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On the measure contraction property of metric measure spaces

Shin-ichi Ohta*

Abstract. We introduce a measure contraction property of metric measure spaces which can be
regarded as a generalized notion of the lower Ricci curvature bound on Riemannian manifolds.
It is actually equivalent to the lower bound of the Ricci curvature in the Riemannian case. We

will generalize the Bonnet–Myers theorem, and prove that this property is preserved under the
measured Gromov–Hausdorff convergence.

Mathematics Subject Classification 2000). 28C15, 53C21, 53C23.

Keywords. Measure contraction property, Ricci curvature, Bonnet–Myers theorem, Gromov–
Hausdorff convergence, Wasserstein space.

1. Introduction

The notions of lower and upper ‘sectional’ curvature bounds on not necessarily
Riemannian metricspaces are introduced byAlexandrov by using the triangle comparison
theorems, and they are called Alexandrov spaces and CAT(K)-spaces, respectively
see [ABN], [BGP], [G], [BBI], and the references therein). These spaces are quite

interesting objects themselves and, furthermore, they are turned out to be useful tools
to study limit spaces under the Gromov–Hausdorff convergence of sequences of
Riemannian manifolds with uniform lower or upper sectional curvature bounds. Now
theAlexandrov spaces and CAT(K)-spaces are ones of the most important objects in
metric geometry.

Once the importance of Alexandrov spaces and CAT(K)-spaces are understood,
a natural question arises: What about the lower bound of the ‘Ricci’curvature? One
reason why this is a natural question is that the family of Riemannian manifolds with
uniform lower Ricci curvature and upper diameter and dimension bounds is precompact

in the Gromov–Hausdorff topology ([G]). In their serial papers [CC], Cheeger
and Colding investigate the structure of limit spaces under the measured Gromov–
Hausdorff convergence of sequences of Riemannian manifolds with uniform lower

*Partially supported by the Grant-in-Aid for Scientific Research forYoungScientists B) 16740034 from the
Ministry of Education, Culture, Sports, Science and Technology, Japan.
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Ricci curvature bounds, and consider the convergence of the Laplacian Fukaya’s
conjecture, [F]).

One difference between the sectional and the Ricci curvatures is the role of the
dimension. Sectional curvatures care only two-dimensional subspaces, so that we do
not need the dimension of the entire space to define Alexandrov spaces. However,
for the Ricci curvature, the dimension plays an essential role. More precisely, as a

sequence of Riemannian manifolds with a uniform lower Ricci curvature bound can
collapse to a lower dimensional space, we consider a combination of a lower Ricci
curvature bound, say K, and an upper dimension bound, say N.

Recently, a breakthrough on this topic is given by Sturm [S2] and Lott and

Villani [LV] see also [RS]). They independently introduce mutually slightly
different conditions. More precisely, they consider the Wasserstein space on a metric
measure space and adopt the convexity of a family of) functional(s) on that space

as a generalized notion of the lower Ricci curvature bound. However, there remains
a problem on the treatment of the dimension. Sturm’s condition does not contain a

term of the dimension and it can be regarded as the case of N 8. In addition
to it, Lott and Villani treat the case of N < 8, but only for K 0. So that it is
still unclear how to define spaces with a finite upper bound on their dimensions and

with a nonzero lower Ricci curvature bound. Furthermore, some basic questions
to justify their conditions are open, for instance, whether Alexandrov spaces satisfy
these or not.

In this article, we introduce another kind of generalization of the lower Ricci
curvature bound, the K,N)-measure contraction property Definition 2.1, the K, N)-
MCP for short). Here K R is the lower bound of the Ricci curvature and N 1

is the upper bound of the dimension, so that we can consider a situation which is
not covered in [S2] and [LV] K 0 and N < 8). This condition is defined in
terms of the contraction of a measure on a set to a point, and seems simpler and

more geometrically understandable. Indeed, we do not use theWasserstein space to
define the K, N)-MCP, and it is not difficult to see that Alexandrov spaces satisfy
the K,N)-MCP Proposition 2.8).

One ofourmain results is ageneralization of the Bonnet–Myers theorem. Namely,
we shall show that, if a metric measure space X, µ) satisfies the K, N)-MCP for
someK > 0 andN > 1, then its diameter is less than or equal to pv(N - 1)/K
Theorem 4.3). Moreover, for every point x X, the set of points at a distance of

pv(N - 1)/K from x consists of at most one point Theorem 4.5). We also prove
a generalization of the Bishop–Gromov volume comparison theorem Theorem 5.1).
In addition to these, we show that, for an n-dimensional Riemannian manifold, the

K, n)-MCP is equivalent to that its Ricci curvature is bounded from below by K
Theorem 3.2), and that the K, N)-MCP is preserved under the measured Gromov–

Hausdorff convergence Theorem 6.8). These results as well as the K, N)-MCP of
Alexandrov spaces justify us to say that the K, N)-MCP is a generalized notion of
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the lower Ricci curvature bound. Techniques developed in [RS], [S2], and [LV] play
crucial roles in our discussions.

The article is organized as follows. We give the definition of the K,N)-MCP
and consider some basic properties, such as the doubling condition, in Section 2. In
Section 3, we treat the Riemannian case. Section 4 isdevoted to ageneralization of the
Bonnet–Myers theorem. We prove a generalization of the Bishop–Gromov volume
comparison theorem in Section 5. In the last section, we consider the stability of the

K, N)-MCP under the measured Gromov–Hausdorff convergence.
After this work was completed, I learned of a related work by Sturm [S3].

2. Measure contraction property

A metric space X, dX) is called a length space if it satisfies dX(x,y) inf.
for all x, y X, where denotes the length of and the infimum is taken over

all rectifiable curves from x to y. If, for every x, y X, there exists a curve
which satisfies dX(x, y) then we say that X,dX) is geodesic. Note that,

if a length space is complete and locally compact, then it is geodesic. A rectifiable
curve in a metric space X, dX) is called a geodesic if it is locally minimizing and
has a constant speed. A geodesic : [0,l]-. X is said to be minimal if it satisfies

dX( 0), l)). By taking a reparametrization of a curve which attains the
distance, every two points in a geodesic metric space are joined by a not necessarily
unique) minimal geodesic.

Throughout this article, without otherwise indicated, let X, dX) bea length space,

and let µ be a Borel measure on X such that 0 < µ(B(x, r)) < 8 holds for every

x X and r > 0, where B(x, r) or BX(x, r)) denotes the open ball with center

x X and radius r > 0. The closed ball with center x X and radius r > 0 is
denoted by B(x, r) or BX(x,r). Henceforth, we denote dX(x, y) by |x - y|X for
x, y X, and write simply X instead of X, dX).

As in [LV], let be the set of minimal geodesics, say : [0, 1] -. X, in X
and define the evaluation map et : - X by et := t) for each t [0, 1].
We regard as a subset of the set of Lipschitz maps Lip([0,1],X) with the uniform
topology. A dynamical transference plan is a Borel probability measure on and

a path {µt}t.[0,1]
P2(X) given by µt et )* is called a displacement

interpolation associated to where we define P2(X) as the set of all Borel probability
measures, say µ, satisfying

X |x- y|
2
X dµ(y) < 8 for some and hence all) x X.

For K R, we define the function sK on [0,8) on [0,p/vK) ifK > 0) by

sK(t) :=

1/vK) sin(vKt) if K > 0,

t if K 0,

1/v-K) sinh(v-Kt) if K < 0.
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Definition 2.1. For K, N R with N > 1, or with K 0 and N 1, a metric
measure space X, µ) is said to satisfy the K, N)-measure contraction property
the K, N)-MCP for short) if, for every point x X and measurable set A X
provided that A B(x, pv(N -1)/K) if K > 0) with 0 < µ(A) < 8, there

exists a displacement interpolation {µt}t.[0,1]
P2(X) associated to a dynamical

transference plan x,A satisfying the following:

1) We have µ0 dx and µ1 µ|A)- as measures, where we denote by µ|A)-
the normalization of µ|A, i.e., µ|A)- := µ(A)-1

· µ|A;

2) For every t [0, 1],

dµ et)* t
sK(t )/vN - 1)

sK( )/vN - 1)

N-1

µ(A) d 2.1)

holds as measures on X, where we set 0/0 1 and, by convention, we read

sK(t )/vN - 1)

sK( )/vN - 1)

N-1

1

if K 0 and N 1.

Remark 2.2. The case whereK > 0 and N 1 is an exceptional one because, by
Theorem 4.3 and letting N tend to 1, then X should consist of only one point. So that
we do not intend to consider such a situation.

If there exists ameasurable map : A-. satisfying e0 x, e1 idA,
and

* [(µ|A)-], then the inequality 2.1) yields that

dµ et * t
sK(t|x - z|

X/vN - 1)

sK(|x - z|
X/vN - 1)

N-1

.A(z) dµ(z) 2.2)

holds as measures on X. Here .A stands for the characteristic function on A. This
is the case where, for each y A, there exists an exactly one geodesic supp
from x to y.

Lemma 2.3. The inequality 2.2) is equivalent to that, for all t [0, 1] and measurable

sets A A, we have

µ et( A
A

t
sK(t |x - z|

X/vN - 1)

sK(|x - z|
X/vN - 1)

N-1

dµ(z). 2.3)

Proof. Put : et and

d. := t
sK(t|x - z|

X/vN - 1)

sK(|x- z|
X/vN - 1)

N-1

.A(z) dµ(z)
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in this proof for simplicity. We first assume 2.2). For a measurable set A A, we
have

µ A * A -1 A A

This implies 2.3). We next suppose 2.3). For a measurable set W X \ A), we
immediately obtain µ(W) 0

* W). If W A), then 2.3) yields that

µ(W) µ -1 W)) -1 W) * W).

This completes the proof.

The inequality 2.3) can be regarded as a generalization of the Bishop inequality
under a lower Ricci curvature bound Ricg K see Theorem 3.1 below), and is a

reason why we say that 2.1) is a kind of measure contraction property. We refer [S1],
[KS1], [R1], and [R2] see also [O]) for other kinds of measure contraction property
of metric measure spaces. Especially, an essentially similar condition to our MCP is
proposed in [CC, I, Appendix 2] see also [G]).

Lemma2.4. i)The(K, N)-MCPof X, µ) implies the(K N -MCPfor allK K
and N N.

ii) If X, dX, µ) satisfies the K, N)-MCP and if a, b > 0, then the scaled metric
measure space X, a · dX,b · µ) satisfies K/a2, N)-MCP.

Proof. i) By calculation, we see that

sK(td/vN - 1)

sK(d/vN - 1)

N-1

is monotone non-decreasing in K for any fixedN > 1, and is monotone non-increasing

in N for any fixed K R. This together with Theorem 4.3 and Lemma 4.4 i)
ifK > 0) completes the proof.

ii) It is clear by the definition of the K, N)-MCP.

The following lemma is straightforward from the definition of the K, N)-MCP,
and will be sharpened in Section 5.

Lemma 2.5. Suppose that X, µ) satisfies the K, N)-MCP. Then, for every x X
and 0 < r R pv(N -1)/K ifK > 0), we have

µ(B(x, R))
µ(B(x, r))

R

r
sup

0= 1

sK(.R/vN - 1)

sK(.r/vN - 1)

N-1

In particular, the set S(x, r) := {y X | |x - y|X r} has a null measure for any

x X and r > 0 provided that r < pv(N - 1)/K ifK > 0).
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Proof. The K, N)-MCP with x x, A B(x, R), and t r/R yields that

µ B(x,r)

µ B(x, R) r
R

inf
0= 1

sK(.r/vN - 1)

sK(.R/vN - 1)

N-1

er/R)* x,B(x,R) B(x, r)

µ B(x, R)
r
R

inf
0= 1

sK(.r/vN - 1)

sK(.R/vN - 1)

N-1

er/R)-1
[B(x,r)]

µ B(x, R)
r
R

inf
0= 1

sK(.r/vN - 1)

sK(.R/vN - 1)

N-1

supp

r
R

inf
0= 1

sK(.r/vN - 1)

sK(.R/vN - 1)
N-1

µ B(x, R)

Here the third equality follows from e0)* dx and e1)* µ|B(x,R))-. Indeed,

it implies er/R( B(x, r) for -a.e. This completes the proof.

In particular, the K, N)-MCP implies the local) doubling condition. Namely,
for anyR > 0 R pv(N - 1)/K ifK > 0), r 0, R], and x X, we have

µ(B(x, r))
µ(B(x, r/2))

CK,N,R,

where CK,N,R < 8 is a constant depending only on K, N, and R. The doubling
condition implies that every bounded closed ball in X is totally bounded. Therefore,

ifX is complete, then it is proper i.e., all boundedclosed sets are compact) and hence

geodesic.

Corollary 2.6. If X, µ) satisfies the K, N)-MCP and if it contains more than two
points, then the measure µ is non-atomic.

Corollary 2.7. If X, µ) satisfies the K,N)-MCP, then the Hausdorff dimension
of X is less than or equal to N.

Proof. Lemma 2.5 yields that the function f x) := lim supr.0 rNµ(B(x, r))-1 on

X is locally bounded. By [AT, Theorem 2.4.3], this implies that the N-dimensional
Hausdorff measure HN on X is also locally bounded. Therefore the Hausdorff
dimension of X is not greater than N.

We end this section with a proposition which asserts that Alexandrov spaces

satisfy the MCP. As the Alexandrov space is considered as a metric space with a

lower ‘sectional’ curvature bound, this proposition supports us for saying that the

K, N)-MCP is a generalized notion of a lower ‘Ricci’ curvature bound. See [BBI],
[BGP], and [KS1] for the definition of and terminologies on Alexandrov spaces.
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Proposition 2.8. Let X be an n-dimensional, complete Alexandrov space with
curvature K, and Hn be the n-dimensional Hausdorff measure on X. Then X, Hn)
satisfies the n- 1)K,n)-MCP.

Proof. This easily follows from [KS1, Lemma 6.1], we give an outline of the proof
for completeness. For a point x X and a measurable set A X, we define a map

X X
x,A : A -. by X(y) := where : [0, 1] -. X is an arbitrarily

chosen minimal geodesic from x to y. Then we see that X is measurable as in the
proofof [KS1, Proposition6.1], and we put : X)*[(µ|A)-]. The condition 1)
in Definition 2.1 is clearly satisfied and the condition 2) follows from the curvature
condition just as in [KS1, Lemma 6.1].

3. Riemannian case

In this section, we consider the Riemannian case. See, for example, [Cl] for
fundamentals on Riemannian geometry. Let M, g) be an n-dimensional, complete
Riemannian manifold without boundary and denote by dg or | ·- ·|g) and .g the
Riemannian distance and the Riemannian measure, respectively, on M induced from g.
In addition, Ricg stands for the Ricci tensor with respect to g and the inequality
Ricg K means that Ricg( K holds for every p M and SpM, where

SpM TpM is the unit tangent sphere at p M. For a point p M and a unit
tangent vector SpM, we set

c( := sup{r > 0 | |p - r)|g r},
where we define r) := expp r.. Define, for p M,

C(p) := { c( | SpM},
D(p) := {r. | SpM, 0 r < c(.)} TpM,

D(p) := expp D(p).

The set C(p) is called the cut locus of p. Recall that expp : D(p) -. D(p) gives
a diffeomorphism and that we can represent d.g(q) expp)*[Ap(r; dr d.] on

D(p), where q r) and Ap(r; denotes the density of the Riemannian measure

on S(p, r) induced from g. Recall that we set S(p, r) := {q M | |p -q|g r}.
The classical Bishop comparison theorem asserts the following ([BC], cf. [Cl, Theorem

3.8]).

Theorem 3.1. If M,g) satisfies Ricg K, then we have

1

Ap(r;
dAp(r;

dr
n - 1)

sK
r/vn- 1)

sK(r/vn- 1)
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for all SpM and r 0, c( In particular, the function

Ap(r;
sK(r/vn - 1)n-1

is monotone non-increasing in r 0, c(

Given a point p M and a measurable set A M, as in the proof of Proposition

2.8, we define a map M M
p,A: A -. by M

p,A q) := where

: [0, 1] -. M is an arbitrarily chosen minimal geodesic from p to q. As C(p)
has a null measure, the map M

p,A is measurable and is uniquely determined up to a

modification on a null measure set.

Theorem 3.2. Let M, g) be an n-dimensional, complete Riemannian manifold without

boundary with n 2. Then a metric measure space M, dg, .g) satisfies the

K, n)-MCP if and only if Ricg K holds.

Proof. We first assume Ricg K and fix a point p M and a measurable set

A M. We shall show that the map M M defined as above satisfies 2.3)p,A
with N n which implies the K, n)-MCP. It follows from Theorem 3.1 that, for
any t [0, 1] and measurable subset A A,

p,A(A.g et( M

exp-1
p A nD(p)

tAp(tr; dr d.

exp-1
p A nD(p)

t
sK(tr/vn- 1)

sK(r/vn- 1)

n-1

Ap(r; dr d.

A
t

sK(t |p - q|
g/vn - 1)

sK(|p - q|
g/vn - 1)

n-1

d.g(q).

Therefore M satisfies the inequality 2.3).

Next we consider the converse, so that we suppose that M,dg, .g) satisfies the

K, n)-MCP. Fix p M, SpM, and an orthonormal basis {e1, en} in TpM
with e1 We denote by ki the sectional curvature of the plane spanned by e1
and ei for each i 2, n. For a small r > 0, it follows from

sK(r)
sK(2r)

1
2

1 +
K
2 r2

+ O(r4
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that

Ap(r;
Ap(2r;

1

2n-1

n

i=2

1 +
ki + O(r)

2
r2

+ O(r4

1

2n-1

n

i=2

1 +
ki
2

r2
+ O(r3

1

2n-1
1 +

n

i=2

kir
2

+ O(r3

1

2n-1
1 + Ricg( r2

+ O(r3

On the other hand, it is not difficult to observe that the K,n)-MCP implies

Ap(r;
Ap(2r;

sK(r/vn - 1)

sK(2r/vn- 1)

n-1

and hence we have

Ricg( r2 2sK(r/vn- 1)

sK(2r/vn- 1)

n-1

- 1 + O(r3

1 +
K

n- 1
r2 n-1

- 1 + O(r3

Kr2
+ O(r3

Dividing both sides by r2 and letting r tend to zero, we consequently obtain

Ricg( K.

This completes the proof.

The following are easily derived from Lemma 2.4(i) and Corollary 2.7 together

with the theorem above.

Corollary3.3. Let(M, g)be ann-dimensional, completeRiemannianmanifoldwithout

boundary.

i) If M, g) satisfies Ricg K and n N, then M, dg, .g) satisfies the K, N)-
MCP.

ii) If a metric measure space M,dg, .g) satisfies the K, N)-MCP, then we have

n N.
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4. Bonnet–Myers theorem

In this section, we shall show a generalization of the Bonnet–Myers theorem ([M]),
that is, the K, N)-MCP withK > 0 andN > 1 implies that the diameter is less than
or equal to pv(N -1)/K. By rescaling the distance, we may assume K N - 1

Lemma 2.4 ii)). For x X and s,t 0 with s < t, we define A(x;s, t) :=
B(x, t) \B(x,s), where we set B(x,0) := Ø. The symbol .a,ß(d) denotes a function
depending only on a and ß with limd.0 .a,ß d) 0. Before beginning the proof
of the Bonnet–Myers theorem, we prove a useful lemma which holds for general K
and N.

Lemma 4.1. Let X, µ) satisfy the K, N)-MCP and, for 0 r < r 8(0

r < r pv(N -1)/K if K > 0), let t : r,r -. 0, 1] be a C1-function
satisfying t l)l + t(l) > 0 for all l r, r Then we have, for any point x X,
any measurable set A A(x; r, r with 0 < µ(A) < 8, and for x,A as in
Definition 2.1,

dµ et)* t + t

×
sK(t )/vN - 1)

sK( )/vN - 1)

N-1

µ(A)d

4.1)

as measures. Here et : - X denotes a map defined by et := et

Proof. Choose an arbitrary measurable set W X. It suffices to show

µ(W)
e-1
t W)

t + t

×
sK(t )/vN - 1)

sK( )/vN - 1)

N-1

µ(A) d

In the case ofK > 0, without loss of generality, we may assume

W B(x, p N -1)/K - e)

for some e > 0. Take a large M N, set d := r - r)/M and rm := r + md for
0 m M, and put

m := e-1
t W) n { | e0( x, e1( A(x; rm-1, rm)}

and Wm := et m) for 1 m M. The hypothesis on t says that

[t(l)l] t l)l + t(l) > 0,
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and hence Wm n Wm Ø holds if m m

For each 1 m M, we denote by km N {0} the number satisfying

t(rm) rm-1

rm

km+1

rm t(rm-1)rm-1 < t(rm) rm-1

rm

km

rm.

Moreover, for each 1 m M, we can choose am,bm [rm-1, rm] with am < bm
and km km such that

t(rm-1)rm-1 t(rm)
am

bm

km+1

rm t(rm-1)rm-1 + t(rm)d
2 4.2)

as well as

m

sK(t rm) )/vN - 1)

sK( )/vN - 1)

N-1

d

bm - am

rm - rm-1 m

sK(t rm) )/vN - 1)

sK( )/vN - 1)

N-1

d

4.3)

where we put

m := e-1
t W) n { | e0( x, e1( A(x; am, bm)} m.

Note that, for all l am,bm) and 0 k km

t(rm)rm

bm

am

bm

k

l t(rm)rm
am

bm

k+1

t(rm)rm
am

bm

k

t(rm-1)rm-1, t(rm)rm

and hence

Wm

km

k=0

e(t rm)rm/bm)(am/bm)k( m disjoint union).
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Therefore we have, by the K,N)-MCP,

µ(W)
M

m=1

µ(Wm)

M

m=1

km

k=0

µ e(t rm)rm/bm)(am/bm)k( m

M

m=1

km

k=0

t(rm)rm

bm

am

bm

k

×
m

sK({t(rm) + d)}
)/vN - 1)

sK( )/vN - 1)

N-1

µ(A)d

M

m=1

t(rm)rm

bm

1- am/bm)km+1

1- am/bm)

×
m

sK(t rm) )/vN - 1)

sK( )/vN - 1)

N-1

+ d) µ(A) d

Furthermore, it follows from 4.2) and 4.3) that

M

m=1

t(rm)rm

bm

1- am/bm)km+1

1- am/bm)

×
m

sK(t rm) )/vN - 1)

sK( )/vN - 1)

N-1

+ d) µ(A) d

M

m=1

t(rm)rm

bm

1- am/bm)km +1

1- am/bm)

bm - am

rm - rm-1

×
m

sK(t rm) )/vN - 1)

sK( )/vN - 1)

N-1

+ d) µ(A) d

M

m=1

t(rm)rm - t(rm-1)rm-1

rm - rm-1 - t(rm)d

×
m

sK(t rm) )/vN - 1)

sK( )/vN - 1)

N-1

+ d) µ(A) d

t + t sK(t )/vN - 1)

sK( )/vN - 1)

N-1

µ(A)d

as M diverges to the infinity. We remark that, to see

lim
M.8

t(rm)d

m

sK(t rm) )/vN - 1)

sK( )/vN - 1)

N-1

µ(A) d 0



Vol. 82 2007) On the measure contraction property of metric measure spaces 817

in the last implication, we used the fact that

t sK(t )/vN - 1)

sK( )/vN - 1)

N-1

µ(A) d

µ(A) d µ(A) < 8
holds if K 0, and that

t sN-1(t )/vN - 1)

sN-1( )/vN - 1)

N-1

µ(A) d

A
t(|x - y|X)

sin(t(|x - y|X)|x - y|X)

sin(|x - y|X)

N-1

dµ(y)

µ A n B(x, p/2) +
AnA(x;p/2,p)

v2 sin(|x - y|X/2)

sin(|x - y|X)

N-1

dµ(y)

µ B(x, p/2) + 2(N+1)/2

A(x;p/2,p)

1

2
sin(|x - y|X/2)

sin(|x - y|X)

N-1

dµ(y)

µ B(x, p/2) + 2(N+1)/2µ A(x;p/4, p/2)

< 8
holds if K N - 1 > 0. We used the N - 1, N)-MCP in the fourth implication.
This completes the proof.

Next we prove a key lemma in this section.

Lemma 4.2. Let X, µ) satisfy the N - 1, N)-MCP. Then, for any x X and

s, t [0, p/2] with s < t, we have

µ A(x;s, t) µ A(x; p - t, p - s)

Proof. Take a largeM N and set d t-s)/M and tm := s+md for 0 m M.
For 1 m M, we define a function tm : p - tm, p - tm-1) -. 0,1] by

tm(l) :=
l - p + tm-1 + tm

l
Note that

tm(p - tm) · p - tm) tm-1, tm(p - tm-1) · p - tm-1) tm,
d

dl
tm(l)l 1.
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Applying Lemma 4.1 to each Am := x; p - tm,p - tm-1) and tm, we have

µ A(x; s, t)
M

m=1

µ A(x; tm-1, tm)

M

m=1

sN-1(tm( )/vN - 1)

sN-1( )/vN - 1)

N-1

µ(Am) d x,Am

M

m=1 Am

sin(tm(|x - y|X)|x - y|X)

sin(|x - y|X)

N-1

dµ(y)

M

m=1 Am

sin(|x - y|X - p + tm-1 + tm)

sin(|x - y|X)

N-1

dµ(y)

M

m=1 Am

sin(p - |x - y|X)

sin(|x - y|X)

N-1

+ d) dµ(y)

M

m=1

µ(Am) + d)

µ A(x; p - t, p - s)

as M diverges to the infinity.

Theorem4.3. Bonnet–Myers theorem) If a metricmeasurespace X,µ) satisfies the

K, N)-MCP for someK > 0 andN > 1, then we have diam X pv(N - 1)/K.

Proof. It suffices to consider the case of K N - 1. Suppose that there exist two
points x, y X with |x-y|X p +e for somee > 0. Since X is a length space, for
any small d 0,e), we can take a unit speed curve : [0, p + e + d ]-. X such
that 0) x, p + e+d y, and that d [0, d]. If we put zd := e+2d+d

then we find

e + 2d |x - zd|X e + 2d + d p- 2d - d |zd - y|X p - 2d.

Put

t :=
p - e - 2d- d

p - d A:= et supp zd,B(y,d)).

Then it follows from the N - 1, N)-MCP that

µ(A) t
sin(t (|y - zd|X + d))

sin(|y - zd|X - d)

N-1

µ B(y, d) et )* zd,B(y,d) A)

1-
e + d + d

p - d

sin(p - e - 2d - d

sin(p - 3d - d

N-1

µ B(y, d)
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1-
e + 2d

p - d

sin(p - e- 3d)

sin(p - 4d)

N-1

µ B(y, d)

1-
e + 2d

p - d

sin(e + 3d)

sin(4d)

N-1

µ B(y, d)

On one hand, we observe

A B zd, t(|zd - y|X + d) B x, e + 2d + d + t p - d)

B(x, p).

On the other hand, for any supp zd,B(y,d), we see

|x- t)|X |x - 1)|X - 1 - t)
> p + e) - d - 1- t)(|zd - y|X + d)

p + e - d - 1 - t)(p - d)

p + e - d - e + d + d

p - 2d - d

p - 3d

and hence A B(x, p) \ B(x,p - 3d). Thus we have, by Lemma 4.2 and the
doubling condition Lemma 2.5 with K 0),

µ(A) µ A(x;p - 3d, p) µ B(x, 3d) 3N µ B(x, d)

Therefore we obtain, sinceN > 1,

µ(B(x, d))

µ(B(y, d))
3-N 1-

e + 2d

p - d

sin(e + 3d)

sin 4d

N-1

.8
as d tends to zero. However, this is a contradiction because we can exchange the roles
of x and y.

Recall that we set S(x, r) {y X | |x - y|X r} for x X and r > 0.

Lemma 4.4. Let X,µ) satisfy the N - 1, N)-MCP for someN > 1.

i) For every x X, the set S(x, p) has a null measure.

ii) If x, y X satisfies |x - y|X p, then we have, for any e 0, p/2),

µ B(x, e) µ B(y, e)
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Proof. i) We can suppose that S(x, p) Ø, in particular, X contains more than

two points. Fix an arbitrary e > 0 and let {xi}
M
i=1 be a maximal 2e-discrete set in

S(x, 3e), i.e., {xi}
M
i=1 S(x, 3e), |xi - xj|X 2e holds if i j and {B(xi 2e)}

M
i=1

covers S(x, 3e). Note that B(xi, e)’s are mutually disjoint. For any y S(x, p),
there exists a point z S(x, 3e) such that |y - z|X < p - 2e, and |z - xi |X < 2e

holds for some i. For such i, we observe

|y - xi |X |y - z|X + |z - xi|X < p,

|y - xi |X |y - x|X - |x - xi|X p - 3e.

Namely, we see y A(xi; p - 3e, p). Combining this with Lemma 4.2, we obtain

µ S(x, p) µ
M

i=1

A(xi; p - 3e, p)

M

i=1

µ A(xi;p - 3e, p)
M

i=1
µ B(xi 3e)

3N
M

i=1

µ B(xi, e) 3Nµ
M

i=1

B(xi, e)

3Nµ B(x, 4e) 0

as e tends to zero by Corollary 2.6. This completes the proof.
ii) It is a straightforward corollary to Lemma 4.2 through Theorem 4.3 and i) of

this lemma. Indeed, we have

µ B(x, e) µ A(x; p - e, p) µ X \ B(x, p - e) µ B(y, e)

The converse inequality is obtained similarly.

We remark that Lemma 4.4(i) is not covered by Lemma 2.5. Now we obtain a

result concerning the maximal diameter situation.

Theorem 4.5. If a metric measure space X, µ) satisfies the K, N)-MCP for some

K > 0 andN > 1, then, for any x X, the set S(x,pv(N - 1)/K) consists of at
most one point.

Proof. Suppose that K N - 1 and that there exist two points y,z S(x, p)
satisfying e := |y - z|X/2 > 0. Then, by Lemma 4.4, Theorem 4.3, and by Lemma 4.2,
we obtain

2µ B(x, e) µ B(y, e) + µ B(z, e) µ B(y, e) B(z, e)

µ A(x;p - e, p) µ B(x,e)

This contradicts to µ(B(x, e)) > 0, and hence we complete the proof.
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5. Bishop–Gromov volume comparison theorem

This section is devoted to proving an analogue of the Bishop–Gromov volume
comparison theorem. See [Cl, Theorem 3.10] for the Riemannian case.

Theorem 5.1. Bishop–Gromov volumecomparison theorem) Let X, µ) be a metric
space satisfying the K, N)-MCP. Then, for any x X, the function

µ B(x, r)
r

0
sK

s

vN - 1

N-1

ds

is monotone non-increasing in r 0,8) r 0, p v(N -1)/K) ifK > 0).

Proof. Theproof isbased on the discretizationof that in theRiemannian case roughly
speaking, the integration of the Bishop inequality). Take r > 0. By Theorems 4.3
and 4.5, we can suppose r p v(N -1)/K if K > 0. For a small t 0, 1)
and any l,m N with l < m, it follows from the K, N)-MCP with x x,

A A(x; t lr, t l-1r), and t tm-l that

µ A(x; tmr, tm-1r)

tm-l inf
t=s=1

sK(stm-1r/vN - 1)

sK(st l-1r/vN - 1)

N-1

µ A(x; t lr, tl-1r)

tm-l inf
t=s=1

sK
stm-1r

vN - 1
sup

t=s=1
sK

stl-1r

vN - 1

N-1

× µ A(x; t lr, tl-1r)

Thus we have, for all l j m - 1,

µ A(x; tj r, tj-1r)
8

i=m

t i inf
t=s=1

sK(sti-1r/vN - 1)N-1

8

i=m

µ A(x; t ir, ti-1r) tj sup

t=s=1
sK(stj-1r/vN - 1)N-1

µ B(x, tm-1r) tj sup

t=s=1
sK(stj-1r/vN - 1)N-1
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Therefore we obtain

µ B(x, t l-1r)

µ B(x, tm-1r) +
m-1

j=l
µ A(x;tj r, tj-1r)

1 +
m-1

j=l

tj sup
t=s=1

sK
stj-1r
vN - 1

N-1 8

i=m

t i inf
t=s=1

sK
sti-1r

vN - 1

N-1

× µ B(x, tm-1r)
8

j=l

t j sup

t=s=1
sK

stj-1r

vN - 1

N-1 8

i=m

ti inf
t=s=1

sK
sti-1r

vN - 1

N-1

× µ B(x, tm-1r)
and hence

µ B(x, tl-1r)
8

j=l
tj-1r - t j r) sup

t=s=1
sK

stj-1r

vN - 1

N-1

µ B(x, tm-1r)
8

i=m

t i-1r - tir) inf
t=s=1

sK
sti-1r

vN - 1

N-1

This completes the proof by letting t tend to 1 as well as l andmgo to the infinity.

6. Stability and compactness

In this section, we consider the behavior of the K, N)-MCP under the measured

Gromov–Hausdorff convergence. TheWasserstein space will play a crucial role. See

[F] and [KS2] for the measured Gromov–Hausdorff convergence, and see [LV], [S2],
and [V] for theWasserstein space.

6.1. Measured Gromov–Hausdorff topology. We first recall the Gromov–Hausdorff

distance between compact metric spaces. See [G] for more details. For two
closed subsets A and A in ametric space Z, the Hausdorff distance dZH between them
is defined by

dZH(A, A := inf{e > 0 | A B(A e), A B(A,e)}.
More generally, for two compact metric spaces X and Y we define the Gromov–
Hausdorff distance dGH between them by

dGH(X, Y := inf
Z,

dZ
H X), Y
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where the infimum is taken over all metric spaces Z and isometric embeddings

: X -. Z and : Y -. Z. If we denote by C the isometric classes of compact
metric spaces, then C, dGH) is a complete metric space. The topology of C induced
from dGH is called the Gromov–Hausdorff topology. It is convenient to estimate
the Gromov–Hausdorff distance in terms of the e-approximating map. For metric
spaces X and X a not necessarily continuous) map : X -. X is called an

e-approximating map for e 0 if it satisfies BX X), e) X and if

| x) - y)|X - |x - y|X e

holds for all x, y X. Note that a 0-approximating map is nothing but an isometry.

Lemma 6.1. Let X, Y C and e > 0.

i) If dGH(X,Y < e, then there exists a 2e-approximating map from X to Y

ii) If there exists an e-approximating map from X to Y then dGH(X, Y 2e.

In particular, a sequence {Xi}8i 1 C converges to X C if and only if there
exists a sequence of ei-approximating maps .i : Xi -. X with limi.8 ei 0. For
the later use, we recall an easily proved lemma.

Lemma 6.2. Let {Xi}8i 1 C be a sequence of compact, geodesic metric spaces

converging to a compact metric space X C in the Gromov–Hausdorff topology
with a sequence {ei}8i 1 tending to zero and ei-approximating maps {.i}8i 1. For
a sequence of minimal geodesics .i : [0, 1] -. Xi i N, if the sequences of
end points {.i(.i(0))}8i 1 and {.i(.i(1))}8i 1 converge to some points x, y X,
respectively, then a subsequence of {.i .i}8i 1 converges to a minimal geodesic
from x to y uniformly.

We next recall the measured Gromov–Hausdorff convergence introduced in [F].

Definition 6.3. Measured Gromov–Hausdorff convergence, [F]) A directed system

ofmetric measure spaces{(Xa, µa)}a.A is said to converge to ametric measure space

X, µ) in the sense of the measured Gromov–Hausdorff convergence if there exists a

directed system of positive numbers {ea}a.A satisfying the following conditions:

1) {ea}a.A converges to zero;

2) For each a A, we have a Borel, measurable, and ea-approximating map

.a : Xa -. X;
3) A directed system of push-forward measures {(.a)*(µa)}a converges to µ

weakly, i.e., for any f C(X), we have

lim
a.A X

f d .a)*(µa)
X
f dµ.

Here C(X) denotes the set of all continuous functions on X.
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If we defineCM as the isomorphic classes of all compact metric spaces equipped
with Radon measures, then the measured Gromov–Hausdorff convergence gives a

topology on CM, and we call it the measured Gromov–Hausdorff topology. We
know that this topology is Hausdorff ([F, Proposition 2.7]) and that the projection
CM(V -. C is proper, where we set

CM(V := {(X, µ) CM | µ(X) V }
forV > 0 ([F, Proposition 2.10]). For K R, N 1, V > 0, andD > 0, we define

CM(K, N, V, D) CM(V as the isomorphic classes of compact metric measure
spaces X, µ) in CM(V satisfying the K,N)-MCP and diam X D. The following

is an easy corollary of Gromov’s precompactness theorem ([G, Proposition 5.2])
by virtue of Theorem 5.1.

Theorem 6.4. Let {(Xi, µi)}8i 1 CM(K, N, V, D). Then it has a subsequence

which is convergent in the measured Gromov–Hausdorff topology.

If we denote by X, µ) CM that limit space, then we immediately observe

µ(X) V and diam X D. To show that X, µ) also satisfies the K, N)-MCP,
we need to recall theWasserstein space and some results in [LV].

6.2. Wasserstein spaces. LetX be a complete, separable metric measure space, and

P2(recall that X) denotes the set of all Borel probability measures, say µ, satisfying

|x - y|
2 dµ(y) < 8 for some and hence all) x X. Given two probabilityX X

measures µ, P2(X), a Borel measure q on X×X is called a coupling of µ and

if, for any measurable set A X, we have q(A×X) µ(A) and q(X×A) A).
For example, the product measure µ × is a coupling of µ and We define the
L2-Wasserstein distance dW on P2(X) by

dW(µ, := inf X dq(x,y)
1/2

X×X
|x - y|

2 q : coupling of µ and

for µ, P2(X), and we call P2(X), dW) the L2-Wasserstein space over X. Then
P2(X), dW) is a complete and separable metric space see [S2, Proposition 2.10]).

Furthermore, P2(X), dW) is compact or a length space if and only if so is X,
respectively. In particular, if X is compact and geodesic, then so is P2(X), dW).

1 P2(X) convergesProposition 6.5 cf. [V, Theorem 7.12]). A sequence {µi}8i
to µ P2(X) with respect to dW if and only if µi converges to µ weakly and

lim
R.8

sup

i.N X\B(x,R)
|x - y|

2
X dµi(y) 0 6.1)

holds for some and hence every) point x X.
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We observe that 6.1) automatically holds true if X is bounded. The following
two results obtained in [LV] will play key roles in our discussions.

Proposition 6.6 ([LV, Proposition 4.1, Corollary 4.3]). If : X-. X is a Borel, e-

approximating map, then .* : P2(X), dW) -. P2(X dW) is ẽ-approximating
with

ẽ 4e + {e(2 diam X + e)}
1/2

In particular, if a sequence of compact metric spaces {Xi}8i 1 converges to a compact

metric space X in the Gromov–Hausdorff topology equipped with Borel, ei -
approximating maps .i i N, then the sequence {(P2(Xi dW)}8i 1 converges to
P2(X), dW) in the Gromov–Hausdorff topology with ẽi-approximating maps .i)*.

Proposition 6.7 ([LV, Proposition 2.10]). LetX be a compact geodesic metric space.
Thenanyminimalgeodesic in P2(X), dW) is given by the displacement interpolation
associated to some dynamical transference plan.

6.3. Stability and compactness. Now we prove the stability of the K,N)-MCP
under the measured Gromov–Hausdorff convergence. The idea of the proof is as

follows. If we consider the dynamical transference plan x,A as a family of
geodesics in X, then, as it contains uncountably many geodesics, it is impossible to
control the behaviors of all of them simultaneously. However, we can regard it as one
geodesic from dx to µ|A)- in the Wassestein space P2(X), dW), and then usual
techniques are applicable. All spaces in this subsection are assumed to be compact.

Theorem 6.8 Stability). A measured Gromov–Hausdorff limit, with a positive total
mass,ofa sequenceof metricmeasurespaces satisfying the(K,N)-MCPalso satisfies
the K,N)-MCP.

Proof. We first assume K 0. Let {(Xi, µi)}8i 1 CM be a sequence of metric
measure spaces satisfying the K, N)-MCP. We suppose that it converges to some
metric measure space X, µ) with µ(X) > 0 in the measured Gromov–Hausdorff
topology, so that we have a sequence {ei}8i 1 tending to zero and a Borel, measurable,
and ei-approximating map .i : Xi -. X, i N, as in Definition 6.3.

Fix a point x X and a measurable set A X with µ(A) > 0. For each large)

i N, we choose a point xi .-1
i BX(x, ei)) and put Ai := .-1

i A). We remark

that, by the definition of the ei-approximating map, .-1

i BX(x,ei)) is not an empty
set. Moreover, as µ(A) > 0, we know µi(Ai) .i)*µi)(A) > 0 and hence Ai
in not empty for large i. By the K, N)-MCP, for each i N, we have a dynamical
transference plan i xi,Ai such that the displacement interpolation associated to

it satisfies the conditions 1) and 2) in Definition 2.1. Note that

.i)* e0)* i .i)*dxi d.i xi dx
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and, by Proposition 6.5,

.i)* e1)* i .i)*(µi |Ai )- [ .i)*(µi)]|A - µ|A)-

in P2(X), dW) as i diverges to the infinity, respectively. Thus it follows from
Lemma 6.2 and Proposition 6.6 that a subsequence of {(.i)*[(et)* i ]}t.[0,1], i
N, converges to a minimal geodesic {.t}t.[0,1] between dx and µ|A)-. Again we
denote this convergent subsequence by {(.i)*[(et )* i ]}t.[0,1], i N. Moreover,
Proposition 6.7 implies that {.t}t.[0,1]

is the displacement interpolation associated to
some dynamical transference plan x,A which clearly satisfies e0)* dx

and e1)* µ|A)-.
Now we consider the condition 2) in Definition 2.1. We fix t 0, 1) and put

d.i := et )* t
sK(t )/vN - 1)

sK( )/vN - 1)

N-1

µi(Ai)d i(

d. := et )* t
sK(t )/vN - 1)

sK( )/vN - 1)
N-1

µ(A) d

on Xi and X, respectively. Since .i)*[(et)* i] converges to et )* weakly and Xi
converges to X in the Gromov–Hausdorff topology, we find that .i)*(.i) converges
to weakly as i diverges to the infinity. The K, N)-MCP of Xi, µi) yields that

µi .i holds as measures for every i. Therefore we have µ and hence X, µ)
satisfies the K,N)-MCP. This completes the proof in the case of K 0.

IfK > 0, then we take A BX(x, pv(N -1)/K) and set, for each i N,

i A) n BXi xi, p N -1)/K).Ai := .-1

Then a completely similar discussion proves the theorem.

Combining this stability with Theorem 6.4, we obtain the compactness of the
family

CM(K, N, V V, D) := {X CM(K,N, V, D) | µ(X) V }

where 0 < V V

Theorem 6.9 Compactness). For any K R, N 1, V V > 0, and any

D > 0, the setCM(K, N, V V, D) is compact in the measured Gromov–Hausdorff
topology.

In particular, the family CM(K, N, 1,1, D) i.e., spaces with probability
measures) is compact.
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6.4. Non-compact case. Thediscussion in theprevioussubsection is also applicable
to thenon-compact case by weakening the measured Gromov–Hausdorff convergence

to the pointed one. We suppose that all metric spaces appearing in this subsection are
complete.

Definition 6.10 Pointed measured Gromov–Hausdorffconvergence). Adirected system

of pointed metric measure spaces {(Xa, µa, za)}a.A is said to converge to a

pointed metric measure space X,µ, z) in the sense of the pointedmeasured Gromov–
Hausdorff convergence if there exist two directed systems {ea}a.A and {ra}a.A
satisfying the following:

1) {ea}a.A tends to zero and {ra}a.A diverges to the infinity;

2) For each a A, we have a Borel, measurable, and ea-approximating map

.a : BXa za, ra) -. BX(z, ra);

3) A directed system of push-forward measures {(.a)*(µa)}a.A converges to µ
vaguely, i.e., for any f C0(X), we have

lim
a.A X

f d .a)*(µa)
X
f dµ.

Here C0(X) denotes the set of all continuous functions on X whose supports
are compact.

Theorem 6.11. A pointed measured Gromov–Hausdorff limit, with positive total
mass, of a sequence of pointed metric measure spaces satisfying the K,N)-MCP
also satisfies the K, N)-MCP.

Proof. Take a point x X and a measurable set A X. As X is proper, we can
apply the discussion in the proof of Theorem 6.8 to each A n B(x,m), m N. This
completes the proof.
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