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Arithmetic properties oî<p(n)/X(n) and the structure of the
multiplicative group modulo n

William D. Banks, Florian Luca and Igor E. Shparlinski

Abstract. For a positive integer n, we let <p(n) and X(n) denote the Euler function and the
Carmichael function, respectively. We define f (n) as the ratio ip(n)/k(n) and study various
arithmetic properties of f («).
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1. Introduction and notation

Let <p{n) denote the Euler function, which is defined as usual by

(p{n) #(Z/nZ)x Y\ PV~l(,P - 1). n > 1-

pv IIn

The Carmichael function k{n) is defined for all n > 1 as the largest order of any
element in the multiplicative group (Z/raZ)x. More explicitly, for any prime power
pv, one has

\pv~1(p-l) ifp>3orv<2,
\2V~2 if/? 2andv > 3,

Kpv) o

and for an arbitrary integer n > 2,

where « pj"1 pvkk is the prime factorization of n. Clearly, k{\) 1.

Despite their many similarities, the functions </?(«) and A.(«) often exhibit remarkable

differences in their arithmetic behavior, and a vast number of results about the

growth rate and various arithmetical properties of <p(n) and k{n) have been obtained;
see for example [4], [5], [7], [8], [9], [11], [15]. In this paper, we consider the
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arithmetical function defined by

É(») ^, n>\,
X{n)

and we study some of its arithmetic properties.
In particular, letting P (k) denote the largest prime factor of a positive integer k

(with the convention that P(l) 1), we study the behavior of P (§(«)). Our results

imply that typically §(«) is much "smoother" than a random integer k of the same
size. To make this comparison, it is useful to recall that Theorem 2 of [9] implies that
the estimate

§(«) exp (log2 n log3 n + C log2 n + o(log2 «)) (1)

holds on a set of positive integers n of asymptotic density 1 with some absolute
constante > 0. Here, and in the sequel, for a real number z > 0 and a natural number

£,wewritelog^ z for the recursively defined function given by log j z maxjlogz, 1},
where log z denotes the natural logarithm of z, and log^ z max{log(log^_1 z), 1}

for £ > 1. When t 1, we omit the subscript (however, we still assume that
all the logarithms that appear below are at least 1). Of course, when z is sufficiently
large, then log^ z is nothing more than the 1-fold composition of the natural logarithm
evaluated at z.

We also use Q(n) and co(n) with their usual meanings: Q(n) denotes the total
number of prime divisors of n > 1 counted with multiplicity, while co(n) is the

number of distinct prime factors of n > 1; as usual, we put £!(1) a>(\) 0. In
this paper, we also study the functions Œ(§(«)) and «(§(«)).

Observe that a prime p divides §(«) if and only if the p-Sylow subgroup of the

group (Z/nZ)x is «of cyclic. Thus, P(Ç(n)) and &>(§(«)) can be viewed as measures

of "non-cyclicity" of this group. In particular, co(Ç(n)) is the number of non-cyclic
Sylow subgroups of (Z/raZ)x.

We also remark that any prime p\^{n) has that property that p2 \<p(n). Thus,
while studying the prime factors of § (ra), one is naturally lead to an associated question
concerning the difference Q, {<p («) - œ {<p («)), a question that we address here as well.

As usual, for a large number x,n{x) denotes the number of primes p < x, and for
positive integers a, k with gcd(a, k) 1, n(x; k, a) denotes the number of primes

p < x with p a (mod k).
We use the Vinogradov symbols », <, x as well as the Landau symbols O and

o with their usual meanings. The implied constants in the symbols O, », < and x
are always absolute unless indicated otherwise.

Finally, we say that a certain property holds for "almost all" n if it holds for all
n < x with at most o{x) exceptions, as x —> oo.
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2. Distribution of P (§(«)), «(!(«)) and

In what follows, let us call a real-valued function e(x) admissible if
• e(x) is a decreasing function, with limit 0 as x —>¦ cxd;

• e(x) log2 x is an increasing function, tending to cxd as x —>¦ cxd.

We begin with the following statement, which may be of independent interest.

Lemma 1. For any admissible function e(x) and any prime q < e(x) log2x, every
positive integer n < x has at least (log2 n)/2q distinctprimefactors p 1 (mod q),
with at most o{x) exceptions.

Proof. Let co(n,q) denote the number of distinct prime factors pofn such that p 1

(mod q). For any real number y > 1 and integer a > 1, put

5(y, a) \ —. (2)
p<y

p=\ (mod a)

It is known (see Theorem 1 in [18] or Lemma 6.3 in [17]) that

(3)
<P(a)

In particular, the estimate

S(n, q) i^2^ + O(\) » e(x)"1
q -1

holds for all q in the stated range and all n > x1/2, once x is sufficiently large. By
the classical result of Turân [20], we also have that the estimate

co{n, q) S{n, q) + O (S{n, q)2/3)

holds for all n in the interval x1/2 < n < x, with at most

O (xS(n, q)~1/6) O (x e(x)1/6) o(x)

possible exceptions, and the result now follows.
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Lemma 2. For real numbers x > y > 1 let

Then,

y log y

If a prime q divides §(«), then clearly g2 | </?(«)• The upper bound

#{n < x : <p(«) 0 (mod q1)} « X(1°g92X)
ql

is a special partial case of Lemma 2 of [5] (see also the proof of Theorem 7.1 in [4]).
In particular,

X(lOglX) (4)
1

It now follows that

3(,,,)= E E

Using Abel summation, we estimate

nix) 7t(y) rx nit) i rx l l^^^+2/ V^«+/ û?f<<
y7^x x y 'y f xlogx Jy tzlogt y log y

and the lemma follows.

Theorem 1. Ife(x) w any admissible function, then the inequalities

e(n)log2n < P(Ç(n
e(n)log3n

hold for almost all positive integers n.

Proof. By the Prime Number Theorem, for all sufficiently large real numbers x there
exists a prime q in the interval:

e(x)log2x < q < 2e(x) log2x.

If n is an integer with two prime factors p\ P2 1 (mod q), then g | §(«). By
Lemma 1, we derive that

x1/<2<n<x x1/<2<n<x x1/<2<n<x
oi{n,q)>2
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This proves the lower bound. The upper bound is a direct application of Lemma 2.

D

We remark that the upper bound of Theorem 1 improves the corollary to Theorem 2

in [9].

Theorem 2. As x --* oo, we have

(l+o(l))xlog3x <^]logP(§(«)) < (2 + o(l))xlog3x.
n<x

Proof. The above lower bound follows from the lower bound from Theorem 1. For
the upper bound above, we write

q<x n<x
P(Ç(n))=q

For q < y, we trivially have

l^logyj] ^2 1 <log;y^l <xlogy
q<y n<x q<y n<x

while for q > y, we have, by (4):

y<q<x n<x y<q<x
P(h(n))=q

where we have used Abel summation to estimate

j.

t~2dt

Setting y (log2 x)2, we obtain the desired upper bound.

Theorem 3. As x —* oo, we have
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Proof. Let y (log2x)3, z exp((logx)1/2) and w exp((logx)2/3). We also

put v z6. In what follows, x is taken to be arbitrarily large.

Taking A 5/2, e 1/2, and 8 1/15 in the statement of Theorem 2.1

of [1], we see that there exists an absolute constant D > 0 and a set <© of cardinality
#<© < D, with min{m : m g £>} > log v 6(logx)1/2, such that the inequality

n(t)^ (5)

holds for all positive reals t provided that 1 < d < min{tv~2^, z2} and that d is not
divisible by any element of £>. Note that if x is sufficiently large and t > w, then
tv-y3 > wv-y3 > z2.

Letting Q. denote the set of primes q g [y, z]\<©, we therefore see that the lower
bound (5) holds for all t g [w, x] and all integers d g [1, z2] whose prime factors all
lie in Q. Together with the Brun-Titchmarsh theorem (see for example Theorem 3.7

in Chapter 3 of [12]), we conclude that

7T(0
71 (t; d, 1) ^

holds uniformly for all f G [w, x] and all integers d of the form d q or d
composed of one or two (not necessarily distinct) primes from Q. Moreover, for any
sufficiently large constant y > 1, we also have

<p{d)
(6)

under the same conditions.
We now let

r^l and^l and K \^logy | L21ogy

For any prime q G Ö, we have, by (6):

1

> A Jt(yJ+1;d, 1) - Jt(yi;d, 1) I y^ 1
h >>h

w<p<xi/z 3—k 3—k

p=\ (mod q)

On the other hand, the upper bound (3.1) in [7] (see also Lemma 1 of [5]) provides
an upper bound of the same size as the above lower bound. Consequently,

(7)

< .,2 P q

p=\ (mod q)
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We now fix a prime number q in Q. We denote by N(x, q) the number of integers

n < x for which there exists a unique representation of the form n p\p2in for
some integer m and two primes w < p\ < p2 < x1/2 with p\ p2 1 (mod q)
and such that q is the only prime in Q. dividing gcd(/?i — \,p2 — \). We then have

N(x, q) > T0(x, q) - 7i(jc, q) - T2(x, q) - T3(x, q),

where

• To (x, q is the total number of ordered triples {p\, P2,m) with primes w < p\ <
P2 < x1/2, Pi Pi 1 (mod g), and an integer m < x/p\p2. Therefore,

using (7), we obtain that

To(x, q) » x J2
w<pi<p2<xl/2 PlP2

p\=P2=\ (mod q)

X( ^ 1\2 X

2\ ^ p) 2
w<p<xll2 w<p<xll2

p=\ (mod q) p=l (mod q)

/ lUHo X \ X x—\ 1

2 V 9 2q ^ p
w<p<x '

p=\ (mod q)

x(log2x)2
o

• Ti(x, g) is the number of triples {p\, P2,m) as above for which there exists
another prime £ e Q., £ j^ q, such that /?i /?2 1 (mod £). Then, by (7),
we have that

1\2

i=p2=l (mod g^) p=l (mod qi)

q^l1-

x(log2x)2
_

q2y log y

T2{x,q) is the number of triples (pi, P2,m) as above for which there exists
another prime P3,w < p^ < x1/2, which divides m, and for some prime !eS
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(possibly £ q) one has p$ 1 (mod £), and either p\ 1 (mod £), or
P2 1 (mod £). Therefore, by (7), we see that

T2(x,q)«xY Y
1/2 Pl P2P3

p\=P2=l (mod q)
P3=P2=1 (mod I)

Y - Y - Y -Pl Pl P3
w<pi<x1/2 w<p2<x1/2 w<pi<x1/2

p\=\ (mod q) P2=l (mod ql) P3=l (mod I)

• T3(x, q) is the number of triples (pi, pi,m) as above for which there exists

another triple (n ,r2,k) with primes w < ri < r% < x1^2 such that n r% 1

(mod £) for some £ e Q., and pipim ri^k. Applying (7) once again, we
obtain that

E
1/2 -Pl^2 1/2

i=P2=l (mod q) r\=T2=\ (mod ^

=O
q2y log y

Consequently, we have

N(x,q) > T0(x,q) -Ti(x,q) -T2(x,q) -T3(x,q) » |
q2

We note that P(Ç(n)) > q for all n e N(x, q) and that the sets N(x, q) are disjoint
for different choices of? eâ. Thus,

<#N(x,>
' ï

2
n<x qe& qe&

>x(log2x)2( Y. l--
y<q<7,

»x(log2x)2(log2z- log2y + o(l)) »x(log2x)3.
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To prove the upper bound, we simply use (4) to derive that

)<J2q 12 l«x(log2x)2J]-«x(log2x)3.
q<x n<x q<x "

This completes the proof.

Concerning the minimal order of P (§ («)), little need be said; clearly P (§(«)) > 1

for all « > 1, and equality holds if and only if n 2, 4, pv or 2pv for some odd

prime p and v > 1. As for the maximal order, we have the following:

Theorem 4. The inequality

holds for all n > 276, and the inequality

P (£(«)) » «03335

holds for infinitely many n.

Proof. For n in the range 276 < n < 579, the upper bound can be verified case by
case; hence, we assume that n > 580 in what follows. Without loss of generality, we

may further assume that q P(§(«)) > 3, since

(2n + I)1/2 — 2
3 < holds for all n > 133.

6

If P(§(«)) q, then either n has a prime divisor p 1 (mod q) and q2p \ n, or
n has two distinct prime divisors p\ pi 1 (mod g). In the first case, we see that

q < (q2p/2)V3 < {n/2

the last inequality being valid for all« > 580. In the second case, suppose p\ aq+l
and p2 bq + 1, where a < b are distinct even integers. Now if 2q + 1 is prime,
then 4g + 1 is divisible by 3; thus, we must have a >2,b > 6. Then

(2q + l)(6g + 1) < (aq -

and we obtain the stated upper bound.
To establish the lower bound, we recall the result of Fouvry [10], which asserts

that for all large x, the set Q. of primes p in the interval x1/2 < p < x and satisfying
P(p - 1) » p0-661 is of cardinality #0 » x/logx. We also recall that, by Brim's
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method (see Theorem 2.2 in [12]), for any integer m, the number of primes of the

form p mq + \ < x for some other prime q is

o( ,x \=o
provided that m < x1/2. Summing up the above inequalities over all positive integers
m < log2 x, we see that

X t-^ 1 l
#{p<x:P(p-l)>x/log2x}« J2

logzx m~^ x
(P\m) logzx

Thus, most of the primes p in Q. in the interval have q P(p — 1) < x/ log2 x, and

therefore there exist two primes pi, pi e Q. with the same value of P{p\ — 1)

P(p2-1) =q.Withn pip2, weseethat P(Ç(n)) >q » max {p^661, p2661} »
n03335. D

As is clear from the proof, the upper bound of Theorem 4 is tight under the prime
£-tuplet conjecture of Hardy and Littlewood (see, for example, [3]). We also remark
that the trivial upper bound P(Ç(n)) < n1^2 holds for all n > 1.

Unfortunately, our method of proof for the lower bound of Theorem 4 can not be

combined with the more recent results of [2], since the set of primes considered there
is too thin.

Theorem 5. The inequalities

fi(£(n)) (l+o(l))log2nlog4n and ¦1°g2"2 « a>(Ç(n)) « log2w
(log3 n)L

hold for almost all positive integers n.

Proof. We start with Q, (§(«)) and first turn our attention to the upper bound. Let x
be a large positive real number, and let A\ be the set of all positive integers n in the

interval [x/logx, x]. Clearly, A\ contains all but o(x) positive integers n < x. Let

Ai be the set of those integers« e A\ for which P (§(«)) < (log2 x)2; by Theorem 1,

Ai contains all but o(x) positive integers n < x. Let y (log2 x)2. For any positive
integer m, we write

coy(m) Y^ 1 and Çly{m) Y^ v.
p<y p<y
p\m Pv \\m

Thus, the inequality Q (§(«)) < Qy((p(n)) holds for all n e A2. The argument on

page 349 in [8] shows that

2y((p(n)) -Iog2xlog2y\ «xlog2x(log2;y)2. (8)
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Now let e\ (x) (log2 x)"1/3, and let <S8 be the set of those n < x such that

Qy((p(n)) > (1+ei(x))log2xlog2;y.

Using (8), it follows that

#£ «
X

=o(x).
ei(x)2log2x

The set ^3 A2\& contains all but o(x) positive integers n < x, and for each

n € A3 we have

(«)) < (l+£i(x))log2xlog2;y (l+o(l))log2xlog4x. (9)

Since n > x/ log x for all n G «A3, this shows that

(«)) < (l+o(l))log2nlog4n

for almost all positive integers «.
Next we turn to the lower bound for Q (§(«)). As before, let x be a large real

number, andput£2(x) (log3x)~1/3 and ß (log2x)1/2. For natural numbers

n and g, we again write a>{n,q) for the number of prime factors p of n that are

congruent to 1 modulo q. For a prime q < Q we define the sets

Gq \n < x :

and

e

We claim that #C o(x) as x -> 00. Indeed, for a fixed prime g < Q, by a result
of Turân [20] (see also (1.2) of [17]), we have

xq#G «q « -, «
e|(x)log2x log2x

Therefore,

g2X q<^ (log3

Now let <© be the set of those positive integers n < x not lying in G. Then for each
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n g <©, one has

^ ,#) -1)

> (l-e2(x))log2x V—--tt(Ô)

> (1 +o(l))log2xlog4x > (1 + o(l))log2nlog4n.

This completes the proof of the normal order of Q (§(«)).
We now tumour attention to a>(^(n)) and start with the lower bound. Again, letx

be a large positive real number, and let £3 (x) be any admissible function. Let q be a

prime number and let vq (m) denote the largest power of q dividing a natural number

m. It suffices to show that there exists a constant c\ such that for all but o(x) positive
integers n < x, the estimate

vq^(n)) >£3(x)log2x, (10)

holds simultaneously for all primes q < c\ log2 x/ log3 x.
Let us define

By the result of Turân mentioned above, we have #Wq < xq/ log2 x; summing up
these estimates for all q < (log3 x)1/2, we see that

We also note that for q < (log3 x)1/2, we have

log2x log2x
(log3Jc)V2

which establishes (10) for g in this small range if £3(x) < (log3 x)"1/2, which we
now assume.

Next we consider the case in which q > (log3 x)1/2.
Let us denote by a>y(n) the number of prime factors p of n with p < y. Let JS

be the set of integers x1/2 < n < x for which
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holds simultaneously for y exp((logx)1/2) and for y x. By [20], we have that

#jV x + o(x).
Let 8q be the set of n e JS such that p2 \ n for some p 1 (mod q) and let 8 be

the union of all 8q for q > (log3 x)1/2. Clearly,

#8q « J2
x x

p=\ (mod q) r 1 t>\

and therefore

#8< V #8q «x T -4=ol ¦\,n)=o(x).

For a fixed positive integer £ and primes p\ --- pk 1 (mod g), let
<Nk,q{p\, ¦ ¦ ¦, Pk) be the set of integers « e «V\g such that « /?i... pum holds
with some integer m with a>(m,q) =0.

We first show that if k < 0.5 log2 x, then «A/Jt? (/?i, pk) is empty unless

(11)
Pl---Pk

where z exp((logx)1/2). Indeed, in the opposite case, we see that for n e

co(n) <k + co(m) < k + coz(n) < 0.51og2x + O ((log2x)1/2),

which is impossible because co(n) ~ log2 n ~ log2 x for « e «A/".

We now have

#Jfk,q(PL...,Pk)<
m<x/(p\...pk)

qX<p(m)

It has been shown in the proof of Theorem 4.1 of [7] that there exists an absolute
constant c2 > 0 such that the upper bound

1 « texp(-c2S(t,q))
m<t

q

holds uniformly when log t > q, where S(t, q) is given by (2). By Theorem 3.4 of
[7], we know that the lower bound
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holds provided that q < logt. Thus, assuming (11), and remarking that logz
(logx)1/2 > q, we derive from (12) that the estimate

X logo X
,q (pi, Pk) « exp -C3

\
p

pi-.-Pk \ q

holds with some absolute constant c^ > 0.

Therefore, the set ,Mk,q consisting of all integers n in N\8 that belong to at least

one of the sets J/k,q (pi,..., Pk), for fixed k and q, has cardinality at most

#Mk,q —

pi<x Pk<x
\ \ (mod q) Pk ^ (mod q)

p\=\ (mod g) W=l (mod q)

x
exp -ci

-^^H"'3 q )S(X'q) ¦

Put Kq £3(x)(log2x)/g. Recalling the bound (3) and using the Stirling
formula, we obtain

(21og2*)*

Furthermore, we derive

61og2xx*

qk

E E
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for some constant C4. Therefore, for an appropriate constant c\,

q<c\ log2 x/ log3 x k<Kq

«x
?<cilog2x/log3x

«x J] exp^-0.5c3-^^-J =o(x)
?<cilog2x/log3x

provided that x is large enough. Clearly, the inequality (10) implies the desired lower
bound on co(Ç(n)).

We now prove the upper bound on œ (§(«)). By (1), we know that the inequality

log(£(n)) «log2nlog3n (13)

holds on a set of positive integers 1 of asymptotic density 1. The upper bound on
éo (§(«)) claimed by our Theorem 5 follows now from inequality (13) above combined
with the classical estimate

which concludes the proof.

It is easy to see that Theorem 5 implies that for some constant C5 > 0, the bound

log2n
'

(log3 n\
exp c

holds for almost all positive integers n, where, as usual, x{k) denotes the number of
divisors of an integer k > 1.

It is also clear that for any positive integer n

\o&w(n) log«
co(Ç(n)) < co(cp(n)) « B*\\ « &

log2 <p(n) log2«

and

Œ(§(«)) < ß(?>(«)) <log^(n) «log«.

Theorem 6. The inequalities

log2n

hold for infinitely many positive integers n.
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Proof. Let k be a sufficiently large integer, and then let p\ and P2 be the first two
primes in the arithmetic progression 1 (mod 2k). By Linnik's Theorem, in the form
given by Heath-Brown [13], we know that max{/?i, p2J <^ 2nk^2, With n p\p2,
we have that 2k | §(«); therefore Q(§(«)) > k ^> log«. Finally, let y be large and

let M Y\p<y P- By me Prime Number Theorem, we have log M (1 + o(l))y.
Let p\ and P2 be the first two primes in the arithmetic progression 1 (mod M). We

again have that max{/?i, p2J < M11/2, and with n p\p2 we have that M \

Thus,
log M log n

co(M) n(y) ^ 5

log2 M log2 n

which finishes the proof.

3. Average </-adic norm and order of (p(n)

Let q be a prime, and let \m\q be the g-adic norm of m, that is, \m\q q~vt^m) where,
as before, vq (m) is the largest power of q dividing m. In this section, we address the

average value of \<p(n)\q and vq(<p(n)).
Recall that an arithmetic function f{n) is said to be multiplicative if f{nm)

f(n)f(m) for any integers n and m with gcd(n, m) 1. Accordingly, if f(nm)
f{n) + f{m) for any integers n and m with gcd(n, m) 1 then f{n) is called
additive.

In particular, v?(^(n)) is an additive function. Thus, \<p(n)\q is a bounded

multiplicative function, and therefore it is natural that our principal tool is the following
theorem of Wirsing [21].

Lemma 3. Assume that a real-valued multiplicative function f(n) satisfies the

following conditions:

' f(n) >0, n 1,2,...;
• f(pv) < a^v, v 2, 3, for some constants a,b > 0 wz'f/i b < 2;

• f/iere exwte a constant r > 0 ämcä f/iaf

/or any x > 0,
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where y is the Euler constant, and

I» f e-'f-1 dt
Jo

is the r -function.

Lemma 4. For any fixedprime q,

1 + ^r) 0»*+o(1)) c^*)0*

P

therefore the series

log 1 + p-\f
converges absolutely. Hence, it is enough to show that

aq log2 x + ßq -

holds with some constant ß?.
We have:

p<x k=0

,-k
E

,-k

p<x
p=\ (mod qk) p=l (mod qk+l)

k=\

17

where aq (q2 - q - \)/{q - 1), and r]q is a constant depending only on q.

f. We have

(14)

(15)

where, as before, Six, qk) is given by (2).
We write K for the largest positive integer such that qK < log2x; thus, K x

log3 x. Using the classical Page bound (see Chapter 20 of [6]) and partial summation
(see a remark in Chapter 22 of [6]), we have

7t(t;qk,l) + O
iq-\)qk-l\0gt \qki\0gt)2

(16)
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for all positive integers k < K and real t > eK.

Therefore, using the same partial summation arguments as in the proof of Theorem

1 of [18] (see also Lemma 6.3 of [17]), and using (16) in the appropriate place
(starting with the value of t > eK), we derive that for every k < K,

S(x,qk)= l0^X +A k,q + o( \1/2), (17)
{q-\)qk~l \i\0gxyl1)

for some constants A^A depending only on k and q. Moreover, by Theorem 1 of [18]
or Lemma 6.3 of [17], A^A 0(1) uniformly for q and k 0, 1, (see (3)).

For k > K,we use the fact that

S(x,qk)<<
lOg2X

(18)
(q - \)qk~l

(see the bound (3.1) in [7] and also Lemma 1 of [5]). Define

ak
-

k>\ H

Using (17) and (18) in (15), and taking into account that

k^{q-l)qlk-1 q2-l "'

we get (14) and thus finish the proof.

Theorem 7. For any prime q,

where yq is a constant depending only on q.

Proof. For p ^ g, we have

v=0

and certainly

Combining Lemma 3 and Lemma 4, we obtain the desired result.
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We now show that the classical Turân-Kubilius inequality can be used to study
the normal order of vq (<p(n)).

Theorem 8. For any prime q, the estimate

holds for almost all positive integers n.

Proof. Because vq{<p{n)) is an additive function, by the Turan-Kubihus inequality
(see [14], [19]), we have

1

where

X
n<x

r
pr<x P pr<x

and in both sums the summation is extended over all prime powers pr < x. Thus, it
is enough to show that

Aq{x) q_ 2+o(l)^log2x and D{x) o((log2x)2). (19)

Because vq (<p(p)) <^C log p, using the Prime Number Theorem, we derive that

h pr kk®5kw kkkr kh pr kk®-5kw kkk k
Thus

EVo((û(p)) -r-^ Vo((û(p))qW F)) + O(\) Y qKVKy}} + O(\).
p *—' pp<x r p<x r

Furthermore, as in the proof of Lemma 4, we derive that

Evq((P(p)) sr^ v"^ k

p<x k=\ P<x p<x
p=\ (mod qk) p=\ (mod qk+l)

k=\

Similar arguments show that Dq(x) O(log2x) (in fact, our arguments give an

asymptotic formula for Dq{x)). Therefore, we obtain (19), which finishes the proof.
D
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4. Distribution of Œ(ç>(«)) — (o{(p{n))

It has been shown in [8] that for almost all positive integers n, both Q{<p{n)) and

cù{<p{n)) are close to 0.5(log2«)2. Here, we study the behavior of the difference
-co{<p{n)).

Theorem 9. The estimate

Çl{(p{n)) — œ((p(n)) (1 + o(l)) log2nlog4 n

holds for almost all positive integers n.

Proof. By Theorem 5, we know that

Q (§(«)) (1 + o(l)) log2 n log4 n

holds for almost all positive integers n. Since

Q((p(n)) -cù{<p{n)) =Q((p(n)) - co(k(n)) > Q((p(n)) - Q(k(n)) >

we see that

Q((p(n)) -co(<p(n)) > (1 + o(l)) log2n log4n

holds for almost all positive integers n.
To obtain the upper bound, let x be a large positive real number, and let y

(log2 x)2. The argument on page 404 of [16] shows that the set of all positive integers

n < x such that <p(n) is not divisible by the square of any prime q > y has cardinality
x + o(x) (see the bound on #g2 in Theorem 9 of [16]). Thus, for all but o(x) positive
integers n < x, we have that

Q((p(n)) - co(<p(n)) Q.y{<p{n)) - coy(<p(n)) < Qy{<p{n)).

Now using (9) (which is established with the same value of y), we finish the proof.
D
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