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A pinching theorem for the first eigenvalue of the Laplacian on
hypersurfaces of the Euclidean space

Bruno Colbois and Jean-François Grosjean*

Abstract. In this paper, we give pinching theorems for the first nonzero eigenvalue .1(M) of
the Laplacian on the compact hypersurfaces of the Euclidean space. Indeed, we prove that if the
volume of M is 1 then, for any e > 0, there exists a constant Ce depending on the dimension n
of M and the L8-norm of the mean curvature H, so that if the L2p-norm H 2p p 2) of H
satisfies n H 22

p - Ce < .1(M), then the Hausdorff-distance between M and a round sphere

of radius n/.1(M))1/2 is smaller than e. Furthermore, we prove that if C is a small enough
constant depending on n and the L8-norm of the second fundamental form, then the pinching
condition n H 22

p- C < .1(M) implies that M is diffeomorphic to an n-dimensional sphere.

Mathematics Subject Classification 2000). 53A07, 53C21.
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1. Introduction and preliminaries

Let Mn, g) be a compact, connected and oriented n-dimensional Riemannian manifold

without boundary isometrically immersed by f into the n + 1-dimensional
euclidean space Rn+1,can) i.e. f can g). A well-known inequality due to Reilly
([11]) gives an extrinsic upper bound for the first nonzero eigenvalue .1(M) of the
Laplacian of Mn, g) in terms of the square of the length of the mean curvature.
Indeed, we have

.1(M)
n

V M) M
|H|

2 dv 1)

where dv and V M) denote respectively the Riemannian volume element and the
volume of Mn, g). Moreover the equality holds if and only if Mn,g) is a geodesic
hypersphere of Rn+1.

*Supported by European Commission through Human Potential Programme.
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22

By using Hölder inequality, we obtain some other similar estimates for the
L2pnorm p 1) with H denoted by H p

.1(M)
n

V M)1/p H 22p, 2)

and as for the inequality 1), the equality case is characterized by the geodesic
hyperspheres of Rn+1.

A first natural question is to know if there exists a pinching result as the one we
state now: does a constant C depending on minimum geometric invariants exist so

that if we have the pinching condition

PC)
n

V M)1/p H 22

p -C < .1(M)

then M is close to a sphere in a certain sense?

Such questions are known for the intrinsic lower bound of Lichnerowicz–Obata

([9]) of .1(M) in terms of the lower bound of the Ricci curvature see [4], [8], [10]).
Other pinching resultshave been proved for Riemannianmanifolds withpositive Ricci
curvature, with a pinching condition on the n + 1-st eigenvalue ([10]), the diameter
([5], [8], [15]), the volume or the radius see for instance [2] and [3]).

For instance, S. Ilias proved in [8] that there exists e depending on n and an upper
bound of the sectional curvature so that if the Ricci curvature Ric of M satisfies
Ric n - 1 and .1(M) .1(Sn) + e, then M is homeomorphic to Sn.

In this article, we investigate the case of hypersurfaces where, as far as we know,
very little is known about pinching and stability results see however [12], [13]).

More precisely, in ourpaper, the hypothesis made in [8] thatM has a positive Ricci
curvature is replaced by the fact that M is isometrically immersed as a hypersurface
in Rn+1, and the bound on the sectional curvature by an L8-bound on the mean
curvature or on the second fundamental form. Note that we do not know if such

bounds are sharp, or if a bound on the Lq-norm for some q) of the mean curvature
would be enough.

We get the following results

Theorem 1.1. Let Mn, g) bea compact, connected and oriented n-dimensional
Riemannian manifold without boundary isometrically immersed by f in Rn+1. Assume

that V M) 1 and let x0 be the center of mass ofM. Then for any p 2 and for any

e > 0, there exists a constant Ce depending only on n, e > 0 and on the L8-norm
of H so that if

PCe n H 22

p - Ce < .1(M)

.1(M) of center x0 andthen the Hausdorff-distance dH of M to the sphere S x0, n

.1(M)
satisfies dH f(M),S x0, n

.1(M) < e.radius n
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We recall that the Hausdorff-distance between two compact subsets A and B of a

metric space is given by

dH(A,B) inf{.|V.(A) B and V.(B) A}

where for any subset A, V.(A) is the tubular neighborhood of A defined by V.(A)
{x | dist(x,A) < .}.

Remark. We will see in the proof that Ce(n, H 8 0 when H 8 8 or

e 0.

In fact the previous theorem is a consequence of the above definition and the
following theorem

Theorem 1.2. Let Mn, g) be a compact, connected and oriented n-dimensional
Riemannian manifold without boundary isometrically immersed by f in Rn+1. Assume
that V M) 1 and let x0 be the center of mass ofM. Then for any p 2 and for any

e > 0, there exists a constant Ce depending only on n, e > 0 and on the L8-norm
of H so that if

PCe n H 22

p - Ce < .1(M)

then

1) f(M) B x0, n
.1(M) + e \B x0, n

.1(M) - e ;

.1(M)
2) B(x, e) n f(M) Ø for all x S x0, n

In the following theorem, if the pinching is strong enough, with a control on n and
the L8-norm of the second fundamental form, we obtain that M is diffeomorphic
to a sphere and even almost isometric with a round sphere in a sense we will make
precise.

22

Theorem 1.3. Let Mn, g) be a compact, connected and oriented n-dimensional
Riemannian manifold n 2) without boundary isometrically immersed by f in
Rn+1. Assume that V M) 1. Then for any p 2, there exists a constant C
depending only on n and the L8-norm of the second fundamental form B so that if

PC) n H p - C < .1(M).

Then M is diffeomorphic to Sn.

More precisely, there exists a diffeomorphism F from M into the sphere

Sn n
.1(M)

of radius n
.1(M) which is a quasi-isometry. Namely, for any
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0 < < 1, there exists a constant C depending only on n, the L8-norm of B
and so that the pinching condition PC) implies

|dFx(u)|
2 - 1

for any x M and u TxM so that |u| 1.

Now we will givesome preliminaries for the proof of these theorems. Throughout
the paper, we consider a compact, connected and oriented n-dimensional Riemannian
manifold Mn, g) without boundary isometrically immersed by f into Rn+1, can)
i.e. f can g). Let be the outward normal vector field. Then the second

fundamental
X Y where 0form of the immersion will be defined by B(X, Y) 0

and are respectively the Riemannian connection and the inner product of Rn+1.

Moreover the mean curvature H will be given by H 1/n) trace(B).
Now let i be an orthonormal frame of Rn+1 and let xi : Rn+1 R be the

associated component functions. Putting Xi xi f, a straightforward calculation
shows us that

B -
i=n+1

dXi i

and

nH.
i=n+1

Xi.i

where and denote respectively the Riemannian connection and the Laplace–
Beltrami operator of Mn,g). On the other hand, we have the well-known formula

1

2 |X|
2 nH X - n 3)

where X is the position vector given by X i=n+1 Xi.i
We recall that to prove the Reilly inequality, we use the functions Xi as test

functions cf. [11]). Indeed, doing a translation if necessary, we can assume that

M Xi dv 0 for all i n + 1 and we can apply the variational characterization
of .1(M) to Xi If the equality holds in 1) or 2), then the functions are nothing
but eigenfunctions of .1(M) and from the Takahashi Theorem ([14]) M is immersed

isometrically in Rn+1 as a geodesic sphere of radius n
.1(M)

Throughout the paper we use some notations. From now on, the inner product
and the norm induced by g and can on a tensor T will be denoted respectively by

and | |2, and the Lp-norm will be given by

T p
M

|T |
p dv

1/p
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and

T 8 sup
M

|T |.

We end these preliminaries by a convenient result.

Lemma 1.1. Let Mn,g) be a compact, connected and oriented n-dimensional
Riemannian manifold n 2) without boundary isometrically immersed by f in Rn+1.

Assume that V M) 1. Then there exist constants cn and dn depending only on n
so that for any p 2, if PC) is true withC < cn then

n

.1(M)
dn. 4)

Proof. We recall the standard Sobolev inequality cf. [6], [7], [16] and p. 216 in [1]).
If f is a smooth function and f 0, then

M
f n

n-1 dv
1-(1/n)

K(n)
M

(|df | + |H|f dv 5)

whereK(n) is a constant depending on n and thevolume of the unit ball in Rn. Taking

f 1 on M, and using the fact that V M) 1, we deduce that

H 2p
1

K(n)

and if PC) is satisfied and C n
2K(n)2 cn, then

n

.1(M)

1

n H 22

p -C
2K(n)2

dn.

Throughout the paper, we will assume that V M) 1 and
M Xi dv 0 for

all i n + 1. The last assertion implies that the center of mass of M is the origin
of Rn+1.

2. An L2-approach of the problem

A first step in the proof of Theorem 1.2 is to prove that if the pinching condition PC)
is satisfied, then M is close to a sphere in an L2-sense.

In the following lemma, we prove that the L2-norm of the position vector is close

to n
.1(M)
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Lemma 2.1. If we have the pinching condition PC) withC < cn, then

n.1(M)
C + .1(M))2 X 22

n

.1(M)
dn.

Proof. Since
M Xi dv 0, we can apply the variational characterization of the

eigenvalues to obtain

.1(M)
M i=n+1

|Xi |
2 dv

M i=n+1
|dXi |

2 dv n

which gives the inequality of the right-hand side.
Let us prove now the inequality of the left-hand side.

.1(M)
M

|X|
2

dv M i=n+1 |dXi |
2 dv

4

M i=n+1 |dXi |
2 dv

3
M i=n+1( Xi)Xi dv

4

n3

M i=n+1( Xi)2 dv
2

M |X|
2 dv

2

n3

n
M

H 2 dv
2

M
|X|

2 dv
2

then using again the Hölder inequality, we get

.1(M)
1

n
n H 22

p
2

M
|X|

2 dv
C + .1(M))2

n M
|X|

2 dv.

This completes the proof.

From now on, we will denote by XT the orthogonal tangential projection on

M. In fact, at x M, XT is nothing but the vector of TxM defined by XT

1=i=n X, ei ei where ei)1=i=n is an orthonormal basis of TxM. In the following
lemma, we will show that the condition PC) implies that the L2-norm of XT of X
on M is close to 0.

Lemma 2.2. If we have the pinching condition PC), then

XT 22 A(n)C.

Proof. From Lemma 2.1 and the relation 3), we have

M
|X|

2 dv n n
M

.1(M) H X, dv
2
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M
|H|| X, | dv

2

n H 22

p
M

| X, |
2p 2p-1

p
2p-1 dv

n H 22

p
M

| X, |
2 dv n H 22

p
M

|X|
2 dv.

Then we deduce that

n H 22
p XT 22 n H 22

p
M

|X|
2 - | X, |

2 dv

n H 22

p - .1(M)) X 22 dnC

where in the last inequality we have used the pinching condition and Lemma 2.1.

Next we will show that the condition PC) implies that the component functions
are almost eigenfunctions in an L2-sense. For this, let us consider the vector field Y
on M defined by

Y

i=n+1

Xi - .1(M)Xi) i nH. - .1(M)X.

Lemma 2.3. If PC) is satisfied, then

Y 22 nC.

Proof. We have

M
|Y |

2 dv
M

n2H2 - 2n.1(M)H X + .1(M)2
|X|

2 dv.

Now by integrating the relation 3) we deduce that

M
H X dv 1.

Furthermore, since M Xi dv 0, we can apply the variational characterization of
the eigenvalues to obtain

.1(M)
M

|X|
2 dv .1(M)

M i=n+1
|Xi|

2 dv
M i=n+1

|dXi |
2 dv n.

Then

M
|Y |

2 dv n
2

M
|H|

2 dv- n.1(M) n n H 22

p - .1(M) nC

where in this last inequality we have used the Hölder inequality.
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ToproveAssertion 1ofTheorem1.2, wewillshow that
.1(M)

1/2
|X|- n

8
e.

For this we need an L2-upper bound on the function |X| |X|- n
.1(M)

1/2 2

Before giving such estimate, we will introduce the vector field Z on M defined
by

Z
n

.1(M)

1/2

|X|
1/2H. -

X

|X|1/2

We have

Lemma 2.4. If PC) is satisfied withC < cn, then

Z 22 B(n)C.

Proof. We have

Z 22
n

.1(M)

1/2

|X|
1/2H. -

X

|X|1/2

2

2

M

n
.1(M) |X|H

2 - 2
n

.1(M)

1/2
H X + |X| dv

n
.1(M) M

|X|
2 dv

1/2

M
H4 dv

1/2

- 2
n

.1(M)

1/2

+
M

|X|
2 dv

1/2

Note that we have used the relation 3). Finally for p 2, we get

Z 22

M
|X|

2 dv
1/2 n

.1(M)
H 22

p + 1 - 2
n

.1(M)

1/2

n

.1(M)

1/2 C

.1(M) + 2 - 2
n

.1(M)

1/2

n

.1(M)

1/2 C

.1(M)
d3/2

n

n
C.

This concludes the proof of the lemma.

Now we give an L2-upper bound of

Lemma 2.5. Let p 2 and C cn. If we have the pinching condition PC), then

2 D(n) 3/4
8 C1/4
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Proof. We have

2
M

3/2 1/2 dv
1/2

3/4
8

1/2 1/2
1

and noting that

|X| |X| -
n

.1(M)

1/2 2

|X|
1/2X -

n

.1(M)

1/2 X

|X|
1/2

2

we get

M

1/2 dv |X|
1/2X -

n

.1(M)

1/2 X

|X|
1/2

1

- |X|
1/2

.1(M)
Y +

n

.1(M)|X|
1/2H. -

n

.1(M)

1/2 X

|X|
1/2

1

|X|
1/2

.1(M)
Y

1
+

n

.1(M)

1/2

Z 1 6)

From Lemmas 2.3 and 1.1 we get

|X|
1/2

.1(M)
Y

1

1

.1(M) M
|X| dv

1/2
Y 2

1

.1(M) M
|X|

2 dv
1/4

Y 2

3/4
n

n1/2
C1/2d

Moreover, using Lemmas 2.4 and 1.1 again it is easy to see that the last term of 6)

is bounded by d
1/2
n B(n)1/2C1/2. Then .1/2 1/2

1 D(n)C1/4.

3. Proof of Theorem 1.2

The proof of Theorem 1.2 is immediate from the two following technical lemmas
which we state below.

Lemma 3.1. For p 2 and for any > 0, there exists K.(n, H 8 cn so that
if PK. is true, then 8 Moreover, K. 0 when H 8 .8 or 0.

Lemma3.2. Letx0 beapoint of the sphereS(O, R)of Rn+1 with thecenterat theorigin

and of radius R. Assume that x0 Re where e Sn. Now let Mn, g) be a compact

oriented n-dimensional Riemannian manifold without boundary isometrically
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immersed byf inRn+1 so that f(M) B(O, R + .)\B(O,R- \B(x0, with
4(2n-1) and suppose that there exists a point p M so that X, e > 0. Then

there exists y0 M so that the mean curvature H(y0) at y0 satisfies |H(y0)|
1

4n.

Now, let us see how to use these lemmas to prove Theorem 1.2.

Proof of Theorem 1.2. We consider the function f t) t t - n
.1(M)

1/2 2

For

e > 0 let us put

e) min
1

H 8 - e e
2 1

H 8
+ e e

2 1

27 H 3

8
min f n

.1(M)

1/2

- e f n

.1(M)

1/2

+ e
1

27 H 3
8

Then, as e) > 0 and from Lemma 3.1, it follows that if the pinching condition
PK.(e)

is satisfied with K.(e) cn, then for any x M, we have

f (|X|) e). 7)

Now to prove Theorem 1.2, it is sufficient to assume e < 2
3 H 8

Let us show that
either

n

.1(M)

1/2

- e |X|
n

.1(M)

1/2

+ e or |X| <
1
3

n

.1(M)

1/2
8)

By studying the function f it is easy to see that f has a unique local maximum
in 13 n

.1(M)
1/2 and from the definition of e) it follows that e) < 4

27
1

H 3
84

27
n

.1(M)
3/2 f 13 n

.1(M)
1/2

Since e < 2
3 H 8 3

nwe have e < 2

.1(M)
1/2 and 13 n

.1(M)
1/2 < n

.1(M)
1/2 - e.

This and 7) yield 8).
Now, from Lemma 2.1 we deduce that there exists a point y0 M so that

|X(y0)|
n1/2.1(M)1/2

K.(e)+.1(M))
and since K.(e) cn

n
dn .1(M) 2.1(M) see

the proof of Lemma 1.1), we obtain |X(y0)| 13 n
.1(M)

1/2

.1(M)
1/2

-e |X|
nBy the connectedness ofM, it follows that n

.1(M)
1/2

+e
for any point ofM and Assertion 1 of Theorem 1.2 is shown for thecondition PK.(e)

In order to prove the second assertion, let us consider the pinching condition

4(2n-1)
Then Assertion 1 is still valid. Let x nPCe with Ce K.( e

.1(M)
1/2

e

S O, n
.1(M) with e Sn and suppose that B(x, e)nM Ø. Since

M Xi dv 0
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for any i n + 1, there exists a point p M so that X,e > 0 and we can apply
Lemma 3.2. Therefore there is a point y0 M so that H(y0) 2n-1 >ne H 8 since

3 H 8
2n-1we have assumed e < 2

2n H 8
Then we obtain a contradiction which

implies B(x, e) n M Ø and Assertion 2 is satisfied. Furthermore, Ce 0 when

H 8 .8 or e 0.

4. Proof of Theorem 1.3

From Theorem 1.2, we know that for any e > 0, there exists Ce depending only on

n and H 8 so that if PCe is true then

|X|x - n
.1(M)

e

for any x M. Now, since vn H 8 B 8 it is easy to see from the previous
proofs that we can assume that Ce is depending only on n and B 8

The proof of Theorem 1.3 is a consequence of the following lemma on the L8-
norm of |XT |.

Lemma 4.1. For p 2 and for any. > 0, there exists K.(n, B 8 so that if PK.
is true, then 8 Moreover, K. 0 when B 8 .8 or 0.

This lemma will be proved in the Section 5.

2
nProof of Theorem 1.3. Let e < 1

B 8
n

.1(M) From the choice of e, we

deduce that the condition PCe implies that |Xx| is nonzero for any x M see the
proof of Theorem 1.2) and we can consider the differential application

F : M -. S O,
n

.1(M)

x -
n

.1(M)
Xx

|Xx|
We will prove that F is a quasi-isometry. Indeed, for any 0 < < 1, we can choose
a constant e(n, B 8 so that for any x M and any unit vector u TxM, the
pinching condition PCe(

n, B 8
implies

|dFx(u)|
2 - 1

For this, let us compute dFx(u). We have

dFx(u)
n
M).

0

.1( u
X

|X| x

n
.1(M)

u
1

|X|
X +

n
.1(M)

1

|X|.
0
uX
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-
1

2

n

.1(M)
1

|X|
3 u(|X|

2 X +
n

.1(M)
1

|X|
u

-
n

.1(M)
1

|X|3
u, X X +

n

.1(M)
1

|X|
u

n

.1(M)
1

|X| -
u, X

|X|
2 X + u

By a straightforward computation, we obtain

|dFx(u)|
2 - 1

n

.1(M)
1

|X|
2

1-
u, X 2

|X|
2 - 1

n
.1(M)

1

|X|
2 - 1 +

n
.1(M)

1

|X|
4 u, X 2

9)

Now

n

.1(M)
1

|X|
2 - 1

1

|X|
2

n
- |X|

2

.1(M)

e
.1(M) + |X|

|X|
2 e

n 2 n
.1(M) + e

n
.1(M) - e

2

dn .1(M) B 2Let us recall that n
8 see 4) for the first inequality). Since we

2
nassumee < 1

B 8
the right-hand side is bounded above by a constant depending

only on n and B 8 and we have

n

.1(M)
1

|X|
2 - 1 e. n, B 8 10)

On the other hand, since Ce(n, B 8 0 when e 0, there exists e(n, B 8
so that Ce(n, B 8 K.(n, B 8 where K. is the constant of the lemma) and then

by Lemma 4.1, 2

8 .2. Thus there exists a constant d depending only on n and

B 8 so that

n

.1(M)
1

|X|
4 u, X 2 n

.1(M)
1

|X|
4

2

8
2d(n, B 8 11)

and from 9), 10) and 11) we deduce that the condition PCe(n, B 8
implies

|dFx(u)|
2 - 1 e. n, B 8 +

2d(n, B 8
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Now let us choose 2d
1/2 Then we can assume that e(n, B 8 is small

enough in order to have e(n, B 8 n B 8 2 In this case we have

|dFx(u)|
2 - 1

Now let us fix 0 < < 1. It follows that F is a local diffeomorphism from M
to S O, n

.1(M) Since S O, n
.1(M)

is simply connected for n 2, F is a

diffeomorphism.

5. Proof of the technical lemmas

The proofs of Lemmas 3.1 and 4.1 are providing from a result stated in the following
proposition using a Nirenberg–Moser type of proof.

Proposition 5.1. Let Mn, g) be a compact, connected and oriented n-dimensional
Riemannian manifold without boundary isometrically immersed into the n+1-dimensional

euclidean space Rn+1,can). Let be a nonnegative continuous function so

that k is smooth for k 2. Let 0 r < s 2 so that

1

2
2 2k-2 d. + A1 + kA2) 2k-r + B1 + kB2) 2k-s

where d. is the codifferential of a 1-form and A1, A2, B1, B2 are nonnegative
constants. Then for any > 0, there exists a constant L(n, A1, A2, B1, B2, H 8
depending only on n, A1, A2, B1, B2, H 8 and so that if 8 > then

8 L(n, A1, A2,B1,B2, H 8 2.

Moreover, L is bounded when..8, and if B1 > 0, L.8 when H 8 .8or 0.

This proposition will be proved at the end of the paper.

Before giving the proofs of Lemmas 3.1 and 4.1, we will show that under the
pinching condition PC) with C small enough, the L8-norm of X is bounded by a

constant depending only on n and H 8
Lemma 5.1. If we have the pinching condition PC) withC < cn, then there exists

E(n, H 8 depending only on n and H 8 so that X 8 E(n, H 8
Proof. From the relation 3), we have

1

2 |X|
2
|X|2k-2 n H 8|X|2k-1
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Then applying Proposition 5.1 to the function |X| with r 0 and s 1, we
obtain that if X 8 > E, then there exists a constant L(n, H 8 E) depending
only on n, H 8 and E so that

X 8 L(n, H 8 E) X 2,

and under the pinching condition PC) withC < cn we have from Lemma 2.1 that

X 8 L(n, H 8 E)d1/2
n

Now since L is bounded when E 8, we can choose E E(n, H 8 large
enough so that

L(n, H 8 E)d
1/2
n < E.

In this case, we have X 8 E(n, H 8
Proof of Lemma 3.1. First we compute the Laplacian of the square of .2. We have

2
|X|

4- 2 n
.1(M)

1/2

|X|
3
+

n
|X|

2

.1(M)

-2|X|
2
|d|X|

2
|
2

+ 2|X|
2

|X|
2

- 2
n

.1(M)

1/2

-
3
4|X|-

1
|d|X|

2
|
2
+

3
2|X| |X|

2
+

n

.1(M) |X|
2

Now by a direct computation one gets |d|X|
2
|
2

4|X|2. Moreover by the relation
3) we have | |X|

2
| 2n H 8|X|+n. Then applying Lemmas 1.1 and 5.1 we get

2 a(n, H 8
and

1

2
2 2k-2 a(n, H 8 2k-2

Now, we apply Proposition 5.1 with r 0 and s 2. Then if 8 > there
exists a constant L(n, H 8 depending only on n and H 8 so that

8 L 2.

From Lemma 2.5, if C cn and PC) is true, we have 2 D(n) 3/4
8 C1/4.

Therefore

8 LD)4C.

LD)4 cn then we obtain 8Consequently, if we choose C K. inf
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Proof of Lemma 4.1. First we will prove that for anyC < cn, if PC) is true, then

1

2
2 2k-2 d. + a1(n, B 8 + ka2(n, B 8 2k-2 12)

where d. is the codifferential of a 1-form
First observe that the gradient M

|X|
2 of |X|

2 satisfies M|X|
2 2XT Then

by the Bochner formula we get

1
2 |X

T
|
2 1

4 d|X|
2

d|X|
2 -

1

4|.d|X|
2
|
2 -

1

4 Ric(.
M|X|

2 M
|X|

2

1

4
d |X|

2
d|X|

2 -
1
4 Ric(.

M
|X|

2 M
|X|

2

and by the Gauss formula we obtain

1

2 |X
T

|
2 1

4
d |X|

2
d|X|

2 -
1
4

nH B.M
|X|

2 M
|X|

2
+

1
4|B.M

|X|
2
|
2

1

4
d |X|

2
d|X|

2 - nH BXT XT
+ |BXT

|
2

By Lemma 5.1 we know that X 8 E(n, B 8 the dependance in H 8 can

be replaced by B 8 Then it follows that

1
2

2 2k-2
1

4
d |X|

2
d|X|

2 2k-2
+ a n, B 8 2k-2 13)

Now, let us compute the term d |X|2, d|X|
2 .2k-2. We have

d |X|
2

d|X|
2 2k-2

d. + |X|
2 2 2k-2 - 2k - 2) |X|

2
d|X|

2 d. 2k-3

d. + |X|
2 2 2k-2 - 2(2k - 2) |X|

2 XT M 2k-3

where - |X|2.2k-2d|X|2. Now,

ei(
ei |XT |

2

2|XT | 2|XT |

ei, X -Bij X, ej X,ei|X|
2 - ei X, 2

|XT |
Then

d |X|
2

d|X|
2 2k-2 d. + |X|

2 2 2k-2 - 2(2k- 2) |X|
2
|X

T
| 2k-3

+ 2(2k- 2) |X|
2 BXT XT

|XT |
X, 2k-3

d. + |X|
2 2 2k-2

+ 2(2k - 2)| |X|
2
| 2k-2

+ 2(2k- 2)| |X|
2
| |B| |X| 2k-2
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Now by relation 3) and Lemma 5.1 we have

d |X|
2

d|X|
2 2k-2 d. + a1 n, B 8 + ka2 n, B 8 2k-2

Inserting this in 13), we obtain the desired inequality 12).
Now applying again Proposition 5.1, we get that there exists L(n, B 8 so

that if 8 > then

8 L 2.

From Lemma 2.2 we deduce that if the pinching condition PC) holds then 2

A(n)1/2C1/2. Then taking C K. inf LA1/2 cn then 8
Proof of Lemma 3.2. The idea of the proof consists in foliating the region

B(O, R + .)\B(O, R - with hypersurfaces of large mean curvature and to show
that one of these hypersurfaces is tangent to f(M). This will imply that f(M) has a

large mean curvature at the contact point.
Consider Sn-1 Rn and Rn+1 Rn × Re. Let a, L > l > 0 and

L,l,a : Sn-1
× S1 -. Rn+1

- L. - l cos + l sin .e + ae.

Then L,l,a is a family of embeddings from Sn-1
× S1 in Rn+1. If we orient the

family of hypersurfaces L,l,a(Sn-1
× S1) by the unit outward normal vector field,

a straightforward computation shows that the mean curvature H( depends only on
and we have

H(
1

n

1

l -
n - 1)cos

L- l cos

1

n

1

l -
n- 1

L - l
14)

2RNow, let us consider the hypotheses of the lemma and for t0 2 arcsin

t p2 put L R sin t l 2. and a R cos t Then L > l and we can
consider for t0 t p2 the family MR, t of hypersurfaces defined by MR, t

R sin t,2.,Rcos t Sn-1
× S1).

From the relation 14), the mean curvature HR, t ofMR, t satisfies

HR, t
1

n

1

2. -
n- 1

R sin t -2.
1

n

1

2. -
n- 1

R sin t0 -2.
1

n

1

2. -
n- 1

R sin(t0/2)-2.
1

n

1

2. -
n - 1

2 -2.
1

4n.

where we have used in this last equality the fact that 4(2n- 1)
Since there exists a point p M so that X(p), e > 0, we can find t [t0, p/2]

and a point y0 M which is a contact point withMR, t Therefore |H(y0)|
1

4n.
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MR, t0 n F MR, t0 n F

MR, t0 n F MR, t0 n F

M n F y0

2.

2.

R

x0

t0

t e

O

F is the vector space spanned by e and

Proof of Proposition 5.1. Integrating by parts we have

M

1

2
2 2k-2 dv

1

2 M

2 2k-2 k 1
d. d. dv 2 -k2 M

|d.k
|
2 dv

A1 + kA2)
M

2k-r dv + B1 + kB2)
M

2k-s dv.

Now, given a smooth function f and applying the Sobolev inequality 5) to f 2, we
get

M
f 2n

n-1 dv
1-(1/n)

K(n)
M

2|f||df | + |H|f 2 dv

2K(n)
M
f 2 dv

1/2

M
|df |

2 dv
1/2

+ K(n) H 8 M
f 2 dv

K(n)
M
f 2 dv

1/2
2

M
|df |

2 dv
1/2

+ H 8 M
f 2 dv

1/2
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where in the second inequality, we have used the Hölder inequality. Using it again,

by assuming that V M) 1, we have

M
f2 dv

1/2

M
f

2n
n-1
2n

n-1 dv

And finally, we obtain

f 2n

n-1
K(n)(2 df 2 + H 8 f 2).

For k 2, k is smooth and we apply the above inequality to f k. Then we get

k
2kn

n-1
K(n) 2

M
|d.k

|
2 dv

1/2

+ H 8 M

2k dv
1/2

K(n) 2
k2

2(k- 1)

1/2

A1 + kA2)
M

2k-r dv

+ B1 + kB2)
M

2k-s dv
1/2

+ H 8 M

2k dv
1/2

K(n) 2
k2

2(k- 1)

1/2

A1 + kA2) 2-r
8

8
1/2 k-1

+ B1 + kB2) 2-s

2k-2 + H 8 8 k-1

2k-2

K(n) 2
k2

2(k- 1)

1/2
A1 + kA2

r
8

+
B1 + kB2

s

8

1/2

+ H 8 8 k-1

2k-2

K(n) 2
k2

2(k- 1)

1/2
A1/2

1 + k1/2A1/2
2

r/2
8

+
1/2
1 + k1/2BB 1/2

2
s/2
8

+ H 8 8 k-1

2k-2.

If we assume that 8 > the last inequality becomes

k
2kn

n-1
K(n) 2

k2

2(k - 1)

1/2
A

1/2
1 + k1/2A1/2

2

.r/2 +
1/2
1 + k1/2BB

1/2
2

.s/2

+ H 8 8 k-1

2k-2
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K1 + k1/2K2)
k2

k - 1

1/2

+ K 8 k-1

2k-2.

Now let q n

n-1 > 1 and for i 0 let k qi + 1 2. Then

2(qi+1
+q) K1 + qi + 1)1/2 qi 1

K2 +
qi/2 + K

1
1

qi+1

8
qi +1 1-

1

qi +1

2qi

K̃q i
1 1

qi+1

8
qi+1 1-

1

qi +1

2qi

where K̃ 2K1 + 23/2K2 + K We see that K̃ has a finite limit when ..8 and

if B1 > 0, K̃ 8 when H 8 .8 or 0. Moreover the Hölder inequality
gives

2qi+1 2(qi+1
+q)

which implies

2qi+1 K̃q i
1 1

qi +1

8
qi+1 1-

1
qi +1

2qi

Now, by iterating from 0 to i, we get

2qi+1

1- i 1-
1 i

K̃ k=i-j qk +1 q k=i-j 1- ik
qk+1 k=i-j 1-

1
qk+1

i
k=i-j 1-

1

8
qk+1

2qi-j

K̃ 1- i
k=0 1-

1

qk+1 q
i
k=0 1- ik

qk +1 k=0 1-
1

qk+1
i
k=0 1-

1

8
qk+1

2

Let a 8k 0 0 1- 1k
qk+1

and ß 8k qk+1 8k 0
1

1+(1/q)k Then

8 K̃1-ßq a 1-ß)
8 ß2

and finally

8 L 2

where L K̃ 1-ß

ß qa/ß is a constant depending only on n, A1, A2, B1, B2, H 8 and

From classical methods we show that ß [e-n,e-n/2
]. In particular, 0 < ß < 1

and we deduce that L is bounded when ..8 andL.8when H 8 .8 or
0 with B1 > 0.

Remark. In [12]and[13] Shihohama and Xuhaveproved that if(Mn, g) isa compact
n-dimensional Riemannian manifold without boundary isometrically immersed in
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Rn+1 and if M |B|
2 - n|H|

2 < Dn where Dn is a constant depending on n, then

all Betti numbers are zero. For n 2, D2 4p, and it follows that if

M
|B|

2 dv - 4p < .1(M)V M)

then we deduce from the Reilly inequality .1(M)V M) 2
M

H2 dv that

M(|B|
2 - 2|H|2) dv < 4p and by the result of Shihohama and Xu M is

diffeomorphic to S2.
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