^ 0 ifand only if In 0, then there

is a conformai structure P on P with the following properties:
(i) The Riemann surface P admits a Jenkins-Strebel differential q> with type {yk}

(k corresponds to those hk 7^ 0). The boundary components {yk} are closed
horizontal trajectories of <p. And the characteristic annuli {Rk} have tp-circumferences
{lk} and q>-heights {hk}.

(ii) Ifhi 0, then the corresponding boundary component yi is a puncture of P
and <p has at most a simple pole at this puncture.

Proof Ifeach component of (hi, I12,113) is not zero, then this lemma is justLemma2.1
in [17 J.

Supposing that U 0 for at least one i, then we will deal with two cases:

1. There is only one component of (h, I2, h) is 0. Without loss of generality we
assume that (3 0. We can divide the case 1 into two subcases:
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(i) h 'h - 0 (the subcase 0 < l\ < can be treated by the same way).
Let AiA'^AtA^A-iA'^ IJ;=i 2 ft he a 'hexagon' in the 2-plane, where f)\, D%

are two rectangles and

*-(!•!)• «-(•*> *=(»-*)
4 (|4). * (§.0). 4 (|.«

See Figure 2(a). Denote by <p dz.2 the quadratic differential in the 'pentagon'
AjA^AiA'zM.

(ii) l1 l2 jtQ.
Let A\ A\ A2A2A3 U;=i 2 ft he a 'pentagon' in the --plane, where D1, /L are

two rectangles and

*-(!•!> (*£)• M°-r)-
* (£»

See Figure 2 (b). Denote by </> dz2 the quadratic differential in the 'pentagon'

AjA'A^Aa.
2. Two components of (/j. h, h) are zero. Without loss of generality we assume

that h h 0 and h ^ 0.

Let Ai Aj A^AJ À: be a 'rectangle' in the --plane, where

A, (|.|). A\ (0. h), A2 (0,0). 4 (y.O

See Figure 2 (c). Denote by <p dz2 the quadratic differential in the 'pentagon'
AiA/1A2A^A3.

A'\ A, A\ A, Ai A,

— 6A§
; A' 1

At 4 A2 A'2

(a) (b) (c)

Figure 2
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In the case 1 (i), the surface P AiAjA^^A;^ has a mirror image P¥

ApA|AfA|j%É§* See e.g. [31]. The surfaces P and P can be glued along the

boundary components
{A\A2, A!2Ai, A3A^, A',Ai]

to form a new Riemann surface, denoted by P.

Similarly, in the case 1 (ii) the surface P and its mirror image / can be glued
along the boundary components

{A/1A2,A^A3,A3A1}

to form a new surface P.
hi case 2, the Riemann surface P A \ A\ A t A'2 and its mirror image P

A] A', A2Aj* can be glued along the boundary components {A\ A%, At A'2, A'2A\] to
form a new surface P.

In Figure 2 (a), (b) and (c) the symbol 'o' denotes the punctures of P.

By analytic continuation, the quadratic differential tp on P and the reflection
differential tp on P can be joined together to form a new quadratic differential
on P, denoted by the same notation tp.

hi case 1 (i) the surface P has a puncture at A3 and tp has a simple pole at A3.
In case 1 (ii) the surface P has a puncture at A3 and A3 is a removable pole of §.
In case 2 the differential </> has two simple poles at the punctures A2 and A|, This
construction shows that the surface P has the desired properties.

When f 0, we call A; the marked point of the boundary curve y, on P.

From Lemma 2.1, and repeating the similar methods in [17], we obtain

Corollary 2.2 ([31]). Suppose that [yi, y2,yp} is an admissible curves system
on the punctured Riemann surface S. Then, for arbitrary hp » 0, 1 < i < p, there

exists a Jenkins-Strebel differential tp with type {yp} and (p-heights {hp}.
Moreover the differential tp is uniquely determined.

Analogous to Lemma 2.1, we have the following result.

Lemma 2.3. Let (hi, //2,113) be a fixed non-zero triple of numbers with 0 < //,- <
+00. Also we suppose that 0 < hi < +00 for at least one i.

For any non-negative triple (11, /2, If) satisfying that /, 0 ifand only ifh; 0,

we can put a conformai structure on '? such that the resulting bordered Riemann

surface P has the following properties:

(i) P admits a Jenkins-Strebel differential q> oftype {yp}, where k e {i : 0 <
+00}. The boundary components {yp} are closed horizontal trajectories of (p. In the

(p-metric the characteristic annulus Rp with homotopic type yp has circumferences lp

and heights hp, where k m {i : 0 < h% < +00}.
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(ii)Ifj satisfies that h j +00, then the boundary component of P corresponding
to yj is a puncture, denoted by Qj. In the (p-metri.c the characteristic punctured disk

Dj around Qj has circumference lj, Equivalentfy (p has a second order pole at Qj
I ' 2

with the leading coefficient ~(jy) •

(iii) All the left boundary components of P are punctures and cp has at most a

simple pole at these punctures.

The proof of Lemma 2.3 will be postponed to Section 5.

Recall that the Riemann surface S is of type (g, n). If

r {/t. Y2 Yn}

is a maximal finite admissible curves system on S, then N 3g + n — 3. And F
divides S into 2g + n —2 pairs of 'pants' {tPi}i<i<2g+n-2- Let {yr/J }/J=1,2,3 denote

the boundary components of 3$.

Let H (hi. In,..., /?3g+„_3) t M+g+"~3 be the heights associated with the

maximal admissible system F and let

A (a\, <72 Oq) Üq-

be the leading coefficients at the marked punctures {Qj}.
Suppose that v (Lv, @„) g R+g+"~3 x R3g+"~3, where

Lv (I'irh, • • • » hg+11-3) £ K+g+"-3,

and

(01,02 03g+w—3) tl3s+""3.
Lemma 2.3 immediately implies that there exists a conformai structure on .'P; such

that the corresponding Riemann surface /', has (he following properties:

(1) Pi admits a Jenkins-Strebel differential <g,. If the boundary component yiM is not
a puncture, then y(/J is a closed horizontal trajectory of q>i. Also in the q>i -metric,
the characteristic annuli R/,,} have lengths j/,^} and heights {hißJ2}.

(2) If Qij is a marked puncture of /',, then q>i has a double pole at Qij with leading

coefficient —{jf)"
(3) All the left boundary components of /', are punctures and (pi has at most simple

poles at these punctures.

Let Lv be the lengths of boundary trajectories and let 0 be the twisting angles
between two pairs of adjacent 'pants'. With the help of 3-graphs [4], as in [17] we can
construct a Riemaim surface h%(f) with a Jenkins-Strebel differential <pv on hjj(v).
The differential <pv is of type f and its characteristic annulus Rp has ^-heights hp,
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where 1 < k < 3g + n — 3. Moreover, cp has the leading coefficient - (jk)" at (he

puncture Qj, 1 < j <q.
Note that the Teichmüller space of tire Riemann surface S is defined to be the

space of Teichmüller deformations of the complex structure on S, denoted by Tgt„.
See e.g. [1], [15]. For any Riemann surface S of the same type (g, «), we denote by
| .S'| g To j, the equivalent class of conformai structures which includes S.

By sending hjj(v) [hfj(v)] g TgM, we obtain a map

hf, : rJ+"~3 x K3^+"-3 -> Tgjt. (1)

In addition, we have

Theorem 2.4. Given the maximal admissible system T, and positive arrays A
(a\, «2. • • •. %) and H (hi, hi /;3g+„_3), the map

/4: k++"-3 x i3g+"-3 rm

defined in (1), is a homeomorphism,

Idie proof of Theorem 2.4 will also be postponed to Section 5.

3. The main theorem

With the help of Theorem 2.4 we are ready to prove the following generalized height
theorem on punctured Riemann surfaces.

Recall that S is a compact Riemann surface with distinguished punctures
I C/ Î1 ; / ./•

Theorem 3.1. For arbitrary ht > 0, 1 < k < p, and aj > 0, 1 < j < q, there is a
Jenkins-Strebel differential <p on S with the following properties:

(i) The differential $ has p characteristic annuli {R&} with type {y^.}. In the

cp-metric these annuli have heights {hp}.

(ii) ip has q punctured disks {Dj} which are swept out by closed trajectories around
the marked punctures {Qj}. The closed horizontal trajectories in Dp have the same

(p-length ap. Equivalently, q> has a second order pole at Qj with leading coefficient

-(f)2.; 1-2 9.

Moreover the quadratic differential <p is uniquely determined.

Proof. At first we prove the uniqueness part.
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We assume, by contradiction, that there are two quadratic differentials i
t, 2, on S such that the characteristic annuli Rik and Ru have the same height kt,
1 < k < p. Moreover <p\ and (pi have the same leading coefficient —( jp)~ at the
marked puncture Qj, where 1 <j<q.

Let rjj be the canonical local parameter of S near the puncture Qj. Denote by D,
the characteristic punctured disks of tp-, around Qj, where im 1,2 and 1 < j < f.

LIsing the local normalized uniformizer the punctured disk Dp has the form

Dip {0/ : 0 < \hj\ < /•••/).

where parity 1 and ry is nothing else than the mapping radius of ft with respect

to tpj. Then Mjj logr(;- is the canonical modulus of Dp, where 1 < i < 2 and
1 < j < q-

Picking a sufficient small p with mapping radius ry > pfor l < i <2,1 < j <q,
we denote

Sx(p) ^ S\U {\^j\ < p}.

Let Mj (p resp. Mj (pj) denote the conformai modulus of the annulus UCIIiil <
p} (resp. Ulfö/1 < p}), 1 < j < q. Denote by Mm the conformai modulus of
the annulus Rit, where 1 < i < 2,1 < k < p.

In the Riemann surface fj (p), by applying Lemma 1.6 to the differential g|, we
have

j4_ (|uogif
^

-Wu Mj(p) J
M$t j Mj(p)

Evidently as p 0+, we have

Mj (P) p-p; log — and Mj (p) + log p -> M2j log r2j,
2JTX f) ZTC l7t

af
By adding the term jL log p to both sides of the inequality (2) and letting p -> 0,

we deduce that

J2auhk + 22 ajMij < E aikhp + E nj{lM\ I - M2jh
1 j I j

or
J2°lkhk ~ ,L afMij < E mich* - E a] My. (3)

k i k j
Interchanging q>\ and (pi, die opposite inequality holds too. Therefore

y aikhp - 22 cij Ml j 22 a2khk - 22 aj M2j (4)
k j k j
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On tlie other hand, from Lemma 1.7 it follows that

E4»*+E afMij ^E ajkM2k + ^ «J M2j. (5)
k j k j

Combining (4) and (5) one obtains

y 2öia-/?A- > ^ H /?A-.

A- k
V

Hie elementary inequality implies that

«Ik
2a ia < a2A H » 1 < k < p,

aik
with equality if and only if a-jf a2k. Hence

Ö1A Ö2A, 1 < k < p.

From Lemma 1.7 it follows that the characteristic annuli and the characteristic punctured

disks of q>\ and q>2 are identical, which proves the uniqueness part.
We now show the existence part.
Since {yp y2 yp} is an admissible system on S, we conclude p < 3g + n — 3.

If p 3g + n — 3, then {yp, y2,..., yp} is a maximal admissible curves system
on S. Denote

H m Üi\.h2,.... »3i+*-3) S M+g+'!"3.

Let A (a\,a2,..., aq) g be the leading coefficients at the punctures {Qj}.
From Theorem 3.2, it follows that

(hjj)-1 : Fg!„ R3g+" ~3
x R3g+n-3

is a homeomorphism. By considering the point [S] g TgJI, we conclude that there is a

Jenkins-Strebel differential on S with type {yA}. Its annuli {Rk} have -heights
{h a J and its characteristic punctured disks I), have ^^-circumferences {aj}.

Now we assume p < 3g + n — 3. By adding 3g + n — 3 — p simple closed curves

{Yp+h y3g+«-3} to {yp If* Yp), we obtain a maximal admissible system

&L Y2 T$h Yp + l /3g+n—3}

on S, denoted by F.

For any positive vectors (sp e2, S3g+„_3_p), by applying the same argument

as above, we obtain a differential cpe 011S with type F. Its characteristic annuli
have -heights

(hi • • • •, hp, !' 1. S3g+H-3-y) •

and its characteristic punctured disks have ^-circumferences {aj}.
Now we have the following result. Its proof will be postponed to Section 5.
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Lemma 3.2. If e; < %(0) for some ei (0) > 0, where 1 < i < 3 g + « — 3 — p, then
the quadratic differentials {(pff are locally uniformly bounded on S.

Let us proceed with the proof of Theorem 3.1.

Letting e tend to 0, Lemma 3.2 implies that the quadratic differentials {(ps)

are locally uniformly bounded on S. Hence </v converges locally uniformly to
some quadratic differential </> with type {yk}i<k<p- Also the characteristic annuli
of q> have ^-heights (h\, hi,..., hp) and its characteristic punctured disks have q>-

circumferences {aj}i<j<q, as desired.

Denote by $s the set consisting of all Jenkins-Strebel differentials on S of homo-
topic type {yk}i<k<p and with second order poles at the marked punctures {Qj}. It
is permitted that for some k there is no annulus and for some j there is no punctured
disk. Moreover we assume that 0 & $s-

Applying Theorems 23.3 and 24.7 of [31], with the assistance of Lemma 3.2 we
have

Lemma 3.3. The space $s is closed under locally uniform convergence on S. In
other words, ifcp„ g $s and q>n -t> q> locally uniformly on S, then cp g $s- Moreover
the lengths anj cij, the heights h„k ht and the moduli Mnk Mkfor each j
and k.

Conversely, if{anj} and {h„k} are bounded, then the sequence {(pn) c $scontains
a subsequence which converges locally uniformly on S.

By taking the admissible curves system to be 0, we obtain a new proof of the

following result due to Strebel.

Theorem 3.4. For any distinct q marked punctures on S, there is a unique Jenkins-
Strebel differential q> whose characteristic domains are q-punctured disks with specified

circumferences aj, 1 < j < q.

4. Solution of the moduli problems

Recall that {/a-} is a system of admissible curves on S. If R/(} c .S' are disjoint 2-
connected regions with type {/a}, then their conformai moduli {M A'a )} are bounded
from above. It leads to the following dehnition.

Definition 4.1. Amoduli array M (mi. mi,mp) (ink > 0) is called admissible

on S, if there is a system of non-overlapping ring regions {Rk} C S homotopic to

{/a} and their conformai moduli satisfy

nik<M(Rk), A-= 1,2 ,p.
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Denote by M the set consisting of all admissible vectors M on S. Clearly M c (Fit

is open.

Remark 4.2. For any M (m i, ni2,.... mP) £ K^.s the Strebel Moduli Theorem
shows that there exists a Jenkins-Strebel differential of type {/a }. Its characteristic
annuli have moduli [X ntk} for some constant X > 0 independent of k. In addition,
the differential </> is unique up to a positive constant factor.

Obviously M £ M if and only if k > 1,

For any
C (ci, C2,.... Cp) £ R+.

there is a unique Jenkins-Strebel differential <pc on S such that the moduli of the
characteristic annuli {RLk} maximize the sum Jfk '"/.• among all possible choices

of disjoint ring domains {Rk} C S homotopic to {/a}- See e.g. Theorem 21.11 in
[31]. Again, for each annul us Rck with conformai modulus M(Rk) > 0, the number

ca is just the cpc -length of closed trajectories in RLk.

Lei {/j?|} denote the conformai moduli of the characteristic annuli ji® (If some
annulus R'k disappears, tfien we set mck 0),

To obtain some properties of the space M, we will give another criterion in
determining whether M £ M or not.

Lemma 4.3. If M (m j, m-2 mp) e then M £ M ifand only if for each

(' [ca]'.
'

J24mk >J2clmk-
k k

Proof. If M £ M, then it is immediate that, c\mk 5« ctmk 'or cach ê R+,
Conversely, we assume that M f M. Thus there exists a differential q>0 with type

{yk} and its annuli have moduli {k mk} for some 0 < X < 1. Letting (cot, cce cqp)
be the yo-lengihs of its characteristic annuli, we have

J2cokXmk < 534kmk•
k k

which contradicts our assumption.

Lemma 4.3 immediately implies the following result.

Theorem 4.4. M is strictly convex in That is, M. M' £ M implies that

t M + (1 - t) M' £ M for all t £ [0,1 ].
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Recall that {Yk)\<k<p is an admissible curves system on S.

Given A {a\, a%,..,, aq) g for any

V (iq, tq, s,, Vp) G M+.

from Theorem 3.3 it follows that there is a unique Jenkins-Strebel differential cpv

with homotopic type (y/.}. Its characteristic anriuli have ^y-heights fuj- and cpv has

the leading coefficient ~(^jY at the puncture Qj, 1 < j <q.
Denote by {mvk}\<k<p the moduli of its characteristic amiuli. It is clear that

My (m\, m|, ...,mv) g M. By setting FA(V) My we immediately obtain a

map
Fa-.Rp+^ M. (6)

Furthermore we have:

Theorem 4.5. For any A |»i, ai. aq) G E4j_, the map FA : BÇ Ht» M defined
in (6) is a homeomorphism.

The proof of this theorem is postponed to Section 5. The following is an equivalent
statement of Theorem 4.5.

Theorem 4.6. If M (m y rn-2, mp) is admissible on S, then for any given
A aq) g there is a Jenkins-Strebel differential q> which has p
characteristic anntdi with homotopic type {/a-} and with conformai moduli {mp}. At
the puncture Qj the differential <p has a second order pole with leading coefficient

j -hi q-
Moreover the differential q> is uniquely determined.

Theorem 4.5 and 4.6 can be applied to solve the following moduli problem.

Moduli problem. Given arrays M (m%,..., mp) g Ht® and A (a\ aq) G

can one hnd a quadratic differential </> witli the following properties?

Idie characteristic amiuli of </> are homotopic to {/a} and have conformai moduli
{mp}. Also <p has second order poles at {Qj} with prescribed leading coefficient

{-(f)2}-
As we have shown in Theorem 4.6, the moduli problem is solvable if and only if

M g At. In particular the moduli problem is always solvable for sufficiently small
M > 0.

Recall that Cj is a fixed local parameter near the distinguished puncture Qj, 1 <

j <q. The remainder of this section is to prove the following result.

Theorem 4.7. Suppose that M (my un. mp) g M. That is, M is admissible
on S.
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Then, for any real numbers mj, 1 < j < q, there is a Jenkins-Strebel differential
tp which has characteristic annuli {Rp} homotopic to {yk}. The characteristic annulus
Rk has modulus mp, 1 < k < p.

Around the puncture Qj, the differential tp has a characteristic punctured disk Dj
with reduced modulus (with respect to the given local parameter

Mj nij + c, 1 < j < q,

for some constant c independent of j.
In addition, tp is uniquely determined up to apositive constantfactor. In particular

the annuli {Rk} and the punctured disks {Djjare uniquely determined.

Proof. To prove the uniqueness, let </> and <p be two solutions whose annuli Rk and

Rk have the same conformai moduli ink, \ < k < p. and whose punctured disks I)
and Dj have reduced moduli (with respect to the given local parameter £/)

Mj m j + c, Mj inj + c, 1 </' <q,

respectively. By applying Lemma 1.7 to the quadratic differential q>, we conclude
that

inf (Mj — Mj) c — c < 0.
l <j<9

Similarly, by starting with the quadratic differential tp, we conclude that c — r < 0.

Hence c c.

From Lemma 1.7, it follows that

Rk Rki Dj m Dj. \ < k < p. 1 < j < q.

Hence q> and tp have the same trajectory structures, which implies that tp Xtp for
some X e K+.

To prove the existence, we denote by G the set consisting of all real numbers {c}
with the following properties:

(1) There exists a system of disjoint ring domains {Rk} and punctured disks {Dj}
on S such that {Rp} is homotopic to {yk} and {Dj} is around the distinguished
punctures {Qj}.

(2) The 2-connected domain Rk has conformai modulus > /?u-, 1 < k < p. With
respect to the given local parameter (y, the punctured disk Dj has reduced modulus

> ni/ -f r, 1 < j < q.

From M (mi, 1112,mp) g M, it immediately follows that (2^0 (seee.g.
Theorem 4.6), Furthermore it is obvious that

CO El sup (• < X.
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By using the normal family argument, we conclude that there exists a system of
disjoint ring domains {%} and punctured disks I),} on S such that their conformai
moduli and reduced moduli (with respect to the given local parameter {<";}) realize
the number cq.

Now we can prove that the regions {/?/,} and 1),} are associated with some
jenkins-S trebel differential on S.

In terms of the normalized local parameter Zj,

Dj {zj : 0 < 1^1 < rj}, I j q,

dz '

where y^-(O) 1 and tj is the reduced mapping radius with respect to <7. Choose a

sufficiently small number p witli 0 < p <, rj, where 1 < j < q. Denote mj (p) to be

the modulus of the ring domain

Rj(p) {zj : p < \zj\ <rj}, 1 < j < q.

We claim that 1 < k < p, and Rj(p), 1 < j <q, are characteristic ring domains
of some quadratic differential^ on the truncated Riemann surface S(p) S\Uj{zj :

\Zj\<P}-
Otherwise, we would have a system of ring domains {R^} and {Rp p) } on S(p)

with conformai moduli M(Ru) (1 + e)nik and

M(Rj(p)) (1 + e)J~ log
2n p

for some e > 0.

By adding the punctured disks {zj : z,j I < p) to the truncated Riemann surface

S(p), we obtain a system of ring domains with conformai moduli {(1 + e)nu} and

punctured disks with reduced moduli (witli respect to the given local parameter {$
1 r, 1 1

Mj > (1 + #r— log - + — logp > — logTj Mj, 1 < j < q.
ZTC f) ZTC ZJT

It conhadicts the original assumption that cq sup G.

Ihus the ring domains {Rk}i<k<p and {Rj(p)h<j<q are associated with a quadratic

differential <pponS(p). And the boundary components {| z.j p} are the closed

trajectories of (pp. Hence

<Pp <P\S{p)

for some Jenkins-S trebel differential q> on S.

In conclusion, the characteristic domains of <p consist of ring domains with moduli
\mi: and punctured disks with reduced moduli [m, + cp} (with respect to the given
local parameters {(j}), as desired.
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5. Proof of some basic results

Now we can begin the proofs of some basic results.

ProofofLemma 2.3. If h, f +oo for each i g {1, 2. 3}, Lemma 2.3 follows from
Lemma 2.1.

Now we assume that there is at least one j such that hj +oo. We form a new

triple (hj, ïi%, %) by setting hi hj if hj +oo, otherwise setting hj 1.

From the new triple (h\. h). Î13), by applying Lemma 2.1 we can construct a

Riemann surface P witli the following properties:

# The Riemann surface P admits a Jenkins-Strebel differential § of type {yk},
where k g {0 < % «è +00}. The boundary components {yk} are closed
horizontal trajectories of q>. In the ^-metric die characteristic annulus R/( c P
has circumference Ik and height h /(.

When hj 0, each boundary component y; is a puncture of P and | has at most
a simple pole at this puncture.

Recall that A* is the punctured unit disk. Denote by

the quadratic differential in A*. We can easily check that all concentric circles

{f : If I r} (0 *t r < 1) are horizontal trajectories of tp* with the same <y*-length f.
As in Figure 2, for each j satisfying that hj +00, we denote by Aj the marked

point ort boundaries y,-.

By identifying the marked points Ay e y, and 1 G jjjj 1}, and by isometrically
welding the boundary components jJi] 1} and yj (in the Ps# and ^-metric,
respectively), we can join together the Riemann surfaces A* and P. Tlie weld process

preserves their induced orientations. Since the curves {|f | 1}) and y,- are botli
horizontal trajectories and have the same length this welding is possible. Denote

by P the resulting Riemann surface.
The Jenkins-Strebel differentials P and ((>+. are joined to form a new Jenkins-

Strebel differential ort P, denoted by </>. Hence the Riemann surface P and the
differential tp on P have the desired properties, which establishes Lemma 2.3.

ProofofTheorem 2.4. Note that the spaces Mj;
~"~3

x R3s+"-1 and TgJ1 are both

homeomorphic to the 6g + 2n — 6 dimensional Euclidean space ]R6?+"~6. To prove
that the map x M3g+"-3 -> Tgr„ is a homeomorphism, it is sufficient
to check that hfj is continuous, injective and proper.

The proof of Theorem 2.4 is divided into several steps.

Step 1. Prove that ft*| : Mjy +" 3
x M3g+" 3 ^ Tgt„ is continuous.
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We assume that, as n —- +00,

W f-J», ©«) —» vo (Lo, @0)' (7)

in the space x R%+H_3. For simplicity of notations we set S„ à4|%J
and S0 B ir|:(fi0),

From the assumption (7) we deduce that {S„} lie in a compact set of see

e.g. [8]. Therefore there is a subsequence of (S„} which tends to some Jg g Tg,n,.

For convenience of notation we call the subsequence {S„ } again. Therefore there are
Teichmüller extremal homeomorphisms

Fn:S„->S*, ,1 1,2,... (8)

with maximal dilatations Kn K[Fn\ 1.

Let ijuj be the canonical local parameter of Sn at the neighborhood of Qj. For

any characteristic punctured domain D„j c S„, in terms of the normalized local

parameters we have

Dnj iL./ : - < n jI. « 0,1, 2,...,

where ^(0) 1 and is the canonical mapping radii of If we denote

A-= 1,2

then the Riemann surfaces sequence {£*} is an exhaustion of the Riemann surface S„.
For each A, Lemma 3.5 in [8] implies that [SjJ] [Sq] in the reduced Teichmüller

space. Hence there are Teichmüller deformations

Fnk- s| —Sq, (9)

witli maximal dilatations K„ K[Fnk] -> 1 as ft -> 00.

Combining (8) with (9), we obtain a quasiconformal map

FnoF^-.S^S*.
Furthermore, for each hxed A the maximal dilatations satisfy

K[Fn o Flk
1

1 < K[Fn] K[F„k] hp I, n HP +00.

We can therefore pass to a subsequence (denoted again by Fn o F'^1
'

such that,

as n -> +cx3, the quasiconformal homeomorphism fm & F'^
1 '

locally uniformly
converges to a quasiconformal homeomorphism

j?k o
Oq 7* O;);.
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Since Fn o
1

induces the same isomorphism between the fundamental groups of
Sq and S*, we conclude that Fk is univalent.

By using the standard argument we know that there is a conformai homeomor-

phism F : So —> S:f. This implies that

[Sy [So] Tg,„*

which proves the continuity of the map ft|j : M):+'!~3 m R3s+"~-1 Tg<B.

Step 2. Prove that |j| : x R3g+"-3 -> Tg^n is injective.
Since the proof is similar to the uniqueness part of the proof of Theorem 3.1, we

omit it here.

Step 3. Show that hjj : R^g+"~3 x M3£+"~3 -* Tgm is a proper map.
To prove the properness of the map hjj, we must show that if any sequence

(r.'.] c R+g+w~3 x R3£+"-3 approaches the boundary of M+g+"~3 x M3g+'!~3, then
the surfaces {hjj(v'n)} approach the boundary of TgJl.

Let

'pi — Ont' • • • <fn(3g—3)- @n Ï* • • • @n(3g—3))-

The assumption that {v'n} approaches the boundary of R^g+"~3 x R3g+"_3 implies
that at least one of the following holds:

(i) 4ij Too for some fixed 1 < A'o < 3g + « — 3 as n -> +oo.

(ii) For some hxed 1 < A'o < 3 g + n — 3, l„k0 Hi* +0 as « -> +oo.

(iii) As m -> +oo, (lien c < l„k < C, 1 < k < 3g + n — 3, and

3g+n-3
Wnk\ +O0,

k=\

for two positive constants c, C > 0 independent of n.

Letting v'q (1,1 1; 0, 0,.... 0) e IßT. r"~3 X M3g+"~ as before we set

S'0 hA(v'0) and S'n=hA(v'n).

Also we let <pn, n 0, 1 be the corresponding quadratic differential on the
Riemann surface S'„.

Let fn : S'0 -> S'n be the extremal quasiconformal homeomorphism which is

homotopic to the identity. And let Kn m KI f„ I be the maximal dilatation. If
do not go to the boundary of TgJl, then we may assume (selecting a subsequence if
necessary) that

Kn < K, (10)

for some K > 1 independent of 'ft.
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When ri 0, 1, 2,..., let

Mnk M(Rnk), 1 < k < 3g + n - 3,

be the conformai modulus of the characteristic annulus of </>,,. Also we denote by
M,, j the canonical moduli of the punctured disks Dnj, 1 < j < q.

Now, for notational simplicity, we use (he Same notations as in Step 1. That
is, ri,ij is the canonical local parameter of S'n at the neighborhood of Qj. For any
characteristic punctured domain Dnj c S'n of <p,,, in terms of the normalized local
parameters A, we have

Dnj iL./ : 0 •*£ IC, j - r, |. «=0,1, 2,.,., (11)

where (0) 1 and r„j is the canonical mapping radii of Dnj.
We denote by

l<j<q
the closed curves on the Riemann surface S'0, where fo/ is dehned in (11). Lemma 1.4

and the Koebe Distortion Theorem (see the Appendix) show that the curves {/„ (hf)}
lie outside the punctured disk

rnj \ ^ c/
w§0:8<1Ä11 • J $

where Cj CpS, K, rgfi > 1 is independent of «. Hence we obtain a map

f»- so\U j0 < - r-f \ > CAU {°^ m < rf\
j i 1

Let M„y be the modulus of the region f(Rok), where 1 < k < 3g + n — 3. We
have

1 K
< 1 < k <p,n 1,2, (12)

Mnk M0k

Since hRoj {Çqj : 'M < ] Çqj J «s roj} C S'0 has conformai modulus the

modulus ,M„j M(fn(jRoj)) satisfies

log 2
I <j< q. (13)

2si\. IX

Summing the inequalities (12) and (13) over all aiuiuli on the Riemann surface

S'0\ U {O < Ifo/i
'

}. we have

7,2 (aj ^°§ '-J k / 7,2 / Clj log Cj \ 2
N
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Together with the inequality (14), from Lemma 1.6 it immediately follows that

7,2 / cij iog Cj \ 2 2 / cij log Cj \2

E"k I
I in : yy "a- y~ y 2K

Mnk ^ " L* Mnk 2-" M
« 7 2sr A- "A J J

/ 7,2 '".r'i \2

- *• Eè+E( 2" '
MOA ^ »P

k i 2tt

that is,

,2
» / v—1 "/ ^

yn Ipjg'CJ )2 \E >*+ E<«-(E**j«+E 2»iog2 j <15>

A j A j
If I«Aq +oo for some fixed ko as 7? —> +oc, tlien the left-hand side of inequality
(15) approaches +c»o but the right-hand side remains bounded. litis contradicts the

assumption (10). Hence

dT(S'0,S'n) \ogK„ +oo,

which proves tlte case (i).
Combining Ahlfors' Lemma and Wolpert's Lemma (see the Appendix), we can

prove the case (ii), see e.g. [1].
The case (iii) follows from the discreteness of Teichmüller modular group acting

on Tg; see [17] for details.
In conclusion, we proved Theorem 2.4.

Proofof Lemma 3.2. Denote £q m («i(0):, ».., e3g+n-3-p(0)). Theorem 2.4 implies
that there exists a Jenkins-Strebel differential pj on S with type F. Its characteristic
annuli have ^o-heights

||fjj hp, i: j 0 '•+••/ 3 /. d b

and its characteristic punctured disks {!)' around {Qj} have <y+-circumferences {aj}.
Let rjj be the canonical local parameter of S near the puncture Qj, where 1 <j<q.

Then by using the normalized local parameter we have

D(l {p:0< f?(p)\<rj}, l<j <q.

dç p

where y^r(O) 1 and rj is the canonical mapping radius of D°.

For each e, we denote by {DJ} the characteristic punctured disks of the differential

<pF. Then

DJ =1/7:0 < fftp) r)}. 1 < j < q.
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where (Qj — 1 and r? is the canonical mapping radius of Dj.
From Lemma 1.5 it follows that, for each / there exists m j > 0 such that any ring

domain R c S around Qj with modulus M(R) > m / has at least one of its boundary

components lying inside the punctured disk {0 < \çf{p) I < ^r}-
If we denote

S< S\(o<|£?| ^}, / 1.2

1
r?

then for any pf > 0 which satishes mi < 4- log -4 < 2m\, we have
J £71 Pj

S> c S\Uj {() < fj(p)\ <. p>j}.

Let Mi- resp. Mf be the moduli of the characteristic annuli of the Jenkins-Strebel

differentials^oresp.^s),where 1 < k < 3g+n —3. Denote |\<pe\|5z ffs, \cpE\dxdy.
Then Lemma 1.6 implies that

a < <Pj '

p hi e2 jl, (Sr l0§ i)2

y^^+ _^ + V — %£-> Me i rfk=1Mk M y+ï i=i 2jF log y
rf \2

# 'a faff)
"S* Ù Afj

_ft|_
3g+" 3 p gj(Q)2 g

\2mutj )2

-foM, ^ ^
< EfJ# + ^ (Imicijj1

~nög2~
i'=l 2jt

where Mj is the confonual modulus of < |f['| < r,}.
Thus (he norm |</v |v,< is bounded from above independent of e, from which we

deduce that the quadratic differentials {</y } are locally uniformly bounded on .V. It
completes the proof of Lemma 3.2.

ProofofTheorem 4.5. To prove Theorem 4.5 it suffices to show If ' R+ —M is

continuous, injective and proper.
The continuity of Fy follows from Lemma 3.3.
To prove F,\ is injective, we assume that there are Vj, V% e K+ such tliat

FA(V1) FA(V2).
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Let Mjj, i 1, 2, be the reduced moduli of the punctured disk around Qj with
respect to the same fixed local parameter Kj, 1 < j < <?• When proving Theorem

3.1, with respect to the differential <p\ we have actually established the following
inequality:

y A. -Y4My < yi -To]M2jV Mlk ^ J V M2A- V 7 '
k j k j

(see the claim (3)). The fact M\k Afet, 1 <k<p, implies that

> E"J'V/L-
; J

Interchanging and i/o. the opposite inequality holds too. We therefore have

YalMu YalMu-
j j

Lemma 1.7 then implies the injectivity of the map /v\.
Brouwer's theorem on invariance of domain shows that Fa (M+) is an open domain

in M. If Fa (R+ S M, then there is a point Mo g M but Mo g 3Fa(R+). 'Lhat is,
there is a sequence

{Vn}n=l,Z... C 1+
approaching the boundary of but { Fa Vn |} approaches an interior point Mo of M.

The assertion that % (vni, vn2, vnp) approaches the boundary of K+ is

equivalent to one of the following:
: For all n, the sequence {V,, } remains bounded but vnka -> +0 for some fixed

1 < ko < p.

## When« -> -boo, the Euclidean norm ||V,,|| -> oo.

Denote by (p„ the unique Jenkins-Strebel differential which realizes the data Vn and A.

'Lhat is, <pn has a second order pole at Qj with leading coefficient — (jj) 1 < ./ < c/,

and its characteristic armuli have ^„-heights V„ g
In the case (:), from Lemma 3.2 and 3.3 it follows that the Ao-th component of

FA(Vn) approaches 0+, which contradicts the assumption that Mq g M.
In the case (,<•:), the sequence {V„/\\ Vf! ||} remains bounded but V,,/]] V„ |

0+. Lemma 3.3 shows that the quadratic differential (p„/\\ V„ | locally uniformly
converges to a non-zero Jenkins-Strebel differential q>o, with homotopic type {yk}.
From (ij/W Vn\\ -> 0, it follows that the quadratic differential <po has no second order

pole at Qj, 1 < j <q.
Since (p„ and q>n/\\ Vn jj have the same trajectory structures, from Lemma 3.3 we

obtain that the amiuli of <po have moduli Mq. This contradicts our previous assumption
that Mo g M.

Therefore Fa(R+) M, as desired.
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Appendix. Some known results

In previous proofs we needed several well-known results on conformai maps or qua-
siconformal homeomorpbisms. To make this paper self-contained, we add it here.

For their complete proofs, please see [1], [2], [24],

Koebe Distortion Theorem. If /: À -> C be a univalent function with /(0) 0

and f'(0) 1, then

\v\ \t\
< \f(z)\ <#+wy ~

Mori's Theorem. Iff : À -> À is a K-quasiconformal map with /(0) 0, then

?e A.

Suppose that A is a hyperbolic Riemann surface. Then X has a canonical metric
of constant curvature — 1. This metric is unique and denoted by dpx.

Let d\iv. y) denote the hyperbolic distance between two points x, y g X. Tien
we have die following two results.

Ahlfors's Lemma. Let f:X -v Y be a holomorphic map between hyperbolic
Riemann surfaces. Then either

(i) / is a locally covering map, or
(ii)f*(dpy) < dpx, and hence dy (f{x), f(y)) < dx(x:y)foranypair ofdistinct

points x, y g X.
In particular, ifhyperbolic Riemann surfaces X c X, then

'^/'y ^ dpg

Wolpert's Lemma. Let h : Si S2 be a K-quasiconformal homeomotj)hism
between hyperbolic Riemann surfaces Si, %

Ifa\ c Si is a closed hyperbolic geodesic, then the hyperbolic geodesic ai in the

homotopy class of f{a\) satisfies

Mßü
<L(a2) <K -Liai),

K

where Liai), i 1,2, denotes the hyperbolic length.
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