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Abstract. Matrix mutation appears in the definition ofcluster algebras of Fomin and Zelevinsky.
We give a representation theoretic interpretation ofmatrix mutation, using tilting theory in cluster
categories of hereditary algebras. Using this, we obtain a representation theoretic interpretation
of cluster mutation in case of acyclic cluster algebras.
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Introduction

This paper was motivated by the interplay between the recent development of the

theory of cluster algebras defined by Fomin and Zelevinsky in [FZ1] (see [Z] for
an introduction) and the subsequent theory of cluster categories and cluster-tilted
algebras [BMRRT], [BMR], Our main results can be considered to be interpretations
within cluster categories of important concepts in the theory of cluster algebras.

Cluster algebras were introduced in order to explain the connection between the
canonical basis of a quantised enveloping algebra as defined by Kashiwara and Lusztig
and total positivity for algebraic groups. It was also expected that cluster algebras
should model the classical and quantised coordinate rings of varieties associated to
algebraic groups - see [BFZ] for an example of this phenomenon (double Bruhat
cells). Cluster algebras have been used to dehne generalisations of the Stasheff poly-
topes (associahedra) to other Dynkin types [CFZ], [FZ3]; consequently there are

likely to be interesting links with operad theory. They have been used to provide the

solution [FZ3] of a conjecture of Zamolodchikov concerning 7-systems, a class of
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functional relations important in the theory of the thermodynamic Bethe Ansatz, as

well as solution [FZ4] of various recurrence problems involving Laurent polynomials,

including a conjecture of Gale and Robinson on the integrality of generalised
Somos sequences. Here the remarkable Laurent properties of the distinguished
generators of a cluster algebra play an important role. Cluster algebras have also been

related to Poisson geometry [GSV1], Teichmüller spaces [GSV2], positive spaces and
stacks [FG], dual braid monoids [BES], ad-nilpotent ideals of a Borel subalgebra of a

simple Lie algebra [P] as well as representation theory, see amongst others [BMRRT],
[BMR], [CC], [CCS1], [CCS2], [MRZ],

A cluster algebra (without coefficients) is defined via a choice of free generating
set it {xI,,. x„} in the held F of rational polynomials over Q and a skew-

symmetrizable integer matrix B indexed by the elements of x. The pair (x, B), called
a seed, determines the cluster algebra as a subring of F. More specifically, for each

i 1,...,«, a new seed m (x, B) (F, B') is obtained by replacing x; in x by
X;' g F, where x/ is obtained by a so-called exchange multiplication rule and B' is

obtained from B by applying so-called matrix mutation at row/column i. Mutation
in any direction is also defined for the new seed, and by iterating this process one
obtains a countable (sometimes finite) number of seeds. For a seed (x, B), the set

x is called a cluster, and the elements in x are called cluster variables. The desired

subring of F is by definition generated by the cluster variables.

It is an interesting problem to try to find a categorical/ module theoretical setting
with a nice interpretation of the concepts of clusters and cluster variables, and of
the matrix mutation and multiplication exchange rale for cluster variables. For the

case of acyclic cluster variables so-called cluster categories were introduced as a

candidate for such a model [BMRRT], Skew-symmetric matrices are in one-one
correspondence with finite quivers with no loops or cycles of length two, and the

corresponding cluster algebra is called acyclic if there is a seed (x, B) such that B

corresponds to a quiver Q without oriented cycles. There is then, for a held K, an
associated finite dimensional path algebra K Q. The corresponding cluster category G

is defined in [BMRRT] as a certain quotient of the bounded derived category of K Q,
which is shown to be canonically triangulated by [K], In [BMRRT] (cluster-)tilting
theory is developed in G, with emphasis on connections to cluster algebras. The

analogs of clusters are (cluster-)tilting objects, and the analogs of cluster variables
are exceptional objects. In case Q is a Dynkin quiver, it was shown in [BMRRT] that
there is a one-one correspondence between cluster variables and exceptional objects
in C (in this case all indécomposables are exceptional) which takes clusters to tilting
objects. This was conjectured to hold more generally.

In this paper we show that also the matrix mutation for cluster algebras has a

nice interpretation within cluster categories, in terms of the associated cluster-tilted
algebras, investigated in [BMR], Cluster-tilted algebras are endomorphism algebras
of tilting objects in cluster categories. It follows from our results that the quivers of
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the cluster-tilted algebras arising from a given cluster category are exactly the quivers
corresponding to the exchange matrices of the associated cluster algebra. This has

further applications to cluster algebras (see [BR]), Another main result of this paper
is an interpretation within cluster categories of the exchange multiplication rule of an

(acyclic) cluster algebra. So, together with the results from [BMRRT], all the major
ingredients involved in the construction of acyclic cluster algebras have now been

interpreted in the cluster category.
Tilting theory for hereditary algebras has been a central topic within representation

theory since the early eighties. This involves the study of tilted algebras, and

various generalisations. An important motivation for this theory was to compare the

representation theory of hereditary algebras with the representation theory of other

homologically more complex algebras. The main result of [BMR] is also in this

spirit, showing a close connection between the representation theory of cluster-tilted
algebras and hereditary algebras. It is the hope of the authors that our "dictionary"
also can be used to obtain further developments in the representation theory of finite
dimensional algebras. Also new links between this held and other fields of
mathematics can be expected, having in mind the influence of cluster algebras on other
areas.

In [CCSf] an alternative description of the cluster category is given for type A.
The cluster category was also the motivation for a Hall-algebra type dehnition of a

cluster algebra of Unite type [CC], [CK],
The paper is organised as follows. In Section 1 we give some preliminaries,

allowing us to state the main result more precisely. Most of the necessary background
on cluster algebras is however postponed until later (Section 6), since most of the paper
does not involve cluster algebras. In Section 2 we prove the following: If T is cluster-
tilted, then so is T/ TeT for an idempotent b in F. This is an essential ingredient
in the proof of the main result, and also an interesting fact in itself. In Section 3

some consequences of this are given. In Section 4 we prepare for the proof of our
main result. This involves studying cluster-tilted algebras of rank 3, and a crucial
result of Kemer [Ke] on hereditary algebras. The main result is proved in Section 5,

while Section 6 deals with the cormection to cluster algebras, including necessary
background.

'Hie results of this paper have been presented at conferences in Uppsala (June
2004), Mexico (August 2004) and Northeastern University (October 2004),

The first named author spent most of 2004 at the University of Leicester, and

would like to thank the Department of Mathematics, and especially Robert J. Marsh,
for their kind hospitality. We would like to thank the referee for pointing out an error
in an earlier version of this paper, and Bernhard Keller and Otto Kerner for helpful
comments and conversations.
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1. Preliminaries

1.1. Finite-dimensional algebras. In this section let A be a finite dimensional K-
algebra, where K is a field. Then 1a <?i + <?2 4 b <?», where all mt are primitive
idempotents. We always assume that A is basic, that is, Ae; Aej when i ^ j.
There are then (up to isomorphism) n indecomposable projective A-modules, given
by Aei, and n simple modules, given by Ae, / r ei, where r is (lie Jacobson radical
of A.

If K is an algebraically closed held, then there is a finite quiver Q, such that A
is isomorphic to KQ/I, where K Q is the path-algebra, and I is an admissible ideal,
that is there is some in, such that r'" ç / cp. We call Q hie quiver of A. In case A
is hereditary, the ideal I is 0. For the rest of this paper, except in Section 2, we always
assume that K is algebraically closed.

The category mod A of hnite dimensional left A-modules is an abehan category
having almost split sequences, In case A is hereditary there is a translation functor r,
which is dehned on all modules with no projective (non-zero) direct summands.

The bounded derived category of A, denoted D (mod A), is a triangulated
category, with suspension given by the shift-functor [1], which is an autoequivalence.
We denote its inverse by [—1]. In this paper, we only consider derived categories
of hereditary algebras H. They have an especially nice structure, since the

indecomposable objects are given by shifts of indecomposable modules. In this case we
also have a translation functor r : //(mod //) —> //(mod //), extending the functor
mentioned above. We have almost split triangles Âhf B C -> in //''(mod //),
where rC A, for each indecomposable C in ID //''(mod //). We also have
the formula Horn ,/->( A, rY) tts D Ext^jT, X), see [H]. Here D denotes the ordinary
duality for finite-dimensional algebras. Let II be a hereditary hnite-dimensional
algebra. Then a module T in mod H is called a tilting module if \ix[l/f(T, T) 0 and

T has, up to isomorphism, n indecomposable direct summands. The endomorphism
ring End//(r)op is called a tilted algebra.

For an algebra F, it will be convenient to call the quiver of I\ what is usually
called the quiver of Fop

See [ARS] and [R] for further information on the representation theory of hnite
dimensional algebras and almost split sequences.

1.2. Approximations. Let S be an additive category, and X a full subcategory.
Let E be an object in 6. If there is an object A in X, and a map f: X —* E, such
that for every object X' in X and every map g: X' -> E, there is a map h : X' -* X,
such that g fh, then / is called a right X-approximation [AS]. The approximation
map / : X hp E is called minimal if no non-zero direct summand of X is mapped
to 0. The concept of (minimal) left X-approximations is dehned dually. If there is a

held K, such that Homg(X, Y) is hnite dimensional over K, for all A, Y eg, and
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if X add M for an object M in g, then (minimal) left and right X-approximations
always exist. Here, for an object M in any additive category, we let add M denote
the smallest full additive subcategory closed under direct sums and containing M.

1.3. Cluster categories and cluster-tilted algebras. We remind the reader of the
basic definitions and results from [BMRRT], Let // be a hereditary algebra, and let
D D&(mod II be the bounded derived category.

Ilie cluster category is defined as the orbit category G // 3d /F, where F
r — 1

[ 1 ]. The objects ol'C // arc the same as the objects of ID, but maps are given by

Horn, (X. Y I |. I loin ,•>(.¥. FT).

Let Q : ID —*• G be the canonical functor. We often denote Q(X) by X, and use the

same notation for maps. Let X be an indecomposable object in the cluster-category.
We call mod H v add //111 mod H v H [1] the standard domain.

There is (up to isomorphism) a unique object X in mod // V //111 Ç I) such that

Q(X) X.
t _Assume X\, Xi are indecomposable in the standard domain, then a map / : X\

X%, can uniquely be written as a sum of maps f\ + ft + + fr, such that f) is in
Horn© IXI. Fdi X2), for integers <7; • In this case <7; is called the degree of fi.

The following summarises properties about cluster categories that will be freely
used later.

Theorem 1.1. Let H be a hereditary algebra, and G h the cluster category of H
Then

(a) e h is a Krull-Schmidt category and Q presents indecomposable objects;

(b) G h is triangulated and Q is exact;

(c) C h has AR-triangles and Q preserves AR-triangles.

Proof, (b) is due to Keller [K], while (a) and (c) are proved in [BMRRT],

Let us now fix a hereditary algebra II. and assume it has, up to isomorphism, n

simple modules. A cluster tilting object (or for short, tilting object) in the cluster

category is an object T with Lxlj (T. T) 0, and with n non-isomorpliic indecomposable

direct summarids. Two tilting objects T and /" are said to be equivalent
if and only if add T add T. We only consider tilting objects up to equivalence,
and therefore we always assume that if T [J, 7) is a tilting object, with each T\

indecomposable, then T\. f Tj fori -f j.
There is a natural embedding of the module category into the bounded derived

category, which extends to an embedding of the module category into G. This
embedding is in general not full. It was shown in [BMRRT] that the image of a tilting
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module in mod// is a tilting object in Gh- It was also shown that if we choose

a tilting object T in Gh, then there is a hereditary algebra II' and an equivalence
Db ill') -*> Db (H), such that T is the image of a tilting module, under the embedding
of mod //' into C// — C//.

If T 11 X is a tilting object, and X is indecomposable, then T is called an almost

complete tilting object.
The following was shown in [BMRRT],

Theorem 1.2. Let T be an almost complete tilting object in G h Then there are
exactly two complements M and M*. There are uniquely defined non-split triangles

M* -* B -> M

and

The maps B —M and B' M* are minimal right add T-approximations, and the

maps M* —f B and M —> B' are minimal left add T-approximations.

The endomorphismring Inidr 7' )op of a tilting object in G is called a cluster-tilted
algebra. Using the notation of Theorem 1.2. we want to compare the quivers of the

endomorphism rings F Fnd< ' T LI M)op and F' Fndr i I LI M*)op.

1.4. Matrix mutation. Let X (xif) be an n x «-skew-symmetric matrix with
integer entries. Choose k e {1,2 «} and dehne a new matrix pk(X) X'
(xL) by

I—Xfj
if k i or k j,

Xij + otherwise.

The matrix nk(X) X' is called the mutation of X in direction k, and one can show
that

- Pk(X) is skew-symmetric, and

- /'U/'U-Vü X

Matrix mutation appears in the definition of cluster algebras by Fomin and Zelevin-
sky [FZ1],

1.5. Main result. At this point, we have the necessary notation to state the main
result of this paper. There are no loops in the quiver of a cluster-tilted algebra
[BMRRT], and we also later show that there are no (oriented) cycles of length two. It
follows that one can assign to F a skew-symmetric integer matrix Xp. Actually, there
is a 1-1 correspondence between the skew-symmetric integer matrices and quivers
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with no loops and no cycles of length two. Fixing an ordering of the vertices of the

quiver, this 1-1 correspondence determines mutations ßk also on finite quivers (with
no loops and no cycles of length 2). The following will be proved in Section 5. The
notation is as earlier in this section, especially the held K is algebraically closed.

Theorem 1.3. Let T be an almost complete tilting object with complements M and

M ' and let F Ende (F 11 M)op and F' Ende(T 11 M*)°v. Let k be the vertex of
F corresponding to M. Then the quivers ßr and (>;-••. or equivalently the matrices

Xr (xij) and Xp (*•,•)„ are related by the formulas

Ulis is the central result from which the connections with cluster algebras
mentioned in the introduction follow. An independent proof of Theorem 1.3 in the case

of finite representation type is given by Caldero, Chapoton and Schiffler [CCS2],

2. Factors of cluster-tilted algebras

In this section, our main result is that for any cluster-tilted algebra F, and any primitive

idempotent e, the factor-algebra T/TeT is in a natural way also a cluster-tilted
algebra. This will give us a powerful reduction-technique, which is of independent
interest, and which we use in the proof of our main result in this paper.

Suppose that F is the endomorphism algebra of a tilting object T in the cluster

category corresponding to a hereditary algebra H. The main idea of the proof
is to show that if we localise ,T> Db (mod II at the smallest thick subcategory
containing a fixed indecomposable summand M of f, then we obtain a category
triangle-equivalent to the derived category of a hereditary algebra 11'. The factor-
algebra T/TeT (where e is the primitive idempotent of F corresponding to M) is

then shown to be isomorphic to the endomorphism algebra of a tilting object in the

cluster category corresponding to //'.

2.1. Localisation of triangulated categories. We review the basics of localisation
in triangulated categories. Let T be a triangulated category. A subcategory M of T
is called a thick subcategory of T if it is a full triangulated subcategory of T closed
under taking direct summands.

When M is a thick subcategory of T, one can form a new triangulated category
Tm T/ M, and there is a canonical exact functor l.A: : T -* See [Ric] and

IV1 for details.

g
Xij -f- 2

ifk i or k j.
otherwise.
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For every M' in M. we have L_vpM') 0, and F,\{ is universal with respect to
this property. We also have the following.

Lemma 2.1. Assume T is a triangulated category, and M is a thick subcategory

ofT. Then, for any map f in T we have 0 ifand only iff factors through
an object in M.

We will need the following result of Verdier [V, Ch. 2, 5-3], |V2|:

Proposition 2.2. Let T be a triangulated category with thick subcategory M, and let
be the quotient category with quotientfunctor l.M : T -* Tm- Fix an object Y

of T. Then every morphism from an object of M to Y is zero ifand only iffor every
object X of T the canonical map

I Ion, h X. Y) > Horn ./..U'Xb LM(Y))

is an isomorphism.

In particular, we note that this implies that L A<< is fully faithful on the full subcategory

of T with objects given by those objects of T which have only zero morphisms
from objects of M.

2.2. Equivalences of module categories. Let H be a hereditary algebra and M an

indecomposable //-module with ExtJj(M, M) 0. Then there is (up to isomorphism)

a unique module E with the following properties:

Bl) E is a complement of M (that is, E LI M is a tilting module).

B2) For any module X in mod//, we have that ExtlH(M, X) 0 implies also

Ym1h{E, X) 0.

This is due to Bongartz [B], and the module E is sometimes called the Bongartz-
complement of M. For a module X in mod H, we denote by X1 the full subcategory
of mod// with objects Y satisfying Extj^X, Y) =0. If T is a tilting module,
then it is well known that 7'1 Fac T, where Fac T is the full subcategory of all
modules that are factors of objects in add T. Note that B2) can be reformulated as

M1 (M U E)1.
The following result can be found in [H] and [ H.RS |.

Proposition 2.3. (a) Assume M is an indecomposable non-projective H-module with
ExtlH(M. M) 0, and let E be the complement as above. Then the endomorphism
ring IF End//(£')op is hereditary, and Horn //(M, E) 0.

(b) Let U denote the full subcategory of mod H with objects X satisfying

Hornh(M, X) 0 Extj^M, X).
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Then U is an exact subcategory ofmod H and thefunctor Horn# (E, —J from mod H
to mod II' restricts to an exact equivalence between U and mod II'.

We note that the above result does not hold in general in die case when M is

projective. For example, consider the quiver of type A3 with vertices 1, 2 and 3 and

arrows from 1 to 2 and 2 to 3. Let M I'?. Then E P\ © P3 and Endh{E)°p has

three indecomposable objects while U has only two. The only other complement of
M is E' P\ © f l'y 11\ Ilten Horn //(/A. I\ 0 although If lies in U and is

non-zero. So also in this case the functor Horn //(/A, from U to mod End// (E')"p
is not an equivalence. However, we will need the following result which is along
similar lines for the case when M is projective.

Lemma 2.4. Let M be an indecomposable projective H-module with corresponding
idempotent eM e H. Let H' H/HeMÜ.
(a) We have Torf7 ill', U) 0, for any object U in U, where U is as defined above.

(b) We have that V is an exact subcategory of mod H and thefunctor II' —from
mod II to mod Hr restricts to an exact equivalence between U and mod II'.

Proof. We have that V is an exact subcategory of mod II as in Proposition 2.3. It is

easy to see that the functor II' 0// — is art equivalence between U and mod II'. To

see that it is exact, we consider the following projective resolution of H' as a right
//-module:

0 -* HeMH U - Jf - OL

Applying — ®h U to this sequence, where U is an object in TL we obtain the long
exact sequence:

Torf (H. U) TorfC//', U) -> HeMH ®H U -* H ®H LS H' ®H U -> 0.

Since H is projective, Torf (H, U) 0. We also have

HeMÜ U H HcmU 0

since e^U 0. It follows that Torf (//', U) 0 and hence that H' <S>h ~ is an
exact functor on U.

2.3. Localising with respect to an exceptional module. Fix a hereditary algebra

//, and an indecomposable module M in mod LI, with ExtlH(M. M) 0.

Lemma 2.5. Let M addThen M is a thick subcategory in Db (mod H).

Proof. Straightforward from the fact that any map between indecomposable objects
in M is either zero or an isomorphism.
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Let 53 //'(mod II), let Dm be the category obtained from 53 by localising
with respect to M, and let I._m : ID -> Dy be the localisation functor. Note that U
is the full subcategory of mod II consisting of modules X with Hont/) (M. X\i |) 0

for all i.

Theorem 2.6. Let H be a hereditary algebra with n simple modules up to isomorphism.

Let M be an indecomposable H-module with Ext^(M, M) 0, and let M
denote the thick subcategory generated by M. Then IDm is equivalent to the derived

Category of a hereditary algebra with n — 1 simple modules (up to isomorphism).

ToprovetliisweshowthatlD.il/isequivalenttothesubcategory53o add{X[i] g
53 I X g U.i g Z} of 53, and that 53o is equivalent to the derived category of a

hereditary algebra with n — 1 simple modules. This is the content of the following
three propositions. We usually denote the object Lm(X) by X.

Proposition 2.7. In the setting of Theorem 2.6, the localisation functor Lm induces

an equivalence 53o H* Dm-

Proof. First note that by Proposition 2.2 we have that I. m : Do -$ Dm is My
faithful. Any object in 53jj is of the form l.A:iX\ for some object X in 53. Let X
be an arbitrary object in Dm (where X is in 53). Then consider the minimal right
^/-approximation Mx -> X, and the induced triangle Mx —> W —^ Wo —It is

clearthat X Xq. We claim that JSj is in 53o, dial is Horn />( M, Aol'l) 0 tor all i.
To see this, consider the long exact sequence obtained by applying Hornß(M.
to the triangle Mx H* X Xq For any i. the map HonqpfM, Mx\i\) ->
Horn.©(M, X\i\) is an epimorphism, since Mx X is a right At-approximation.
The map is injective since any element in Hom/>( ;V/, Mx\' \) is eitlier zero or an

isomorphism. Thus, Xo is in 53o- This completes the proof that Lm induces an

equivalence 53o -* Dm- d

The next result is an extension of Proposition 2.3 to the setting of derived
categories.

Proposition 2.8. In the setting of Theorem 2.6, assume M is non-projective. Let E
be the Bongartz-complement of M, and let IT Endh(E)°p. Then MHom(£.
induces an equivalence Do -> 53' //''(mod IT).

Proof. Recall that U c M1 (M 11 E)1. This implies that for X g U, we have

thalLHomf/:, A) is concentrated in degree zero with zero-term Horn // II. X). Since
Horn //(IT is a dense functor from U to mod II', and KHom( IT j commutes witli
[1], it follows that LHomi //, restricted to Do is dense.
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Assume A, Y are indecomposable objects in the same degree in Dq. By the above

it now follows directly from Proposition 2.3 that

Homy)(A, Y) ~ Homiyy(IRHom(£i', A), MHom(f?, Yj).

We also need to show that

Homy, (A, F[l]) ^ Homyy(RHom(II, A], ?i Iom( F[l])).
For this note that by Proposition 2.3, the equivalence Horn// (E, : U -> mod IV is

exact, and that the embedding V mod II is exact. This implies that

Homy) (A, Y[ 1 |i it I loin,. (A. >
'
11 ] •

it loin i I loin//1II. A), Horn//( /), F)[l]>

it Homyy(MHom(.E, A), RHom(/f. K)[T f)

it Homy)/(KHom(£, A), MHom(Zs, F[l]));
Thus die restriction of MHomi II, to Do is fully faithful. This completes the proof.

Proposition 2.9. In the setting of Theorem 2.6, assume M is projective. Assume
M it HeM for the primitive idempotent in H and let IV II/IIcm II Then

L(H' ©a —) induces an equivalence Do D' D' mod IV).

Proof. First recall from Lemma 2.4 that Torf (Hr, U) 0 for any U in U. This
means that the image Li II' ©H U) is just H' ©h U concenhated in degree 0.

It now follows that L(7/'@// — i restricted to Do is dense, by using that the functor
IV ©h — : U -> mod IV is dense and that L(TV ©u —) commutes with [1],

Assume A, Y are indecomposable objects in the same degree in Do. It follows
from Lemma 2.4 that

Homy, (A, Y) Horn,, I Li//' ©h A I. 'oil' ©H Yj).

We need also to show that

iioma. im) ~ iioni() i:,(//' ©h a©H > ii id.

For this recall that the embedding of U into mod II is exact, and that II' ©n — is

exact on U by Lemma 2.4. Thus it follows that:

Homy,(A, F[l]) i; Horn-,/(A, F[l])
äs Horn£>'(TV ©h A, H' ©h F[1J)

£3 1 Ioill /, 11J //' })// A I ill'©,, 1* r I 1 I •

~ Hom&iHH' ©h X). L(H' ©h }jl|n.
Tlris shows that the functor is fully faithful and hnishes tire proof.
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For the remainder of this section, we view the induced equivalence between ID m
and D' as an identification.

2.4. The factor construction. As before, let M be an indecomposable //-module
with Ext-L (M, M) 0, where H is hereditary, and let E be the Bongartz complement

of M. We investigate the image of an arbitrary complement T of M under the functor
L _xt. For an object X in ,2). we use the notation X L( X), as before. Note that

Lm(T) Lm(T) T, where T T UM.

Lemma 2.10. Let the notation be as above.

(a) Lm(T) T is in mod//' v H'[ 1],

(b) Horn-, i f. 7"|i:l) 0.

Proof, (a) Let T be a minimal right ^-approximation, and consider the
induced triangle:

M' -if Aut -* (1)

in D. Jjince Homy>(M[-l], T) 0, we have that M' is in add A/. It is clear that
T ~Uj. Now, as in the proof of Proposition 2.7, we get that Uj is in Do. Here it
is clear that Uj U\ U tl)\ 11, where U\ Coker / and £% Ker / are in iL It
is clear that II\ and XJ% are //'-modules. We only need to show that 'U% is projective.
For an arbitrary U in U, we have that Kxl^t'Lb, U) 0, since ExtlH(M. U) 0

and (h is a submodule of M'. Using that V. is an exact subcategory of mod H, and

that the equivalence 11^-+ mod //' is also exact, it follows that Wi is projective in
mod IV. Hence T ~ U-f is in mod //' v //'[If

(b) Using again Hie triangle (1) we obtain Hie long exact sequence

Horn f)(T. T\ 1 ]) —* Horn /)(/', f/r[ 1 ]) —> Horn d(T. M'[2]).

Therefore, I Iom V)i I '/ 111» 0. Now, by Proposition 2.2, it follows that

Horn(7'. Uy[I ]i 0 since ///•[ 11 is in £>o, and hence Homp<(7'. 7'P.l) 0.

Denote as before by F the functor r _1 [1] : ID -D. When it is not clear which
derived category SI) we are dealing with, we will denote this functor by lia and the

functor r~! by rjj1.

Lemma 2.11. Let H be a hereditary algebra, and let X be an object in ID such that
X is in mod II v II [11. Then Homo A' [ 1 ] > =0 ifand only // F\t('. (X, X) 0
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Proof. Assume A is in mod H v II\ 1|, and let X be the image of X in the cluster

category G h of H. Then Ext<?(X, X) ~ Horn A, A[l]) O D Horn© (X. A[1J),
This follows from HomyxfA, F_1A[1]) Homo (A, rX) I) Horn/) (A, X\ I ])

and the easily checked fact that Hom^fA, /•" A| 1 |i 0, whenever i f {—1,0}.

Combining these lemmas, and using that a tilting //-module induces a tilting
object in the cluster category [BMRRT, 3.3], we obtain the following.

Proposition 2.12. Let T M Id T be a tilting H-module as before. Then the image
T of T in the cluster category G h' à a tilting object.

Proof. By Lemmas 2.10 and 2.11 we have that Extg, (7\ T) 0, and that T is in

mod //' v II'\ 11. It follows from Lemma 2.1 that Ta is non-zero when T„ is a direct
summand in T. Thus, it suffices to show the following: For two indecomposable non-

isomorphic direct summands Ta and Ty of T, we have T„ pÉ* î|. We first show that for
any map a\ T„ —> 'I),, there is a map ß : Tc —> Ty such that LMiß) ß a- Maps
in Üb' from Ta to Ty can be viewed as certain equivalence classes of pairs (eq, af) of
maps in 3b, where A is some object in 3b, the map u\\ A T„ is a map, which when

completed to a triangle X Ta M' ^ in 3b, has M' in M and a% : A -> Ty is a

map in 3b. Since M 0, we can assume that M does not occur as a direct summand
of A. Hence, M' must be in add M, since Horn /)(/'«, M[\]) 0. Then there is an
exact sequence Hom£)(ra, Ty) -> Horn oiX, Ty) Horn jßM'. ^[1]) 0. Thus,
there is some ß : Ta Ty such that oo ß : u\. It is easily seen that the map in
3b', represented by the pair (idrfl, ß) is equivalent to (oq, «2). But the pair (idrfl, ß)
represents p, by the dehnition of the localisation functor, and we have ß a.

Now assume ß is an isomorphism. Then the corresponding triangle Ta Ty

M" —> in 3b has M" in M. It is clear that M" actually is in add M, since otherwise

some M[i] would be a direct summand of Ta. This means that M" 0, since

Horn©(M, rfl[l]) 0. Hence ß is an isomorphism.

We can now complete the main result of this section. Let # be the idempotent
in T End(3(T)op, such that Ye cr Horrq (/ • M).

Theorem 2.13. With the above notation, there is a natural isomoqMsm Y/YeY ~
EndtV(f)op.

The remainder of this section will be devoted to proving this theorem. Since the

cluster category is defined using the functor F r _ 1

[1 ], we need to compare rjj1 (A)

and r ~1 A for an indecomposable object A in 3b. In general rjj'A f tT1 A, but wiffi
extra conditions on A, sufficient for our purposes, everything behaves nicely. We
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do not include our proof of the next lemma, since it has been generalised by Keller,
with a simpler proof [K], Note that the existence of minimal left almost split maps is

equivalent to the existence of a left Serre functor G by [RV], and that G r_1[—1],

Lemma 2.14. Let X be an indecomposable object in <0o C 0. Then X is indecomposable

and r X es r~} X.

Let Tx be an indecomposable direct summand in T, not isomorphic to M. Let
Mx -* '/À be a minimal right add M-approximation, and consider as before the
induced triangle

Mm > Tx > t'x >

in 0, where we know that Ux is in 0o by the proof of Proposition 2.7. Thus, by
applying the above lemma to each of the indecomposable direct summands of Ux,

we obtain r^lUx ~ T~yUx, and thus /•'•;>/ ', ~ Fß/Ux. It is also clear that Ux ~ Tx.

Now, pick two (not necessarily different) indecomposable direct summands Ta

and Tb of T. Construct tire triangle

Mb -> Tb -> Ub

as above, and apply F to it, to obtain the triangle

F Mb -* FTb Hi* FUb ->

Apply Houi /)(T„, to this triangle, to obtain the long exact sequence

Horn ,",( 7;,.. FMb) > I lorn FTb)

Horn of/;,. FUb) -* Homo ('7;,. FMb[ 1]),

The last term vanishes, since Ta and Mi, are modules. Since Mb Tb is a minimal
right add M-approximation, it follows that F Mb -* I'D, is a minimal right add FM-
approximation. We have that I loin FUb) — I loin ,>( T, FT i/i !'M i. where
for an object Z we use the notation Horn (A, Y)/(Z) to denote the Horn-space modulo

maps factoring through an object in add Z.
We claim there is an exact sequence

1 loino' T,. FMb)j(M) > Hom£>(rfl, FTb)/{M) > Homo'/A FUb)/(M) > 0

induced from the exact sequence (2). For this it is sufficient to show that the kernel of
the second map is contained in the image of the first. Soleta g I loin />i T,. Il) i/i M i.
and assume there is a commutative diagram

Ta FTb FUb

M'
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for some M' in add M. Since Horn£>(M, F M\,\ 11) 0, there is ß%: M' —> FTbi

such that M' -7 FF, -> FUb M' —> FUb. In Uom.j)(Ta, FTb)/(M) we have

a a — ßißi- By using the long exact sequence (2), we obtain that a a — ßtß\
factors through F Mb -> Fl),, so the sequence is exact. It follows from this that
I loin ,»7;,.. FTb)/(M II FM) ~ Homw«7'a, FUb)j(M).

Let f:M\ -> F iß be a minimal right M -approximation, and complete to a

/triangle M\ -* FUb —* (FUb)'- Applying Horn&(Ta, we get an exact sequence

I loin •,)( Mi) > I loin FUb) > I loin <>< F,. (FUb)') > I loin .V/, 111

Since is in degree 0 or 1, then FUb is in degree 1,2 or 3, so M\ is in degree 0,1, 2

or 3. Hence the indecomposable direct summands of M1111 are in degree at least I.
sothatHom0(ra, M][l]) 0. Since a map h : Ta -» Flh, factors tlirough an object
in M if and only if it factors through the minimal right M.-approximation of Flh,,
we get the isomorphism

I loin of /;,.. /'7>ru/(.V/! - Honioi (Fg)UbY).

We get that this is isomorphic to Hom 0 (F^Ub), since (F&UbY is in Dq. By
Lenuna 2.14 this is isomorphic to Horn 2-) F^/Tb). We tlius obtain that

Hom®(ra, Fg)Tb)/(M U FM) ~ Hom0/(fa, F,} f>

We have Horn$>(Ta, Tb)J(MliFM)m I loin pi Tb)J(M). Consider again the

triangle —> 'Ft, —> lh, in 1), where fb : Mb —> 'Ft, is a minimal right 41-approximation.

Applying Homo gives an exact sequence

Hornß(Ta, M, I > IIoni 7;;. Tb) > I loin ,,iUb) > I loin ••>(/;,. Mr,|1().

Since Mj, is a module, we have Hom£>(ra, M[,[l]) 0, and hence

Hom.f)(ra, Tb)j(M) ~ Horn£>(Ta, Ub), which is isomorphic to Horni)'FFa, Ub) by
Proposition 2.2. We obtain that:

Honif)(ra, Tb)/(M U FM) ~ I loin fb).

HenceT/TeT Horner, r)HHom£>(7\ FT)/(MUFM) a Hom^y(7\ T)H
Hom0/ (T, /•'}-) T) as vector spaces. It is straightforward to check that the map is also

a ring map. Theorem 2.13 is proved.

2.5. Comparison with tilted algebras. We give an example showing that a result
similar to Theorem 2.13 does not hold for tilted algebras. We would like to thank
Dieter Happel for providing us with this example. There is a tilting module for
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the path algebra of a Dynkin quiver of type £>5, such that the corresponding tilted
algebra A has the quiver

with relations aß ßy — Se 0. If we let £4 be the primitive idempotent
corresponding to vertex 4, then A /'A 04 A is not tilted, since it has global dimension
three.

It is well known that the endomorphism-ring of a partial tilting module is a tilted
algebra. However, a similar result does not hold for cluster-tilted algebras. An
example of this is the path algebra of an oriented 4-cycle, modulo the cube of its
radical. This is a cluster-tilted algebra of type I)\.

3. Cluster-tilted algebras of rank at most 2

In this section we apply the main result of the previous section to show that (oriented)
cycles in the quiver of a cluster-tilted algebra have length at least three. For the rest
of the paper, the held K is assumed to be algebraically closed. Let 7) U 7) U U Tn

be a tilting object in the cluster category G. We denote by S%(T) the tilting object
T' obtained by exchanging fj with the second complement of 7j LI LI 7)_i U

Tt+i EE"- • II Tn. Let T — Fnd, /'f'p and F' Ende(r/)op be the corresponding
cluster-tilted algebras. Passing from F to F' depends on the choice of tilting object T.
But we still write <A(T) F', when either it is clear from the context which tilting
object T gives rise to F, or when this is irrelevant. We also say that F' is obtained
from T by mutation at k.

From [BMRRT] we know that all tilting objects in G h can be obtained from
performing a finite number of operations & to H, where H is the hereditary algebra
considered as a tilting object in Gulf

k is a source or a sink in the quiver of a hereditary algebra, then mutation
at k coincides with so-called APR-tilting [APR] (see [BMR]), and the quiver of the

mutated algebra SjtCfi) is obtained by reversing all arrows ending or starting in k.

Lemma 3.1. The cluster-tilted algebras of rank at most 2 are hereditary.

Proof. This follows from the fact that any cluster-tilted algebra can be obtained by
starting with a hereditary algebra, and performing a finite number of mutations. If we

3

5

4
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start with a hereditary algebra H of rank at most 2, the algebra obtained by mutating
at one of the vertices is isomorphic to H.

Proposition 3.2. The quiver ofa cluster-tilted algebra has no loops and no cycles of
length 2.

Proof This follows directly from combining Lemma 3.1 with Theorem 2.13.

Note that the assertion of no loops was proven in [BMRRT, Cor. 6.15], while the
second assertion was first proven by Gordana Todorov in case of finite representation
type.

4. Cluster-tilted algebras of rank 3

In this section we specialize to coimected hereditary algebras of rank 3, and the cluster-
tilted algebras obtained from (hem. We describe the possible quivers, and give some
information on the relation-spaces. Later, this will be used to show our main resul t
for algebras of rank 3. In the proof of our main theorem, we use Theorem 2.13 to
reduce to the case of rank 3. For hereditary algebras of finite representation type,
there is up to derived equivalence only one connected algebra of rank 3, and thus up to
equivalence only one cluster category G. In this case the technically involved results

of this section reduce to just checking one case: The only cluster-tilted algebra of
rank 3 which is not hereditary is given by a quiver which is a cycle of length 3, and

with the relations that the composition of any two arrows is zero.

4.1. The quivers. We consider quivers of the form

t
1

where r > 0, s ï» 0 and t > 0 denote the number of arrows as indicated in the above

figure. For short, we denote such a quiver by Qrst-

Up to derived equivalence, all connected finite dimensional hereditary algebras
of rank 3 have a quiver given as above. We first note that factors of path-algebras
of such quivers by non-zero admissible ideals are never cluster-tilted. We omit our
original proof of this fact since it is a consequence of the more general (recently
proven) fact from [KR] that any cluster-tilted algebra is either hereditary or of infinite
global dimension. Hence, since Qrst has no oriented cycles, it follows that if it is the

quiver of a cluster-tilted algebra, there can be no proper relations. So we have the

following.
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Lemma 4.1. If F is a cluster-tilted algebra with quiver of type Qrsi, then V is

hereditary.

Ulis has the following consequence.

Corollary 4.2. The quiver of a non-hereditary connected cluster-tilted algebra of
rank 3 is of the form

t
1.3 » 3

with r,s,t > 0.

Proof. Combine Lemma 4.1 with Proposition 3.2.

In view of this we refer to the cluster-tilted algebras of rank 3 which are non-
hereditary as cyclic cluster-tilted algebras.

4.2. The relations. We first show that relations are homogeneous.

Proposition 4.3. Let F be a cluster-tilted algebra of rank 3 with Jacobson radical r.
Then r6 0, and the relations are homogeneous.

Proof. Without loss of generality we can assume that there is a tilting module T
X LI Y 11 Z for a hereditary algebra H, such that F Endeff (F)op.

Using Corollary 4.2 it is clear that we can assume that the quiver of F has the

form
t

1 3 3

with r. s. I 0.

LetA End// (T)op be the corresponding tilted algebra. There are no cycles in the

quiver of a tilted algebra. We can therefore assume that there is a sink in the quiver of
A, and we assume that this vertex corresponds to Z, that is, Hom# (Z, X U Y) 0.

We assume that X, Y, Z correspond to the vertices 1, 2, 3, respectively. If ft is a

non-zero map in Irradd r(Z, X), it must be of degree 1, that is, the lifting h is in
Honi£>(Z, FX). Since this holds for all maps in Irraddt(Z, X), any composition
of 6 arrows will correspond to a map of degree > 2 from an indecomposable to
itself, and therefore must be the zero-map. This follows from die fact that for any
indecomposable module M, we have Homy>(M, F2M) 0. This gives r6 0.
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We can assume that at least one of the arrows (irreducible maps) X —> Y and at
least one of the arrows Y ^ Z are of degree 0. Otherwise, the tilted algebra A would
not be connected.

Now let g be a map in Irraddr(h Z). We want to show that it must be of
degree 0. Since X11 Y is an almost complete tilting object in G h there are exactly two
complements. Denote as usual the second one by Z*. The complement Z* is either
the image of a module or the image of an object of the form 7 [—1 ] for an injective
indecomposable module /. Furthermore, there is a triangle in G

Z*^YS^Z^, (3)

for some .v > 0, which can be lifted to a triangle

f"1)
/ X i Vs LI (/•' 'IV > X >

in 7) for some integer i and with i sp + $%. We need to show that « =0. It is

sufficient to show that the map ai 0. We have .v] A 0, and thus by minimality
a\ ^ 0. It is clear that if also j* 0, then i. 0 or i —1.

Assume first X* ~ /[—1], then

Homy)(/[—1],F~l Y) Hom,£>(/,rF) 0,

so i =0 gives «2 0. On the other hand, it is clear that i — 1 gives #j — 0.

Assume now that X* is the image of a module. Then there is an exact sequence
of modules

0 Z* -* Yv -k X - 0,

and since dimA-1 loin, ' X. Z*[l]) 1 (by [BMRRT]), it follows that the triangle (3)
is induced by this sequence, and thus s\ v and $2 0.

Now we show that all the irreducible maps X — Y in G h are of degree 0. For
this, consider the almost complete tilting object X Ii X in ('//, with complements Y
and T*. Consider the triangle

Y* Xr Hh Y

and the preimage in £>,

(A \
/• Y' à Xn II (/' 1A )r' > Y >

We need to show that r2 0. The case where Y* — /[—11 is completely similar
as for irreducible maps Y X. In case Y* is the image of a module, it is now more
complicated since we have two possibilities. Either there is an exact sequence in
mod II of the form

0 -* Y* Xa -y Y -y 0,
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or there is an exact sequence of the form

0 -* Y -* Zb -* Y* -* 0.

If we are in the hrst case, we can use the same argument as for irreducible maps
Y —> Z. If we are in the second case, note that Hom//(K\ X) 0, since

Hornh(Z, X) 0. Thus, either ß\ 0 or ßi_ 0 in our triangle. This
completes the proof that all irreducible maps X -> Y are induced by module maps, and

thus are of degree 0.

Given that r6 0, the only possibility for a non-homogeneous relation must
involve maps in r2 \r3 and maps in r5. But, by our description of irreducible maps,
this is not possible, because it would involve a relation between maps of different
degrees.

Fix a cyclic cluster-tilted algebra of rank 3, and hx a vertex k. Let a be an arrow
ending in k, and ß an arrow starting in k. If ßa 0, as an element of the algebra,
for any choice of a and ß, then we call k a Zero vertex.

Proposition 4.4. Let V be a cyclic cluster-tilted algebra, andfix a vertex k. Then k
is a zero-vertex ifand only i/3(r) is hereditary.

Proof. We assume the quiver of T is

t
1.3 i 3

Let T lind, i /'i"p. and let T, be the direct summand of T corresponding to the

vertex L Assume that 2 is a zero-vertex. Then it is clear that Home (71 - iß) 0, so

the quiver of m Hb must be

t'
13 > 3

with t' > 0. Now «WO is hereditary, by Lemma 4.1.

Conversely, assume 3(F) is hereditary. The quiver of 3(F) must be as above,
with tf > 0. This means Honv f/i, iß) 0, so 2 is a zero-vertex.
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4.3. Kerner's Theorem. The following result by Kerner [Ke] turns out to be crucial
for the proof of the main theorem of this section. There is a more general version
of this theorem in [Ke]. We include a proof, for the convenience of the reader. This

proof is also due to Kemer, and we thank him for providing us with it.

Theorem 4.5. Let A, Y be regular indecomposable modules over a wild hereditary
algebra H of rank 3. If Horn //(X, r Y) 0, then also Horn //(A, t_1F) 0.

Proof. We first prove the following.

Lemma 4.6. Let U be an indecomposable regular module over a wild hereditary
algebra of rank 3. Then Horn r/ilJ. x2U) 0.

Proof. Assume first that SxtlH(U, U) f 0. Then also Horn//(//. rU) f 0 by the

AR-formula. Assume now Horn //(If. r2U) 0. Then also l:xl \frll. U) 0 and,

by the Happel-Ringel lemma [HR], a non-zero map / : U -3» r U is either surjective
or injective. In either case, g r if ° / : U —r2U is non-zero. This contradicts

Horn# (f/, x2U) 0.

Now assume ExtlH(U. U) 0. Then by [Ho], U is quasi-simple. Thus, there is

an almost split sequence 0 -> rU -> V -> U hc 0, where F is indecomposable, and

by [Ke2] we have Endh(V) — K, while Ext^ (F, V) f 0. Applying Horn//(!/. to
the almost split sequence, we obtain the exact sequence

HomH(U, rU) -* HomH(U, F) -> HornH(U. U) ExtjH(U. rU).

Since fhun//((/, U) Iixtill. rU) is an isomorphism and Horn//((/, rU) 0,

we have that also Horn// ill. V) 0. The long exact sequence obtained by applying
Horn//( rU) to the almost split sequence, gives Horn//( F, rU) 0. Now, this

gives Horn//( F, x2U) f 0, since there is an exact sequence

0 Hom^(F, r2U) Horn#(F, rF) -+ Hom^fF, xU)

and the last term is zero. There is also the long exact sequence

0 HornH(U, x2U) -* Hom^(F, x2U) -> UomH(xU. x2U)

where tire last term is zero. This proves Horn// ill, r2U) ft).
Let us now complete the proofof the theorem. Let A, F be regular indecomposable

modules. It suffices to show that Horn //(A, Y) 0 implies Horn//(A, r2F) 0.

Let z : A -> Y be a non-zero map. Then we can assume there is an indecomposable

regular module U, such that z. factors as A U -> Y, where p is surjective and i
is injective. Also x2i : x2U —r2F is injective. By Lemma 4.6, there is a non-zero

map f \U -> x2U. The composition x2i o / o p is non-zero. Tins completes the

proof of the theorem.
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4.4. The dimensions of relation-spaces. Let H be a connected hereditary algebra

of rank 3. The following notation is used for the rest of this section. Let T be an almost

complete tilting object with complements M and M*, and assume there are triangles
as in Theorem 1.2. Let T T U M and T LI M* and let F Lnd< 7\)op and

T' Ende(T;)op. By now, we know that the quiver of T is either

t
1 » 3

with r, s, t > 0 or the quiver Qrst

t
1

with r, s >0 and t > 0. We let M correspond to vertex 2. Then T I'n LI TK

where Tb corresponds to the vertex 1 and 7V to 3. It is then clear that B (Tb Y and

B' (Tb/)s. We label the vertices with the corresponding modules, then the arrows

represent irreducible maps in add T.
We let I denote the ideal such that F ~ KQ/I. In case F is cyclic, we say that

F is balanced at the vertex 2 if

dim((Irr(7ß, M) Irr(M, TB>) n /) /.

We will show that any vertex of a cyclic cluster-tilted algebra is either balanced or a

zero-vertex. We first discuss the algebras obtained by mutating hereditary algebras.

Lemma 4.7. Let LI be a hereditary algebra with quiver Qrst where r, s > 0 and
t > 0. Then the following hold.

(a) The cluster-tilted algebra F' 82(H) is balanced at the vertices 1 and 3.

(b) The new vertex 2* is a zero-vertex.

(c) The quiver of P* is

t+rs

II : >3
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Proof. Part (b) and (c) follow directly from Lemma 4.1 and Proposition 4.4. Let P;

be the indecomposable projective //-module corresponding to vertex i, and .S) the

simple //-module P, / r Then P\ Sj is simple. Consider P\ 11 Pj as an almost

complete tilting object. There is an exact sequence

0 -* P2 -* (Pi)s P2* 0,

such that the induced triangle in G is the exchange-triangle of Theorem 1.2. Let
I" /j 11 l'y 111\. Using the dehnition of r, one can show that .ST r Pf, and thus

Horn©(PjT P3) 0. Since 2* is a zero-vertex, P3) Horn//( /j, P3),
with dimension rs + t. We want to compute Irra(j<j /( If. P\ 0r Irradd r'( P\ P3)

Hom< Pf P3) ce Horn jjjp?'-1 P) P& We have

Horn£)(F"1P2+. Pf) Homö(rP2n-l], lb) ExtXH(S2. Pi).

There is an exact sequence

0 (PiY -* P2 -* s2 -> 0.

Apply Horn#) P3) to it, to obtain the long exact sequence

0 -* Horn//(.ST. P3) —* Horn //( lb. P3)

-> Hom//((P1)'T P3) -* Ex4f% P3) -> 0.

Since dim Hom/y(P2, P3) s, and dim Horri//((P| )'T P3) (rs + t)r, it follows
that dim0rra^y?.(P|T Pi) <2>p/ Irraddr(-Pi- P3)) r(rs + t) ~ u and therefore

dim(lrrajd / (PjT Pi) 0k Irraddrd-Pi. Pi)II /) s, and Ff is balanced at 3.

Now apply Horri//( l'\. | to the exact sequence 0 -> P2 -> (Pî)s B -> 0 to
obtain the exact sequence

0 Horn// P\. Pi) -> Horri//(P|, Pf) -> Horri//(P|. Pf) -> 0.

Since dim Honi//( Pj, Pi) r and dim Horri//(P|, Pj) (rs + / ).v, we have

dim(Irraddr(Pi. P3) faaddrCFs. Pi dimHome(Pi, Pf) (rs + t)s - r.

This means dim(Trradd / P\ P3) 0k Irraddr'(P3. Pf) Cl /) r, and F' is balanced
also at 1.

Proposition 4.8. Let F be a non-hereditary cluster-tilted cdgebrci with quiver

t
11 3
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(a) If T is balanced at the vertex 2, then F' ijjjJT) is non-hereditary, and thus

cyclic, with quiver
rs—t

i t?

It is balanced at the new vertex 2*. Each of the other vertices of F' is either
balanced or a zero-vertex.

(b) IfF has a zero-vertex at 2, then is hereditary with quiver

t—rs

1Z i 3

Proof. Part (b) follows from Propositions 4.3 and 4.4.
To prove part (a), we adopt our earlier notation and conventions. Especially,

T Fiid(: (7/j U Tn 11 M)op, and we have the quiver

I f! I I IS

The quiver of the mutated algebra Fnd( i />, LI TB U M*)op is

Tb : tb

Using that F is balanced at 2, and Proposition 4.3, it follows that t' rs — t. Also by
assumption, M does not correspond to a zero-vertex, so there is at least one non-zero
composition 7'/j —> M —> Tfy. Therefore rs - t > 0.

Wehavedim(hTaddf/(7V, M*) ®r Irraddr(M*, /> 1) dim Irradd TB) +
dim(Irraddr(Tß', M)®rTrraddr(M, TB)) r+0. Hcnccdim( Irradd / (7ß M*)®K
Irtadd Tb) Fl /) rs — t, so 1" is balanced at 2*.

We now proceed to show that for each of the vertices 1 and 3, V' is either balanced,

or a zero-vertex. We assume Tbi is not a zero-vertex in F'.
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The tilted algebra A End# (TB LI Trs U M)op has a unique sink. There is an
induced total ordering on die triple TB,TB', M, where the last element in the ordering
corresponds to the sink. Also, by considering the preimage of M* in the standard

domain of ID, the ordering can be extended to the quadruple IV, M*, B, M. Note
that we get the following four possible orderings

- (M, Tb', M*, Tb),

- (TB>, M*, TB, M),

- (M\ Tb, M, Tb>),

-
First we show the claim for the vertex corresponding to i'B.

Lemma 4.9. Assume that TB< does not correspond to a zero-vertex in F' and that M*
is before TB in the above ordering. Then I loin p{ / /,>. r~l M*) 0.

Proof. Since %fT) is not hereditary, we have Horn# (M*, TB) V 0. Assume now
that Horn#(Tg, r~]M*) A 0. Assume hrst that TB is regular, then M* is also

regular. In case H is tame, tlren there are at most two exceptional modules which
are regular. This follows from the fact that II has three simples. But in case there

are two exceptional modules which are regular, there is an extension between them.
This gives a contradiction. In case H is wild we can apply Kerner's Theorem, which

says that Horn# (TB, rM*) A 0. We have a contradiction, since Horn//(7'//, rM*) 2*

DExtlH(M*,TB) =0.
If B is a preprojective or a preinjective module, then Horn#(M*< As) A 0 and

Hoin//(7ß, 1 M') A 0 implies that the map M* i'B is irreducible in the module-

category. Thus M* LI 7 /j can be complemented to a tilting module with hereditary

endomorphism ring. We have seen that the mutated algebra F) is by assumption
not hereditary, i.e., JB must correspond to a zero-vertex, so we have a contradiction
to Horn //iß, r~1M*) A 0 also for TB being preprojective or preinjective.

Now, let M IV M* be the usual triangle. We recall that T TB LI TB

Let Hom(7ß, M) Irraddr(Fß, M), let Homf/'/j, B') Irradd-(rß, B') and let

Hom( 7'/(, M*) Irraddr (7ß, M*). Then we claim that there is an exact sequence

0 Homi / /,.. XV A iTom(7ß, B') Horn(Tb, M*> -> 0. (4)

It is clear from Proposition 4.3, and the fact that

Honi /)!7/j, M) Horn/)(7/>, IV) -> Horn(7/j, M*) —> 0

is exact, that we only need to show that the map cf is a monomorphism. We hrst
assume M* is a module. To prove the claim for this case, we consider the four
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orderings on the quadruple {A4. B', M"\ B). For each case we show that a map in
hratid i CI'b. A4) cannot factor via M*\ - 11 in G.

(A4, 7Vi - M*, Tb) : In this case, a map in hradd •/ ('/'«, M) is of degree 1. Assume
the lifting is /: tTb[—1] -> M. There is a non-split exact sequence 0 —>• A4 —
B' A4* 0. We have dim Hom< (M*, M[ 1]) 1, by [BMRRT], and therefore

Hornd(FM*. A4[ 1]) Hom£>(r-1M*, A4) 0. Therefore, if f : TB —r M factors

through A4*[—1] in G, there must be a map g: r TB| — 11 A4 in £>, such that there
is a commutative diagram

By Lemma 4.9, we have that Hom£>(r7ß, A4*) Horn />(7/j. r
1

A4*) 0, and
thus we obtain / 0.

(Tbi, M*, Tß, M) or (M*, TB, M, TBi) : In these cases, a map in Irracidr(7ß. M) is

of degree 0. Assume the lifting of it is / : TB M. The preimage of M* in 1) is a

module in these cases, so a factorisation of / must be of the form

Lemma 4.9 gives / 0.

(Tb, A4, TB/, M*) : In this case the preimage of M* in 'D is either a module or
F [IL for an indecomposable projective //-module P. In both cases, a map in
hradd 7'( / /j. A4) is a map of degree 0. Assume the lifting is /: '/)>, M. In the

first case there is a non-split exact sequence 0 A4 B' M* 0. Therefore,

since dimHome(M*, M[l]) 1, we have Homy>(r_lM*, A4) 0. Since

HomyiITs, M*\ — 11 0, we must have / 0, if / factors as below

M*[—1] ^M.

r_1M* M.

A4*[-1] M.

Assume A4* i P\ 11, with P projective. If Honidf'/'/j, F) ^ 0, then TB is also

projective. Therefore Hom /)f//j. /J[l]) 0, and tlius Honp (4)j, A4*) 0, which
means that '/« is a zero-vertex in F', a contradiction. Then I loin / /.'• P) 0, but
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this means that /: Tr -* M factors through M*[—1] s P only for / 0. Thus,
the map a is a monomorphism, and the sequence (4) is exact.

Thus, dim Ho in (7*#, M*) dim Hom(7/j, B') — dimHom(7ß, M) t's — r.
Ulis means that dim(Irra(j<j r (Tß, TB/) ®k Jrrddd/ ('/«•. M1) D 7) r, so F' is

balanced at the vertex 3, corresponding to TB/.
We now show that F' is balanced at the vertex 1, corresponding to 7/;, or 1 is a

zero-vertex. Assume it is not a zero-vertex. We have the dual version of Lemma 4.9.

Lemma 4.10. Assume that TB does not correspond to a zero-vertex and that M* is
before TB in the above ordering. Then Iloin,>t.V7 tTbi) 0.

Proof. Similar to the proof of Lemma 4.9.

Now, consider the triangle

M* -+ B -* M -*
We need to show that there is an exact sequence

0 —Horn(M. Tb i -Ae Hom(fi, Tbi) —* Hom(M*, Tbi) —> 0. (5)

where Hom(M, TB hradd / M. Trj). while Homi B. TB Irradd-(7L TB and

Horn(M*. Tb'I Irradd r (M*. Tb'% The proof of this is parallel to the proof for the

sequence (4), and therefore omitted. Using the exact sequence (5), one obtains that

r' is balanced at the vertex 1.

We summarise the results of this section.

Theorem 4.11. Let F be a cluster-tilted algebra of rank 3.

(a) T is either hereditary, or it is cyclic.

(b) 7TV is Cyclic, then each vertex of V is either balanced or a zero-vertex,

(c) Let k be a vertex ofT, leth(V) be the mutation in direction k, and let k* be the

new vertex ofSklT}, Then there are the following possible cases:

I. Both T and %|F) are hereditary.

II. T is hereditary, while Sk(r) is cyclic with a zero-vertex at k*,

III. T is Cyclic with a zero-vertex at k, and Jj4F) is hereditary, or
IV. T is cyclic and balanced at k, and 4(F) is cyclic and balanced at k*.

Proof. This follows directly from the previous results in this section, and the fact that
all cluster-tilted algebras can be obtained by starting with a hereditary algebra, and

then performing a finite number of mutations [BMRRT], |BMRJ.

Hie above theorem is very easily verified for algebras of finite type, as indicated
in the introduction of this section.
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5. Mutation

As mentioned in the introduction, in view of Proposition 3.2 it is possible to assign
to a cluster-tilted algebra F a skew-symmetric matrix Ar j)s More precisely, if
there is at least one arrow from i to j in die quiver of the endomorphism-algebra F,
let Xj j be the number of arrows from i to j. If there are no arrows between i and j,
let Mj 0. Let Xij —Xji otherwise.

Now let T be an almost complete tilting object in the cluster category G with

complements M and M*. Let T T I I M. let T' T II M*, let F Fnd, (T )"p

and let Fuel, I 7"iop. Then we want to show that the quivers of F and F' are

related by the cluster-mutation formula. We use the results of Section 4 to show this
for cluster-tilted algebras of rank 3, and Theorem 2.13 to extend to the general case.
There is an independent proof of this for finite representation type in [CCS 2],

Theorem 5.1. Let H be a hereditary algebra, and let T, M, M*, F and F' be as
above. Then the quivers of F and F', or equivalently the matrices Ap and Ap/, are
related by the cluster mutation formula.

Proof. First, assume H has rank 3. In case II is not connected, the claim is easily
checked. Assume H is connected. Fix k, the vertex where we mutate. By Theorem

1.2, it is clear that.rf,. —.r^-fori 1, 2, 3, and that.x'kj —Mtq for j 1,2,3.
Now assume i f k and j f k. By Theorem 4.11, there are four possible cases.

Case I: This happens if and only if k is a source or a sink. In this case it is clear that
either ^jj 0 or x^j 0. For i k and j k, it is clear that jsjg xL, since in this
case mutation at k is the same as so-called APR-tilting at k. Thus the formula holds.

Case II: Since k is now not a source or a sink, we can assume F is the path algebra of

t
i - : 3

where r > 0 and v 0 and t > 0 and with k 2. Then, by Lemma 4.7, the quiver
of S2(r) is

t'
i :.3
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with t' rs + /. So Xj3 t' rs + t, and

1*121-*23 -f «eIäS[ rs + rs
xi3 3 t H t + rs.

Case III: We assume that the quiver of F is

t
1 I Î/3

By Proposition 4.8, the quiver of T' is

t'
1

with t' t — rs. That is x[3 t — rs, and

|xi2|x23+X12I.X23I !-r|(-j) + (-r)|-j|
m% H — t -\ t — rs,

2 2

and the formula holds.
Case IV: We assume the quiver of F is the same as in case III. Now the quiver of F' is

t'
1 ^ ^ 3

where t' rs — t. That is Xj3 • /' t — rs, while

kl2'k23 +*121*231 I —r |(—ä) + (-r)|-äi
m% H — t -\ t — rs,

2 2

thus the formula holds true also in this case.

Now, assume that H has arbitrary rank. Fix k, lite vertex where we mutate. By
Theorem 1.2, it is clear that x'ik — for any value of i, and that x'k- —x^j for
any value of j. Assume now that k i and k ^ j. Let e*, ej, % be the primitive
idempotents in f* corresponding to the vertices i, j, k of the quiver of F. Assume

lr / + è; + ej + et. and let rrea F/ F/'F. Let e,-, r/. c'j. be the primitive
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idempotents corresponding to the vertices i, j, k* of the quiver of F'. Assume 1F/

f + g,- + m + eic*. and let r^ed V/ V f'T'. It is clear that the number of arrows
from i to j in the quiver of Fre(j is % and the number of arrows from i to j in the

quiver of r^ed is xF. So, by the first part of the proof, xy and xF are related by the

matrix mutation formula.

There are some nice direct consequences of this. For the first one, one uses in
addition to Theorem 5.1 that the tilting graph (see [BMRRT, Section 3]) is connected,

[BMRRT, Prop. 3.5],

Corollary 5.2. Let Q be a finite quiver with no oriented cycles. Then a quiver Q'
can be obtained from Q by repeated mutation if and only if Q' is the quiver of a
Cluster-tilted algebra Fnd, il'cv for some tilting object T in G Gkq-

We thank A. Seven for pointing out to us the following direct consequence of
Theorem 2.13, and Corollary 5.2.

Corollary 5.3. Let Q be a quiver which can be obtained by repeated mutation from
an acyclic quiver. Then allfull subquivers of Q have the same property.

6. Connections to cluster algebras

Our main motivation for studying matrix mutation for quivers/matrices associated

with tilting objects in cluster categories is tire comrection to cluster algebras. In this
section we explain how Theorem 5.1 gives such a connection. In order to formulate
our result we first need to give a short introduction to a special type of cluster algebras
[FZ1], relevant to our setting [BFZ]. See also [FZ2] for an overview of the theory of
cluster algebras.

Let F Q(« i,..., tin be the held of rational functions in indeterminates
m i,..., u„, let x {.vi,..., xn} c F be a transcendence basis over Q, and B (bjj
an n x n skew-symmetric integer matrix. A pair (a, B) is called a seed. The cluster
algebra associated to tire seed (v, B) is by definition a certain subring Au, B) of IF,
as we shall describe. Given such a seed (x, B) and some i, with 1 < i <n, dehne a

new element of x[ of F by

•FG; Y\ xbji + 0 x~lji
j\bji>0 j;bji< 0

We say that ,*j, x'; form an exchange pair. We obtain a new transcendence basis

x' to w„}U to}\{v;} of F. Then dehne a new matrix iL (b'-A associated
l Ij
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with B by

b
U I \t>ik\bkj+bik\bkj\
ij "T 2

if k i or k j,
otherwise.

The pair (xA B') is called the mutation of the seed (x, B) in direction i, written
/'.M.r. B) (x), B% Let S be the set of seeds obtained by iterated mutations of
(x, B) (in all possible directions). Ute set of cluster variables is by definition the

union of all transcendence bases appearing in all the seeds in S. and the cluster algebra
A(x_, B) is the subring of F generated by the cluster variables. The transcendence
bases appearing in the seeds are called clusters.

As mentioned earlier, there is a 1-1 correspondence between finite quivers with
no loops and no oriented cycle of length two and skew-symmetric integer matrices

(up to reordering the columns). The vertices of the quiver of a matrix B (b;/)
are 1 n, and there are ly arrows from I to j if by. > 0. The cluster algebra is

said to be acyclic if there is some seed where the quiver associated with the matrix
has no oriented cycles [BFZ]. We take the corresponding seed as an initial seed. In
this case, let H K Q be the hereditary path algebra associated with an initial seed

(x. />' i. Let G G h be the corresponding cluster category, and let T be a tilting
object in G. Similar to the above we can associate with T a tilting seed (T, Qt),
where Q i is the quiver of the endomorphism algebra Hnd, f /V'1'. Let 7j,..,, T„ be

the non-isomorphic indecomposable direct summands of T. Fix k, and let as before

Sk(T) T be the tilting object of G obtained by exchanging l\ with Ç (using our
earlier notation from Theorem 1.2), Dehne mutation of (T, Qt) in direction k to be

given by Sk(T, QT) (Tb QT>).
We now want to associate tilting seeds with seeds for acyclic cluster algebras. We

first associate (7/111. Q// with a fixed initial seed (x. B), where Q is the quiver for B
and H KQ. Let (F, B') be some seed. We then have (v', B') pcy y^ (x. B
for some ordered sequence (ki kt). There are in general several such sequences,
and we choose one of minimal length. Associated with (x, B) is the sequence of
length 0, that is the empty set 0. We dehne cf((x, B).&) (//[l], Qh), and

a((xb B% (ki Ay)) Sy ^ (//[l], Qh) ' /"• Qt')- Fix an ordering on
the cluster variables in hie cluster x {xi,,.., %} of the chosen initial seed and

choose a corresponding indexing for the //, in // //1 Li • • 11 H„, so that we have

a correspondence between x; and lb. This induces a correspondence between the
cluster variables x| in the cluster x' and the indecomposable direct summands T{
in r, which we also denote by a. We do not know in general if the dehnition of a
only depends on hie seed (xb B'},

We can now formulate hie connection between cluster algebras and tilting in
cluster categories implied by our main result.

Theorem 6.1. Let the notation be as above, with (x, B) an initial seedfor an acyclic
cluster algebra, and (Tb Qt') a tilting seed corresponding to a seed (x), B% via
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the correspondence a, inducing a correspondence xf Tj for xf g xf and Tj an

indecomposable direct summand of 7".

(a) For any k g {1 n} we have a commutative diagram

k))
ßk

- er, Qi}
4

(ir, B"){h kr m cT*. o, >

where xf is the cluster obtained from xf by replacing x'k g xf by xf, and T" is

the tilting object in G obtained by exchanging the indecomposable summand T'k

by Tjf where T T 112 and T" /' LI Tjf are non-isomoqMc tilting objects.

(b) Identifying x'k with 7| andx'j with Tjf, the multiplication rule for xjxfj is given
by

rjTf Y\(t;Y> w\\(T{r
where aj and cj are determined by the minimal respectively right and left add T -

approximations lb If Y Tj and Tj —U 'TfY1'.

Proof (a): This follows by induction, using Theorem 5.1, where % is interpreted as

given by a mutation rule like fj%.

(b) Let Tj be the direct summand of 7" corresponding to x'k. By (a), Q/ is the

quiver of B', and the monomials Mi and M2 are given by the entries of the matrix B',
hence by the arrows in the quiver Q -r In particular, the arrows entering and leaving k,

are given by the minimal right and minimal left add T-approximations of Tj.

Note that with the appropriate formulation, this solves Conjecture 9.3 in [BMRRT],
For algebras of finite type we know from [BMRRT] that the map a gives a one-one

correspondence between tire seeds and tilting seeds, in particular it does not depend
on the /-tuple {i\,..., it). In fact, we have in this case a 1-1 correspondence between
cluster variables and indecomposable objects of G, inducing a 1-1 correspondence
between clusters and tilting objects.

Two cluster variables and xf are said to form an exchange pair if there are n — 1

cluster variables {v, yn _ 1} such that {xk, Jb-ll antl *X« • « • « X-1}
are clusters. Similarly we have exchange pairs with respect to tilting objects. If a
identifies x.k and xf with Tk and Tf, respectively, we then have the following.

Theorem 6.2. For a cluster algebra offinite type, let a be the above correspondence
between seeds and tilting seeds, and between cluster variables and indecomposable
objects in the cluster category.
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(a) For any k e {!,.
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n} we have a commutative diagram

ig. /.") —^ (T\ Qr)

175

h

(x", B") —(T", Qr»).

(b) Identify the cluster variables with the indecomposable objects in G via a. We

have
_ _

TkTk* H 7>r' + U(T^
foran exchange pair Tk and Tf where the aj and q appear in the unique non-split
triangles

and

in G.

BET

71 -> urf

Tk

ji*
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