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Complete square complexes

Daniel T. Wise

Abstract. We study groups which act cocompactly and properly discontinuously on the direct
product of two trees. This class of groups turns out to be much richer than one might expect.
An interplay is developed between the immersed flats in the complex and the subgroup sep-
arability properties of its fundamental group. This link between algebra and geometry leads
to the solution of several problems concerning the residual properties of automatic groups and
small-cancellation groups. In particular an explicit example is given of a compact non-positively
curved square complex whose fundamental group is not residually finite. A more complicated
such example is given with the property that its fundamental group has no finite quotients. The
universal covers of these examples are isomorphic to the direct product of two trees. Other
examples include a C(4)—T (4) small-cancellation group which is not virtually torsion-free.
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1. Introduction

The theory of small-cancellation groups was developed in the sixties, though its
origins may be traced back much further. With the increased interest in geometric
group theory, the various classes of small-cancellation groups have taken their places
as examples of automatic and, in some cases, word-hyperbolic groups. In addition,
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many simply-connected small-cancellation complexes admit metrics of non-positive
curvature so their fundamental groups act properly-discontinuously and cocompactly
on a CAT(0) space, and arec ‘CAT(0) groups’. Perhaps the simplest examples of
2-dimensional non-positively curved spaces that also have the small-cancellation
property, are the non-positively curved square complexes. A non-positively curved
square 2-complex is a 2-complex formed by gluing squares together, which has the
property that the link of each vertex contains no cycles of length < 4. In addition
to being CAT(0) groups, the fundamental groups of compact non-positively curved
square complexes are finitely presented C(4)-7(4) groups and thus biautomatic by
[GS90], [GSO1].

Finitely presented small-cancellation groups have numerous agreeable properties,
and as usual, researchers sought to compare them with other classes of agreeable
groups. One such class, 1s the class of residually finite groups which are groups with
the property that every non-trivial element lies outside some finite index subgroup.

And so it was asked for some time whether all finitely presented small-cancellation
groups are residually finite [Sch73], [Wal79], [Pri89]. More recently, the same ques-
tion was asked about automatic groups [Ger92], and groups which act properly dis-
continuously and cocompactly on CAT(0) spaces.

The main purpose of this paper is to construct examples of non-residually finite
groups belonging to each of these classes. These examples are the fundamental groups
of certain natural spaces defined below. These results appeared as [Wis96b, Part I1],
and circulated earlier in [Wis].

Shortly thereafter, Burger and Mozes announced their now-famous work con-
structing infinite simple groups of the same type that I studied. We refer the reader
to [BM97] for their announcement and to [BMOO] for a complete account of their
work. Later, Rattaggi resourcefully incorporated the powerful method of Burger—
Mozes together with the small example X presented here, to produce other relatively
small examples with infinite simple fundamental groups [Rat07]. Now that the dust
has cleared, I hope that there is stll some merit in my elementary approach which
contrasts with the deeper and more powerful approach of Burger—Mozes.

The principal objects of study in this paper are complete square complexes (or
CSCs for short). A CSC is a square complex with the property that the link of
each vertex is isomorphic to a complete bipartite graph. Section 2 described the
background and basic properties of V. #-complexes, which are a somewhat more
general class of non-positively curved 2-complexes, and form a more natural context
to describe some of the basic results and language that we will later need. Section 3
introduces CSCs and provides many of the basic theorems and definitions about
CSCs that we shall need. For instance, Theorem 3.8 asserts that a square complex
is a CSC if and only if its universal cover is isomorphic to the direct product of two
trees. It is easy to see that CSCs satisty the combinatorial non-positive curvature
condition for square complexes, and therefore satisfy the more general C(4)-T1(4)
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small cancellation condition. It thus follows (by [(GS90]) that the fundamental groups
of compact CSCs are biautomatic. A simple proof of this result for the case of CSCs
1s sketched in Proposition 3.10.

The easiest examples of CSCs are the direct products I'1 x 1’2 of two graphs.
Other examples include complexes with a finite cover that is isomorphic to I'y x I's.
In Section 4, T describe a more exotic example called X which is the main example
in this paper. It is a CSC formed by gluing together only 6 squares. Most of the
examples described later in the paper are constructed using X in some way, and many
of their properties are inherited from X.

In Section 5, we describe an aperiodically tiled plane called an anti-tforus. 1t is
shown that this aperiodically tiled plane appears in the universal cover of X. This
anti-torus lies behind most of our main results.

In Section 6, the anti-torus is used to show that the covering spaces of X are of a
very limited nature. In algebraic terms, 771 X is not subgroup separable with respect to
the subgroup of 71 X corresponding to the fundamental group of a certain subspace V
of X contained in X!. This subspace V, actually corresponds to one of the trees in
the isomorphism between X and the direct product of two trees. Corollary 6.8 asserts
that 771 X 1s not virtually F,, x F,,;. In geometric terms, we assert that X does not have
a finite cover which is the product of two graphs. One might have expected that any
group acting properly discontinuously and cocompactly on the direct product of two
trees s virtually the direct product F;, x Fj, of two free groups, but 771 X 1s an casy
example to the contrary.

In Section 7, some algebra is used to show that when X is doubled along V to
obtain a complex D, the resulting fundamental group 71D 1s not residually finite.
Since V is a totally geodesic subspace which is also contained in the 1-skeleton of X,
the complex D is itself a CSC. This is quite surprising, since it means that 7y D and
Iy x P are algebraically very different but geometrically very similar since their
(non-labeled) Cayley graphs are isomorphic.

In Section 8 we use D to build a compact CSC E such that 71 £ has no non-
trivial finite quotient (nor any non-trivial torsion quotient). The complex £ is built
up through a sequence of related complexes, which carry immersed copies of D, and
which are glued together in such a way that the non-residual finiteness of 71 D leads
to the related property in r1 E. That this can be done is not surprising, since for
instance, one would only have to embed 71 D so that it is not contained in any proper
(finite index) normal subgroup.

In Section 9 various examples are given of biautomatic groups and CAT(0) groups
which are not virtually torsion-free. Also, itis shown using similar ideas that the ques-
tion of whether or not word-hyperbolic groups are virtually torsion-free is equivalent
to the question of whether or not word-hyperbolic groups are residually finite. At the
end of Section 9 there is a sketch of a possible method to attempt to produce examples
of word-hyperbolic groups which are not residually finite.
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In Section 10 I pose a collection of problems about compact CSCs and their
fundamental groups. The problems tend to involve either algorithmic or algebraic
issues. Because of the anti word-hyperbolic behavior of their fundamental groups, 1
feel strongly that CSCs are an excellent testing ground for some conjectures related
to biautomatic and CAT(0) groups, and I hope that some of the problems will prove
fruitful.

[ am grateful to Martin Bridson who was my advisor during 1993-1995, and who
encouraged me to study Gromov’s problem of determining whether the universal
cover of a non-positively curved square complex contains a flat if and only if it
contains a periodic flat. My futile attempts at solving this problem ultimately led me
to the example X and its anti-torus. It took a while to figure out how to utilize X
to build non-residually finite fundamental groups, and it took a bit longer to realize
that X was the product of two trees, but I eventually got there. . .. Finally, I am grateful
to Tim Hsu who has been a close collaborator over the last eight years, and has
persistently pressed me to finally publish this work. Indeed, Tim and T have applied
these results in [HW98], [HW99] to form non-residually finite non-positively curved
polygons of finite groups, and applied these results in [HWO04] to construct CSCs
whose fundamental groups have infinitely many non-isomorphic fixed subgroups.

2. V#H-complexes

2a. Definitions and basic properties of 'V #-complexes

Notation 2.1. Throughout this paper, we let R = (—o00, o¢) and R = [0, oo) with
the usual structures as graphs, with O-cells at each n € Z and open 1-cells at each
(n,n+1). Welet I, C R denote the subgraph [0, n], and we let I = 1) = [0, 1].

Definition 2.2 (Square complex V J¢-complex). A square complex X is a combina-
torial 2-complex whose 2-cells are attached by combinatorial paths of length 4. Thus,
we think of each 2-cell as a square attached to X!

A square complex X is a 'V #-complex if the 1-cells of X are partitioned into two
classes V and H called vertical and horizontal edges respectively, and as in the first
square of Figure 1, the attaching map of each 2-cell of X alternates between edges in
Vand H.

We let Vy = V U XY denote the vertical 1-skeleton and Hy = H U X° denote the
horizontal 1-skeleton. For a O-cell x € X°, we let V, denote the component of Vy
containing x. We define H; similarly.

Remark 2.3 (Bipartite links). Tetx € X U where X is a 2-complex. We let Link(x)
denote the link of x in X which is a graph whose vertices and edges correspond to the
ends of 1-cells and corners of 2-cells incident with x. Note that Link(x) is topologized
so that it looks like the e-sphere about x in X.
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Figure 1. Squares: The squares in the figure above are meant to suggest (from left to right)
a 'V Jf-square, a horizontally directed VJf-square, a subdivided VJ¢-square (to obtain two
horizontally directed subsquares), and the first barycentric subdivision of a V. Jf-square.

Recall that a graph I is bipartite if I'? is partitioned into two disjoint classes such
that each edge of I connects vertices from distinct classes.

Let X be a 'V #-complex and letx € X°. The partition of the 1-cells of X into two
classes V and H, induces a partition of the vertices of Link(x). Furthermore, since
attaching maps of the squares of X alternate between 1-cells in V and 1-cells in /1,
we see that the edges of Link(x) connect vertices from different classes. Therefore,
the V #¢-structure on X induces a bipartite structure on Link(x) for each x € X°.

This motivates the following definition:

Definition 2.4 (Locally V#). The square complex X is locally V7 if for each
x € XY there is a chosen bipartite structure on the graph Link(x). As in Remark 2.3,
a V. -complex has an induced local 'V #-structure.

Note that X may admit several 'V #-structures because a graph admitting a bipar-
tite structure actually admits 2¢ such structures, where ¢ is the number of connected
components of the graph.

Example 2.5 (Not global V.#¢). The simplest example of a square complex with a
local 'V #-structure which is not consistent with any (global) 'V #€-structure is a loop
with one 0-cell and one 1-cell, where the bipartite structure on the link of the O-cell
has one vertex in cach class. While the underlying complex in this example does have
two V A -structures, both are inconsistent with the local 'V #€-structure that we chose.

A square complex which has a local 'V #-structure but no (global) 'V #-structure,
1s obtained from a square by identifying two of its sides as in Figure 2.

B
»

Figure 2. Local but not global: The complex obtained by identifying two sides of a square as
indicated above, has a local V J¢-structure but no global V. J¢-structure.
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While Example 2.5 shows that there are many examples of local 'V #-complexes
with no consistent (global) 'V # -structure, we do have the following theorem which
1s analogous to the existence of orientable double covers of manifolds. See [Wis96b]
or [Wis03] for the proof, which is straightforward.

Theorem 2.6 ('V #€ double cover). Let X be a square complex which is locally 'V 3.
Then there is a double cover X — X such that the induced local 'V #-structure
on X is consistent with a global 'V #-structure.

Definition 2.7 (Non-positive curvature). A square complex X is non-positively curved
if all immersed cycles in the link of each O-cell of X have length at least 4. A square
complex satisfying this combinatorial link condition admits a locally CAT(0) metric
(see [Gro87] or [BH99]).

Remark 2.8 (Locally-V.# and curvature). If X is a locally-V.# square complex,
then X satisfies the combinatorial non-positive curvature condition if and only 1if there
are no cycles of length 2 in the links of O-cells of X. This is because all the cycles in
a bipartite graph have even length, and so we may rule out the short cycles of length 1
or 3.

Definition 2.9 (Directed V #-complex). We view the attaching map of each square
of a square complex X, as a map from the boundary of the unit square I x I to X'.
We orient both horizontal edges of the unit square from left to right as illustrated in
the second square of Figure 1. Let X be a V. #-complex and suppose that Hy 1s
a directed graph. The YV #-structure on X is horizontally directed if the attaching
map of each square of X is orientation preserving on its horizontal edges. We define
vertically directed similarly. We shall use the term direcred 1o mean horizontally
directed.

Remark 2.10 (Subdividing). There is little loss of generality in considering only
directed 'V #-complexes. This is because, given a 'V #-complex, we may subdivide
Hx and subdivide each square of X by adding a vertical edge connecting the centers
of its horizontal edges. If we orient all horizontal edges towards the new O-cells then
we obtain a directed 'V #-complex. See the third square of Figure 1. Similarly, we
can subdivide each square both vertically and horizontally so that X 1s both vertically
and horizontally oriented. See the fourth square of Figure 1.

2b. The graph of spaces decomposition of a V #-complex

Definition 2.11 (Vertical foliation and V,). We now define a “singular vertical fo-
liation” on the V €-complex X. The unit square [ x [ is foliated by vertical line
segments. Similarly, the image of a square in X is foliated by vertical segments
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parallel to the pair of vertical edges on its boundary. For an arbitrary point x € X
we define the leaf V, to be the smallest subset of X having the property that x € V,
and that V. contains any vertical segment which intersects it. This definition of Vi 1s
consistent with the definition given earlier for x € X°.

Thinking of X as being foliated by these vertical subspaces, it 18 natural to take
the quotient of X in which each leaf is identified to a point. This quotient is a graph
denoted by I'y which we shall discuss in Definition 2.14.

Remark 2.12 (Singular leaves and directed 'V #¢). When x is a point in the interior
but not in the center of a horizontal edge, then for y very close to x, the leaf V;
is 1somorphic to the leaf V, by an isomorphism induced by sliding it along in X.
However, when x is the center of a horizontal edge, the leaf V, may be ditferent
from the surrounding leaves, in which case they correspond to double covers of it.
This situation can occur only if X is not directed. It is convenient to add all such
singular leaves V. (o the vertical 1-skeleton of X. This corresponds to subdividing
certain squares of X. The resulting complex has a directed 'V #-structure. Note that
if Hx can be oriented so that Vy is directed then for any points x and y in the same
horizontal edge, the leaves V. and Vy are isomorphic by a translation isomorphism.

Example 2.13 (M6bius strip). A Mobius strip obtained by identifying the top and
bottom horizontal edge of a square with a twisted 1dentification map, has an obvious
V #€-structure. The circle at the center of the Mdbius strip is singular.

Definition 2.14 (The decomposition graph X — I'y). Given a directed 'V #-com-
plex X, we definea graph 'y andamap ¢: X — I'x. The vertices of I" x correspond
to the connected components of Vy, which are called verrex spaces. Note that each
vertex space arises as V, for some O-cell x € X°. The edges of 'y correspond to the
connected components of X — Vy, which are called edge spaces.

If x and y are in the same edge space, then V, and Vy are isomorphic graphs and
there is a natural isomorphism between them. Indeed, if x is a point in some edge
space C, then C = V, x (0, 1). Itis natural to think of C as a subspace of V, x [0, 1]
which is a square complex which we denote by C. We will also refer to C as an edge
space.

For each edge space C, the inclusion C — X uniquely extends to a combinatorial
map C — X. Since C = V, x I, we obtain induced maps V, x {0} — Vx and
Vi x {1} — Vx which we call the attaching maps of the edge space C. Note
that these are combinatorial maps and in case X is non-positively curved then they
are immersions (i.e. local injections) and are therefore mp-injective [Sta&83]. The
components of Vy that the ends of C are mapped to correspond to the vertices of "y
that the edge of I'x corresponding to C is attached to.
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Finally, the map X — [’y is the quotient map induced by identifying each vertical
leaf of Definition 2.11 to a point.

Construction 2.15 (Constructing X from data). In order to further understand the
map ¢: X — 'y we show how X can be built up from the information encoded in
"y and the associated data. This 1s a special case of the notion of a graph of spaces
[SWT79].

Consider a graph I'y, and suppose that for each vertex v € I‘())( we have an
associated vertex space X, which is a graph, and for each edge ¢ € Edges(I'y) we
have an associated edge space X, x I where X, is a graph. Suppose that for each
edge ¢ which is attached to the vertices ey and e, there are corresponding maps
heoo: Xo x {0} = X, and @1 X, x {1} = X,,.

Using this data we may construct a V#-complex X as follows: Let Vy be the
disjoint union of the set of vertex spaces, that is

VX:{ v XU}.

0
UEFX

We form X by attaching X. x [ along its ends to Vx for each edge ¢ of I'x, so that

X:{VX g ngl}.
eclldges(I'y)

Theorem 2.16 (Graph of free groups). Suppose that X is a non-positively curved
VFH-complex. Then the map 0. X — 'y determines a splitting of m X as a graph
of free groups. Specifically, for each vertexv € I'x, myv = w1 X, and for each edge e
of U'x, me = m X,. Foreachedge e, attached to the vertices ep and ey, the inclusion
m1 X, — mXe, is induced by the maps ¢.; described above.

Proof. The non-positive curvature hypothesis implies that the attaching maps ¢,; are
immersions. They therefore induce 71-injections [Sta83]. O

We close this section with the following:

Definition 2.17 (Map of V#¢-complexes). Let X and ¥ be 'V #-complexes, and let
¢: X — Y be acellular map. Then ¢ is a V #-map provided that ¢(Vyx) C Vy and
¢ (Hyx) C Hy. We will be dealing with combinatorial maps, and so ¢ is a V. #-map
provided 1t maps vertical edges to vertical edges and horizontal edges to horizontal
edges. Note that for a VF-map ¢, there is an induced map ¢,.: I'y — I'y.
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3. Complete square complexes

Definition 3.1 (Complete square complex). A complete bipartite graph is a graph
whose vertices are partitioned into two classes V and I such that there 1s exactly one
edge joining v, i for each (v, k) € V x H, and there are no other edges.

A connected square complex X is a complete square complex (CSC) if Link(v) is
a complete bipartite graph for each v € X°.

Remark 3.2 (CSCs are non-positively curved). If X is a CSC then X obviously
satisfies the combinatorial non-positive curvature condition for square complexes
because for each vertex v € X, each cycle in Link(v) has even length, and there is
no length 2 cycle.

Example 3.3 (Not global-V #). While a CSC X is obviously alocally 'V #-complex,
there are examples of CSCs which do not have a global 'V #¢-structure. For instance,
the Klein bottle is the standard 2-complex of {(a, b | a*b?), and this 2-complex is a
CSC with no 'V #-structure.

Lemma 3.4 (CSC has V# double cover). Let X be a CSC, then there is a double
cover X — X such that X is a CSC which is also a 'V #-complex.

Proof. 'This follows from Theorem 2.6 because X 1s a locally 'V #¢-complex, but there
is also a more direct proof. Indeed, the automorphism group of X has a subgroup of
index 2 which preserves the local 'V #-structure. Its intersection with the covering
transformation group gives the desired subgroup of index < 2 of 71 X. Note that
some extra care must be taken in the degenerate case where X is a graph. O

Lemma 3.5 (Trees). Let)z be asimply connected non-positively curved 'V J-complex.
Then for each point x € X, the spaces V, and H, are trees.

Proof. Themap V, — Xisa local-isometry and therefore lifts to an isometry. (I first
learned of this idea from [Mos95], and it has had a large influence on me.) Note that
this reasoning shows that local-isometries lift to isometries between universal covers
and hence induce mp-injections, so 1 Vy 1s trivial, and hence the graph V, is a tree.

U

Lemma 3.6 (Connecting with vertical and horizontal). Any wo points w and z in
a connected simply connected CSC X can be uniquely connected by a path o, - oy,
which is the concatenation of a vertical and horizontal path. Similarly, any two points
can be uniguely connected by a path o - o, which is the concatenation of a horizontal
and vertical path.
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Proof. By subdividing X we may assume that w and z are in XO. Since X is connected
we may connect w to z by a path of minimal length & in X'. We now show that o is
path homotopic to a path oy, - o7, which is the concatenation of a vertical path beginning
at w, followed by a horizontal path ending at z. To see this, note that any length 2
subpath say h v2 of a path A, determines a unique square s of X, whose attaching
map can be thought of as hj'vy? = v3*hy for some choices of h4, v3, €3, and c4.
But then we can homotope A through the square s to a path of the same length by
homotoping the subpath A]'v3* to vi*hy*, and leaving everything outside the subpath
h3'v5? unchanged.

Define the complexity of a path A in X1 as follows: For each horizontal edge a
in A, let K, denote the number of vertical edges in A coming after a. We let the
complexity of A equal Za €Horizontal Edges(1) K,.

Observe that each square homotopy as above reduces the complexity of the path.
It follows that after finitely many such homotopies, we obtain a path of complexity 0
which is therefore of the form oy, - 63. O

Lemma 3.7 (V,, N H; is one point). Let w, z be points in the connected simply
connected CSC X, then the intersection of Vy, and H; consists of a single point.

Proof. 'To see that Vy, N fi; has at least one point, note that by Lemma 3.6, there is a
path o, - 5, which connects w to z. But o, ends at the point where o3, begins, and so
this point is in V,, N H;, because oy, is a path in Vy, and oy, is a path in H;.

We will apply the Combinatorial Gauss—Bonnet Theorem (see, for instance,
[Ger87]). Let o, and op be paths in V, and H, with the same endpoints. Let
D — X be a reduced disc diagram whose boundary path is o0, L Assigning an-
gles of % to each corner of each 2-cell, we see that each 2-cell and interior O-cell
has non-positive curvature, and each boundary O-cell (except for the endpoints of o,
and o) has non-positive curvature. If o, and o, are non-trivial then the curvature
at their endpoints is < 7% which is impossible. If one is non-trivial and the other is
trivial then the two endpomts are identified and that point has curvature < 7 which
1s impossible. Therefore, both &, and oy, are trivial. O

As motivation for the following theorem, observe that the condition that X is a
CSC is equivalent to X being locally isomorphic to the direct product of two trees.

Theorem 3.8 (X is CSC < X 2 Tree x Tree). Ler X be the universal cover " of the
square complex X. X isa CSC if and only if X is a CSC. Specifically, let x € X, and
consider the two trees Vi and Hy. If X is a CSC then X is isomorphic to Vy x Hy.

Proof. Note thatby Lemma 3.4, X isa V.#-complex, so the statement of the theorem
makes sense. Wedefineamap¢: X — V,x H, definedby y — (V,NH,, H,NV,).
The map ¢ is well-defined by the previous lemma.
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Note that ¢ has an inverse, V, x H, — X defined by (a, b) — H,NV}. Itiseasy
to see that these two maps are inverse to each other because H, = H, and V, = V.
It is easy to check that ¢ 1s cellular as well and so 1t 1s an 1somorphism. O

Remark 3.9 (Factoring 771). When x is the only O-cell of X, then one can deduce
from Lemma 3.6 or Theorem 3.8 that 71 X factors as miX = =7 (Vy)m(H,) =
w1 (Hy)m (V). Note that we always have w1 (V) Ny () = {1}, butm (V)71 (H,y)
is not always a subgroup when X has more than one O-cell.

Proposition 3.10 (Biautomatic: the Tree x Tree language). Let X be a compact
CSC. Then m X is biautomatic.

Using biautomatic structures for groupoids (see [ECH192]), it is easy to show
that the language consisting of paths which are vertical followed by horizontal, 1s the
language of a biautomatic structure for the fundamental group of a compact CSC.
Note that it 1s obvious that this 1s a language of geodesics which satisfies the fellow
traveller property. A similar language works for the higher dimensional cases (that is
Tree x Tree x Tree, etc.). Biautomatic structures have been obtained for more general
classes of complexes: For finite C(4)-T1 (4)-complexes this is proven in [GS90], and
for compact non-positively curved cubulated complexes this is proven in [NR9S§].

Lemma 3.11 (CSC < attaching maps are covering maps). A directed 'V H-complex
X is a CSCif and only if each attaching map of each edge space in the decomposition
of X is a covering map.

Proof. 1f all the attaching maps are covering maps, then it is easy to see that the
links arc complete bipartite graphs. To see the converse, we note that for cellular
maps between graphs, a covering map is just a local homeomorphism. But this local
condition is satisfied by the attaching maps of the edge spaces in the case of CSCs
because the links of vertices are complete bipartite graphs. So, in case X is a CSC,
all the attaching maps of edge spaces are covering maps. 0

Remark 3.12 (Weighted graph). Because of Lemma 3.11, we are able to add some
structure to the decomposition graph I'y. When X 1s a directed CSC, we label the
ends of edges in I'y with numbers indicating the covering degrees of the associated
attaching maps.

4. The main example: X

Example 4.1 (X as six squares). We define X to be the complex consisting of the
six squares indicated in Figure 3. The squares are glued together as indicated by
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the labeled directed edges. It is easily verified that X is a 'V #-complex and that it
is a CSC. Note that X has a unique O-cell. Let i = Hy, denote the subcomplex
consisting of the 2 horizontal edges, and let V = Vx denote the subcomplex consisting
of 3 vertical edges.

NIEININININ

Figure 3. X as six squares: The figure above indicates the gluing pattern for the six squares of X.
The three vertical edges colored white, grey, and black are denoted «, b, and ¢ respectively. The
two horizontal edges, single and double arrow, are denoted x and y respectively.

Explanation 4.2 (The vertical decomposition of X). Since X is both vertically and
horizontally directed, X may be described in terms of both 1ts vertical and horizontal
decompositions. We now describe the vertical decomposition of X.

Let pr: L — V and pgr: R — V be the covering spaces of V indicated in
Figure 4. Denote by 7: L — R the obvious (translation) graph isomorphism. Note
that 7 1s nof a covering space isomorphism.

Figure 4. Vertical decomposition of X: The bouquet of 3 circles in the center is V. The graph
on the left and right are denoted by L and R respectively. There are coveringmaps pr: L — V
and pg: R — V induced by the colorings of the graphs.

Using the information contained in py,, pr and  we may form X as follows: I'y
will be a graph with one vertex v, and one edge e. Let A, denote a graph isomorphic
to R and thus isomorphic to L via t. The vertex v € I'y correspondsto A, =V C X.
The edge space A, x I corresponds tothe edge e inI'y. Identify A, x {0} and A, x {1}
with L and R respectively, in such a way that the isomorphism A, x {0} = A, x 1
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is the same as r. Now, glue each end of A, x [ to V using the maps py and pg,
respectively. So we have

= ((Ae x DUV)/{(x,0) ~ p1(x), (x, 1) ~ pr(x) | x € Ac).

Notice that this describes 771X as an HNN extension of a free group of rank 3,
associating subgroups of index 2. The decomposition in the horizontal direction
provides a decomposition of 71X as an HNN extension of a free group of rank 2,
associating subgroups of index 3.

5. The anti-torus

Definition 5.1 (Ant-torus). Let ¥ be a CSC with a 'V #¢-structure, and let Y denote
the universal cover of Y. Let y € YV and let ¥ € ¥ denote a preimage of v.

Let sy — Hy — Y and s, — Vy — Y denote immersed circles based at y. Let
s — Y and 5, — Y denote the induced maps between universal covers based at Y.

Let 5, x 5, denote the convex hull of 5, and 5, in Y. Note thatsince ¥ = Hy x V3,
the convex hull of 57, U 5, 1s the prgduct subspace 55 x 5, — Hy x V.

We say that the plane 57, x5, C Y isananii-forus ifitisnot tiled periodically by the
preimages of squares of Y. More precisely, it is an anti-torus if the map §; x §, — Y
does not factor through a torus 72 — Y.

We shall now describe an immersed anti-tori in a compact CSC which will play a
fundamental role in this work.

Example 5.2 (The anti-torus IT immersed in X). Let ¢ denote the infinite > periodic
vertical line in X which is the component containing the basepoint p € X X0 of the
preimage in X of the loop labeled by ¢ in X. Define x similarly. Let [T denote the
plane in X that is the convex hull of ¢ and x. The plane II, is tiled by the six orbits
of squares in X as partially illustrated in Figure 5.

The remainder of this section 1s devoted to proving that:
Theorem 5.3. Il is not doubly periodic and therefore 11 is an anti-torus.

Let the basepoints ly, vg, and r¢g of L, V, and R be represented by the white
vertices. Let the second vertex of L be denoted by /5.

Givenapatho: I — V with o (0) = xg, let 6¢ and &1 denote the lifts of o to L
based at [y, and [; respectively.

Define ¢; (0): I — Viobe ¢i(o) = p, o 1 0 &%,

Let ¢: V — V be the orientation-preserving automorphism that permutes the
edges a and ¢ and fixes b.
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¥

Figure 5. The anti-torus IT: The plane TT above is the convex hull of two periodically labeled
lines in X. A small region of the northeast quadrant has been tiled by the squares of X.

We are interested in the case were o 18 a combinatorial path, and so is naturally
represented as a word in {a*!, b1, ¢*1}, As usual, the product of two paths o7 - o
is represented by the concatenation of words.

Define #,: m1V — Z to be the homomorphism induced by ¢ — 1, b +— 0,
and ¢ — (. Note that this merely counts the number of signed occurrences of a in
the reduced word representing the element. Define #, and #, similarly, and let #5 .
denote #, + #..

Lemma54. (1) o em(L) & #4.(0) = 0.
(2) 1 = todo.
(3) o gm(L) = dolo?) =dolo)  d1(o).

Proof. 'The statements follow easily from the definitions. o
Lemma 5.5 (Doubling lemma). ¢ ¢ 71(L) = bo(c?) ¢ m1(L).

Proof tyro(o(a?)) =2 #a(go(o?))
= #a(dolo) - p1(0))
= #,(¢ho()) + #a(t 0 Po(0))
= #,(¢p0(0)) + #o(cho(0))
= #,(0) +#.(0)
= #b—l—c(G)
Ez 1
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The first equality follows because |o%| =, 0. The second follows from Lemma 5.4.3.
The third follows from Lemma 5.4.2 and the fact that #, 1s a homomorphism. The
fourth follows from the definition of ¢. The fifth follows because the letters that may
be transtformed by ¢y into either a or ¢ are the letters » and ¢ (not respectively).
The sixth follows by definition. The seventh follows from Lemma 5.4.1 and the
assumption that o & m1(L). O

Corollary 5.6. qbg(czn) ¢ m(L).

Proof. We use Lemma 5.5 to prove this by induction. Whenn = 0 we have ¢0(c20) ¢
1 (L) since this just means that ¢ ¢ 71(L). Suppose that the statement is true for
n = k, we shall prove itforn = k4 1.

By Lemma 5.5, ¢&(c2*) ¢ w1 (L) implies that do{(p (2 )?) ¢ m1(L). But we

shall show below that (¢§(Czk))2 = ¢]5(C2k+1) and so substituting proves the lemma.

2y = [k w12 for any word w in

We now prove by induction on k that gb’g (w
2 _ [wl]Z

aTl b=l *l The base case where k = 0 holds because ¢8(w2) =w
[¢8(w1)]2. Now the result follows from the following equalities:

2k+1

PE ) = gk gow® ")) = g5 (o (w1
=[5 (powh* ] = [¢F  Ipow )] = [#hw™)]".

The first and last equalities hold because qbg_l o ¥ = qbg . The second and fourth
equalities hold because [¢o(u?)]” = ¢o(u>™) for any u, since u> € m1(L, Iy). The
third equality holds by induction. 0

Remark 5.7. Notice thataba='b~" 2% bab='a=' 25 aba='p~". SoLemma5.5
cannot be strengthened to say that for any o, there exists » such that, ¢{ (o) & m1(L).

Remark 5.8 (Geometric interpretation). Consider the horizontal geodesic in X based
at p corresponding to x”. Given a vertical geodesic based at p represented by some
word o in {a*!, bE!, ¢F1}, the convex hull of the union of these two paths at 7, is a
rectangle. The word ¢ (o) is simply the label (beginning at the endpoint of x™) of
the side opposite o in this rectangle. In a sense, all of the ‘calculations’ in the lemmas
above arereally occurring inside of X, and Corollary 5.6 1s a statement about I'l. Using
this point of view, 1t1s easy to show that I1 is not periodic, merely as a consequence of
Lemma 5.5. However, instead of going through that relatively simple argument, we
will look more carefully at the tiling of Il, and obtain a somewhat more informative
proof of aperiodicity.

Let W, (m) denote the horizontal positive path in [T of length » beginning at the
endpoint of the vertical path ¢ (see Figure 6). Thus, W, (m) determines a word
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which is the label of the side opposing x™ in the rectangle which is the convex hull
of x™ and <™. We will also use W, (m) to denote this associated word.

N LN N N N LY
7 7 Cd 7 7 I

Figure 6. Computations in I'1: The figure above represents the upper right quadrant of I1. The
bold horizontal line, represents the path corresponding to Ws(3).

Proposition 5.9 (Period doubling). For each n, the words {W,(m) | 0 <m < 2" —1}
are all distinct, and thus, every positive word of length n is Wy, (m) for some m.

Proof. We begin by observing that a vertical path represents an element of 7 (L) if
and only if the convex hull of its base lift together with the horizontal edge labeled
by v or x yields a rectangle whose top edge is labeled by y or x respectively.

Now, arguing by induction, we assume that the theorem is true for n = k, so that
the Wi (m) are distinct for 0 < m < 2k 1. In particular, it follows that

Wi(m) = Wy(m + 25).

Consequently the first £ letters of the words Wi 1(m) and Wy 1(m + 2%y are
equal, therefore it suffices to show that the last letters of these words are distinct.
However, the vertical word connecting the endpoints of the paths associated with

2
Wi (m) and Wi (m + 25) is just a subword of length 2% of the word (qbg(aZ’“)) , SO it is

a conjugate of qb’g (azk) which, by Corollary 5.6, is not an element of 771 (L). It follows
from our observation at the beginning of the proof, that the last letters of Wy 1(m)
and W1 (m + 2%) are distinct, and we are done. O

We can now prove Theorem 5.3 which we restate as follows:
Proposition 5.10. I is an anti-torus.

Proof. To see that Il is aperiodic, observe that Proposition 5.9 shows that the width #,
infinite vertical strip in I'Tbounded on the left by the ¢ axis has period 2". Alternatively,
the proof of Proposition 5.9 shows that every finite positive word in x and y appears
in IT, and so IT cannot possibly be periodic. O

Question 5.11 (Finding anti-tori). It would be remarkable if there were an algorithm
to determine whether or not two perpendicular elements in the fundamental group of
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a CSC do not have powers that commute, or in other words, to decide whether the
convex hull of their axes is an anti-torus or a periodic plane. It seems very likely that
CSCs typically have immersed anti-tori. An algorithm in the context of certain non-
positively curved square complexes which are rather different from CSCs is described
in [Wis035].

6. The covering spaces of X

Let ¥ denote a directed CSC and let ¥ — D'y denote the associated vertical decom-
position. A covering space ¥ of Y has an induced directed 'V #-structure, and the
covering map gives rise to a commutative diagram:

?—>F§

J B

y——=TYy

It is natural to label each end of each edge of I'y with the degree of the associated
attaching map in X. So, if the initial vertex of ¢ € Edges(I'y) 1s v, then we label the
end of & at v with the degree of the associated attaching map ¥