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Noether's problem for dihedral 2-groups

Huah Chu, Shou-Jen Hu and Ming-chang Kang

Abstract. Let K be any field and G be a finite group. Let G act on the rational function field
K(xg : g G G) by i-C-automorphisms defined by g ¦ Xh xgh for any g, h G G. Denote by K(G)
the fixed field K(xg : g G G)G. Noether's problem asks whether K(G) is rational purely
transcendental) over K. We shall prove that K(G) is rational over K if G is the dihedral group
(resp. quasi-dihedral group, modular group) of order 16. Our result will imply the existence of
the generic Galois extension and the existence of the generic polynomial of the corresponding
group.
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§1. Introduction

Let K be any field and G be a finite group. Let G act on the rational function
field K(xg : g G G) by if-automorphisms such that g • Xh xgh for any g, h G G.
Denote by K(G) the fixed field K(xg : g G G)G {/ G K(xg : g G G) : a ¦ f
/for anycr G G}. Noether's problem asks whether K(G) is rational (=purely
transcendental) over K

Noether's problem is related to the inverse Galois problem, which asks whether
there is a Galois extension L over K such that Gal(L/K) ~ G if the field K and the
finite group G are prescribed. In fact, if K is an infinite field and K{G) is rational
over K, then there exists a generic Galois (^-extension over the field K [Sal,
Theorem 5.1]; see Proposition 2.2 for a generalization. A generic Galois (^-extension is

some universal object of (^-extensions such that we can apply Hilbert irreducibihty
theorem; see [Sal; Me] for more details. When if is a Hilbertian field, i.e. Hilbert
irreducibility theorem is valid for irreducible polynomials / G K[x\, ¦ ¦ ¦ ,xn], the
existence of a generic Galois (^-extension over K will guarantee the existence of
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a Galois extension field L over K with Gal(L/if ~ G. In particular, if K is an
algebraic number field, then the validity of Noether's problem for the pair [K, G)
will imply the validity of the inverse Galois problem for the pair (K, G). However,
the converse is not true in general: there is a generic Galois (^-extension over Q if
G is a cyclic group of odd order [Sal, Theorem 2.1], while Q(G) is not rational over
Q when G is a cyclic group of order 47 or 113 [Sw]. On the other hand, Saltman
shows that, if G is the cyclic group of order 8, then there cannot be a generic
Galois (^-extension over Q [Sal, Theorem 5.11] while the answer of the inverse

Galois problem for (Q, G) is affirmative, e.g. the subfield L in Q(e27r^=T/32) such

that L is a cyclic extension of degree 8 over Q.
Yet another notion due to DeMeyer, Smith, Ledet and Kemper: a generic

polynomial for (^-extensions over K. It is known that the existence of a generic
Galois (^-extension over K is equivalent to that of a generic polynomial for G-
extensions over K [Me, Sm, Le2, Ke]. Thus Noether's problem plays the same
role in this situation.

Now we consider the case G Dn, the dihedral group of order 2n. Saltman
shows that if K is an infinite field, charif \ n and n is odd, then there exists a

generic Galois _Dn-extension over K [Sal, Theorem 3.5], unfortunately the answer
to Noether's problem in this case is rather incomplete, see [Ka]. Not much is

known about the existence of a generic Galois _Dn-extension over K if char K ^ 2

and n is a power of 2. Black obtained several results in this direction [Bl]. She

showed that a generic Galois /^-extension (resp. /^-extension) over K did exist
if K was an infinite field with char K ^ 2. On the other hand, Ledet exhibited
the generic polynomial for (^-extensions over if if if is an infinite field with char

K ^ 2 and G is the dihedral group (resp. the quasi-dihedral group, the modular
group) of order 16 [Lei]. (The definitions of all these groups will be explained
at the beginning of Section 3.) What we will prove in this paper is that K(G)
is rational over K when K is any field and G is any one of the above groups.
See Theorems 3.1, 3.2 and 3.3. In some sense our results help to show why the
constructions of Black and Ledet have to exist. It is amusing to compare these
results with [Sal, Theorem 5.11] which shows that Q(G) is never rational if G is

any abelian group whose exponent is divisible by 8, while our results show that
this phenomenon is not true for non-abelian groups. A final remark: Gröbner

proves that K{G) is rational if G is the quaternion group [Gr]. We will present a

proof of Gröbner's result, which may be easier than Gröbner's original proof and
will prelude the idea of the proof of Theorem 3.1.

We shall organize this paper as follows. We will recall some preliminaries
and discuss the general situation of the rationality problem of K(Dn) in Section 2;

the rationality problem of K(D4) together with Gröbner's Theorem will be proved
also. Section 3 contains the main results of this paper; we shall solve the rationality
problem of three certain groups of order 16. The rationality problem of other
groups of order 16 will be discussed in a separate paper.
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Notations and terminologies. A field extension L over K is rational if L is

purely transcendental over K; L is called stably rational over K if there exist

elements y\, • • • ypj which are algebraically independent over L such that
L(yi, ¦ ¦ ¦ tVn) is rational over K. The dihedral group of order 2n is defined as

(<t, t : an T2 1, T<jT~l o-^1), which is denoted by Dn. The quaternion

group of order 8 is defined as (<r, r : <r4 t4 1, <r2 t2, tctt^1 o-^1). Recall
the definition K{G) at the beginning of this section: K{G) K(xg : g G G)G.
The representation space of the regular representation of G over K is denoted by
W ®geoK ¦ x(g) where G acts on W by g ¦ x(h) x(gh) for any g, h G G.

Finally, if L\ and L2 are extension fields of a field K such that G acts on L\ and
L2 by if-automorphisms, we will say that L\ is G-isomorphic to L2 ovevK if there
is an isomorphism 92 : Li —> L2 from Li onto L2 over K with (^(a • u) a ¦ <p(u)

for any a G G, any uÇlL\.

§2. Generalities

We recall a variant of Hilbertsatz 90 which has been used by many people under
different disguises.

Theorem 2.1 ([HK2, Theorem 1]). Let L be a field and G be a finite group acting
on L{x\, ¦ ¦ ¦ ,xm), the rational function field of m variables over L. Suppose that

(i) for any a G G, ff(L) C L;
(ii) the restriction of the action of G to h is faithful;
(iii) for any a G G,

\a(xm)J

A(a)

\

\xml

¦B(a)

where A(a) G GLm(L) and B(a) is an m x 1 matrix over L. Then L{x\, ¦ ¦ ¦ ,xm)
is G-isomorphic to L(z\, • • • zm) with a(zt) zt for any a G G, any 1 < i < m.
In particular, L(x\, ¦ ¦ ¦ ,xm)G ~ LG(z\, ¦ ¦ ¦ ,zm), i.e. L(x\, ¦ ¦ ¦ ,xm)G is rational
over LG.

Proposition 2.2. Let K be any infinite field and G be a finite group. Let p :

G —> GL(V) be a faithful representation of G where V is some finite-dimensional
vector space over K. If the fixed field K(V)G is stably rational over K, then there
exists a generic Galois G-extension over K.

Remark. Proposition 2.2 is a "cheap" special case of Saltman's Theorem about
retract rational extensions [Sa2; Sa3, Theorem 2; Bl, Remark of Theorem 1.1]; it
is weaker than Saltman's Theorem, but its proof is easier.
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Proof. Let W be the representation space of the regular representation of G. Thus

K(G) K(W)G. Consider the action of G on K(V 0 W). By Theorem 2.1

K{V® W)G is rational over K(V)G and K(W)G. Since K(V)G is stably rational,
it follows that K(G) K(W)G is also stably rational. Hence there exists a positive
integer m such that K(W)G(w\, • • • wjy) is rational over K where N (m — l)n.
(Remember that n |G|.)

Consider the diagonal action of G on VFm W ®W ® ¦ ¦ ¦ ®W (m copies of
VF). By Theorem 2.1 if(VFm)G K{W)G{yi, ¦ ¦ ¦ ,yN) is rational over if.

x —

xy -

a,

X
ab'
—
xy

u —

y -
xy -

b
—

y
ab
—
xy

Now we can identify K(Wm) K(xg : 1 < « < m, 9 € G) and remember
that K(Wm)G is rational over K. Imitate Saltman's proof of [Sal, Theorem 5.1].

All we need to do is to define a G-equivariant map ip : K\x„ : 1 < 1 < m, a G

G] —s- L (in the notations of [Sal, Theorem 5.1]), i.e. we should find elements

a\, ¦ ¦ ¦ am G L and define cp(xa¦ <r • a^ under the condition that £ evaluated

at the ip(xa )'s is a unit. Note that we should prove a "multi-variable" version of
[Sal, Lemma 5.2]. But this is not difficult and is omitted. D

Theorem 2.3 ([HK1, (2.7) Lemma]). Let K be any field, a, b G K - {0} and

a : K(x,y) —? K(x,y) be a K-automorphism defined by a(x) a/x, a(y) b/y.
Then K{x,y)<tJ> K{u,v) where

u

Moreover, x + (a/x) (-6m2 + av2 + l)/v, y + (b/y) (bu2 - av2 + \)/u,
xy + (ab/(xy)) (-bu2 - av2 + l)/(uv).

Theorem 2.4 ([AHK, Theorem 3.1]). Let G be any group whose order may be

finite or infinite. Suppose that G acts on L(x), the rational function field of one
variable over a field L. Assume that, for any a G G, ff(L) C L and a(x)
aa ¦ x-\-ba for some aa, ba g£ with aa ^ 0. Then L(x) L or L (f(x)) where

f(x) G L[x] is of positive degree.

Theorem 2.5 (Kuniyoshi [Ku;Mi]). Let K be a field with char K p > 0 and
G be a p-group. Then K(V)G is rational over K for any representation p : G —?
GL(V) where V is a finite-dimension vector space over K.

Proof. Since char K p > 0 and \G\ pm, any representation of G can be

triangulated. Apply [HK1, (2.2) Theorem]. D

Let G Dn (a,t : an t2 1, tot-1 cr"1).

Proposition 2.6. Let char K 0 or char K \n and let Q be a primitive n-th root
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of unity. If C, + C e if? then K(Dn) is rational over if. In particular, K(D±)
is rational over if.

Remark. Compare with [Bl, Proposition 2.1 and Theorem 3.3].

Proof. Define V ®"=1if ¦ x% and let Dn act on V by

a : x\ i-> X2 >->¦ • • • i-> xn i-> xi,
t : Xj i—> xn_i for 1 < « < n — 1,

xn ^xn.
Let W (BgtDnK ¦ x(g) be the space of regular representation of Dn. Note

that V is a subrepresentation of VF, because we may define Wq ®V_^K-x'{ where

x[ x(al) + x(alr). Then Xj i—> x^ for 1 < i < n provides an equivariant map
from V onto Wq.

By Theorem 2.1 if(W) is _Dn-isomorphic to K{V){x\,X2, ¦ ¦ ¦ xn) with A(xj)
X{ for any A G £>„. Hence K(Dn) K{W)D~ K{V)D™{xi,x2, ¦ ¦ ¦ ,xn). Thus it
suffices to show that K(V)Dn is rational over K.

Define yt YTj=i Ci(-j~^Xj for 0 < « < n - 1.

Since C + C"1 € if, it follows that [K(Ç) : if] < 2.

Case 1. Ce if.
Note that if(xi,--- ,xn) K(yo,yi,--- ,yn_i) and cr(y4) C '</•, t(%)

C"2î2/n-î for 0 < « < n - 1.

Apply Theorem 2.1. We get

with cr(zj) =T(zi) =z%. Nowif(yi,yn_i)D" K(t,yi)D™ where t yn-\/y\ and

^(yi) rV ct(*) C2*, r(yi) C~%1, r(t) Ç4/t. Apply Theorem 2.4. It
suffices to show that K{t)Dn is rational over if. However, it is clear that K{t)Dn
is rational by Liiroth's Theorem.

Case 2. CiK and Gal(if (C)/if {id, p} where p(() C"1.
Extend the actions of <r, t, p to if (C)(xi, • • • xn) by <r(C) t(C) C) p(xi)

xt for 1 < i < n.
Note that

K(X1, ¦ ¦ ¦ ,xn )«r'-r>

where cr(y4) C '</•, r(j/j-) C"2*2/n-j, p{yi) yn-i- Since (ct, t, p) ~ £>„ x Z2
acts on if(C)(?/ij?/n-l) faithfully, we may apply Theorem 2.1. Thus it suffices to
show that if (C)(j/i, yn-l)<a'T'p> is rational over if.
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Define t yn-i/yi. Then a(t) (\ a(yi) tV, <t) (4/t, T(yi)
(~2tyi, p(t) 1/t, p(yi) tyi. By Theorem 2.4, if K(()(t)<<J'T'p> is rational over

if, so is Klc)(t,yi)<a'T'p> over if.
Define m n, if n is an odd integer; m n/2 if n is an even integer. Then

the restriction of a to if (£)(£) is of order m. Define u tm. It follows that
T> #(C)(M) and t{u) 1/w, p(u) l/u. Now K(C)(u)<T'P>
tP'P> {K(()(u)<tp>}<p> K(u)<p> K(u+(l/u)) is rational over K.

a

Theorem 2.7 (Gröbner [Gr]). Let G be the quaternion group. Then K{G) is
rational over K for any field K.

Proof. Because of Theorem 2.5, we may assume that char K ^ 2. Recall the
notations at the end of Section 1. We write G (a, t : <r4 t4 1, <r2

T2, T(JT~l <73).

Define V (BJ=iK ¦ xi with a : x\ i—> X2, X2 i—> — xi, X3 1—> —X4, X4 1—> X3,

t : xi \-^ x3, x2 i-> x4, x3 1-^ -xi, x4 1-^ -x2.
Note that V is a faithful subrepresentation of the regular representation W

(&geaK-x(g). In fact, we may take x\ x(l) —x(<r2), x2 c-xi, x3 t-x\, x4
Ta • x\. Now apply Theorem 2.1. Thus it remains to prove that K(x\, x2, x3, x4)G
is rational over if.

Define yi xi/x4, y2 a;2/x4, y3 x3/x4, y4 x4.
It is straightforward to check that

cr : y\ ^ 2/2/2/3, 2/2 ^ -2/1/2/3, 2/3 ^ -1/2/3, 2/4 ^ 2/32/4,

1" : 2/1 >->¦ -2/3/2/2, 2/2 ^ -I/2/2, 2/3 ^ 2/1/2/2, 2/4 !->¦ -2/22/4-

If K(yi, 2/2,2/3)<<J'T> is rational over if, so is if (2/1,2/2,2/3,2/4)<<J'T> over Ä" by
Theorem 2.4.

Define zi 2/1, ^2 2/2/2/1, ^3 2/3- Then

t : zi 1-^ -z3/ziz2, z2 1-^ l/z3, z3 t-^ l/z2.

Define z ^(1 + (z2/z3)). Then if (2/1,2/2,2/3)<<T> if (zb z2, ^if (z, z2, z3)<<7>. Now apply Theorem 2.3 with a b —1, i.e. define

u ^-=—, v

It follows that if(z, z2,z3)<<7> K(z,u,v).
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Now it is easy to check that

t:«i-> —v, v i—> —m, z i—> A/z

where A -2 - (22/23) - (^3/^2).
Since

{6m2 + aw2 - (6m2 - aw2)2}/(w)

by the last statement of Theorem 2.3 (here a b — 1 in the present situation),
we find that

A -2 - {m2 + v2 + (m2 - v2)2}/(uv)

Define p u + v, x u — v, y 2zuv/(u + v). We can check that

r:pi-» —p, ihi, yi-> A/m

where A -(x2 + f)(x2 -p2).
Defîne t p2, q1 y + (A/y), q2 p{y - (A/y)}. We find that

K{z, u, v)<T> K{p, x, y)<T> K{t, x, qi, q2)

with the relation
91 " (12/pf 4A, (1)

because [if(t, x, (/1, </2jP) : K(t, x, q\, </2)] < 2, and if(t, x, (/1, q2,p) K{x, q\,y —

{A/y),p) K{p,x,y). (Note that the last equality holds because we can solve y
within the field K(x,q\,y — (A/y),p).)

Now we will simplify the relation (1). It becomes

Dividing by t2 on both sides, we get

(yt)q2 - (q2/t)2 -A(x2 + l){(l/t)x2 - 1}. (2)

From (2), it is obvious that t G K(x, q\, q2/t). Thus

K(t, x, quq2) K(t, x, qh q2/t) K(x, qi, q2/t)

is rational over K D
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§3. Main results

Without loss of generality we will assume that K is any field with charif ^ 2

throughout this section, because Theorem 2.5 will take care of the case char K 2.

Let G (er, T : er8 t2 1, tot-1 aa). If a -1, then G is the dihedral
group; if a 3, then G is the quasi-dihedral group; if a 5, G is the modular

group [Lei]. In the quasi-dihedral group G, let u a, v ar, then G can be
defined as (u, v : w4 v2, vuv~l w3), which is the definition of this group given
in [Lei].

We will find a faithful subrepresentation of W ®geaK ¦ x(g), the regular
representation of G. Define

xt x(al) + x(alr) forO <i<7.

Then ®J=0K ¦ Xj is a G-subspace of W and <t(xj) xj_|_i and t(xj) xaî
for 0 < « < 7 where the index « + 1 or a« is understood to be taken modulo 8.

By Theorem 2.1, in order to prove the rationality problem of K(G), it suffices to
consider the case of K(xq,x\, ¦ ¦ ¦ ,xj)G.

Theorem 3.1. If G is the dihedral group, then K(G) is rational over K.

Proof. Define j/j Xj — xj_|_4, j/j+4 x4 + xj_|_4 for 0 < « < 3. Because of Theorem
2.1, it suffices to show that K(yo,yi,ys,y4)<a'T> is rational over if. Note that
cr : yo ^ ?/l !->¦ 2/2 ^ 2/3 ^ -J/0, ^ : 2/0 ^ 2/0, 2/1 >->¦ -2/3, 2/2 ^ ~2/2, 2/3 ^ ~2/l-

Let 7T Gal(if(i/—1)/^)- If •v/—Ï € ^, then tt is the trivial group; if a/—î ^
if, then 7T (p) where p{\/—l) — \J—1. In the sequel, we shall take the following
convention: if we write the action of p, it is understood that a/--Î ^ K; however,
if a/—T G K, the reader can just forget p even when we write the action of it.

We will extend the actions of a, t, p to K {y/—l)(2/o, 2/1,2/2,2/3) by requiring
cr(v/=î) t(v/=Î) v^ and ,o(yj) y4 for 0 < « < 3. Note that

^(2/0, • • • 2/3)<<T'T>

Define zi -/^îyi+ys, Z2 v/-Î2/2-2/O, ^3 -v/-Î2/l+2/3, ^4 -v/-Î2/2~
- Then

a : zi t—> Z2 *—> \/ — lzi, z$ i—> 2:4 i—> —\J— IZ3,

p : z\ i-^ z3, z2 i-^ z4, z3 i-^ zi, z4 i-^ z2.

Define «1 22/21, «2 ^4/^3, «3 ^2^4, «4 ^f- We get that
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1*4

^

and the actions of a, t, p are given by

a : u\ i—> \J—\ju\, «2 !—

t:«i i-> a/—1«2, 1*2 1—>

p Z U\ i-> w2 >-> «1, «3 >-> «3, «4 >-> u\ji(u\u\u/C}-

Define u>i «3 + (us/(u 11*2)

Then

a : w\ 1—> wi, W2 1—> I/1V2, W3 i—> a/—1(w2 + (1/^2) + 2)/w3, W4 i—> — W4,

t:wii-» wi, W2 i-> W2, W3 i-> a/^Î(w2 + (I/W2) + 2)/ws, W4 i-> -I
p : wi i-> wi, W2 i-> W2, W3 i-> (w2 + (I/W2) + 2)/ws,

Thus the action of ar is given by

(TT I W\ I—> Wl, W2 I—> \/w2, W3 I—> W3, W4 I

Define W5 (w2 — (l/w2))(l — W4)/(l + 104). Then K{\J — V){w\, W2, ws, W4)

K.{\J—V)[w\, W2, ws, w§) and <r(w;5) — (w2 — (1/W2)) /W5) "'''"(^5) W5, p(w^)
—W5.

Now if(A/^T)(wi,w2,W3,w;5)<<J-T>
over, K(^f^l) (wi,w2,W3,W5)<<JT>

Define s w\,t W2 + (l/w2),x ws,y sf—lw^. Then

a : m s, t 1—> t, ih v^î(t + 2)/x, y t-> (t2 - A)/y,

p : s 1—> s, i 1—>¦ i, ii-»(i + 2)/x, y 1—> y.

By Theorem 2.3, define

More(l/w2)).

a
x

x_

xy
xy

y
y

xy
xy

where a a/—î(t + 2), b t2 — 4, and we find that K{-\/—l){w\, ws, w$, W2

If a/^T G K, then K{y/—l)(s, t, w, w) if(s, t, w, w) is rational as we expect.
From now on, assume a/^T ^ if and p actually exists. We shall find the action

of p on u and v. Remember p(y/—l) — \f--ï and p(a) —a, p(b) b. Now

t + 2 ax

p{u) x t + 2

t + 2 abx
y+ ,+ : ON

t + 2

b

y —
_ y

-y +
abx

X

bx

y

V

a

X
ay'
X

y-
Vbx

y

b

y
ay
X
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Define w (1 + \/—l)u/v. Then p(w) w.
It is laborious, but not difficult, to verify that

X

bx

y

a

ay
X

u
hu2 — av2

(3)

Here is a cheating way to demonstrate the above identity. By Theorem 2.3, the
right-hand side of Identity (3) is equal to (y + (b/y) — (l/w))^1. It is really routine
to check that the left-hand side of Identity (3) is equal to (y + (b/y) — (l/w))^1.

In conclusion, we find p(u) c/u where c w2/{(£2 — 4)w2 + 2(£ + 2)}.
Define p Xu/w where A (t2 - 4)w2 + 2(t + 2). Then p(p) X/p.
Now K(y/^ï)(s,t,u,v)<p> if(-/zî)(s,t, w,p)<p>. We may show that

K{\J—l)(s, t, w,p)<<7> is rational over K{s,w) by applying [HK1, (2.4) Theorem].

Here we provide a direct proof of it. Note that K(\J—l)(s, t, w,p)<<J>

K(s,t,w,pi,p2) where pi =p+ (X/p), p2 y/^ip - (X/p)). Note that

Pi +vl 4A 4(t2 - 4)w2 + 8(t + 2).

Define r t + 2. Then t2 - 4 r(r - 4) and we get

p\ + p\ 4r(r ~ 4)w2 + 8r-

Dividing by r2 on both sides, it turns out that

(Pl/rf + (P2/r)2 4w2 - 16(1/t>2 + 8(l/r).
8(l/r)(l - 2W2) (Pl/r)2 + (p2/r)2 - Aw2.

Thus r G K(w,pi/r,p2/r).
It follows that

K(\/—l)(s, t, u, v)<p> K(s, t, w,p\,p2) K(r, s, w,pi/r,p2/r)
K(s,w,pi/r,p2/r)

is rational over K. D

Theorem 3.2. If G is the quasi-dihedral group, then K(G) is rational over K.

Proof. We shall show that K(xq, • • • xj)G is rational over K where a : xq i—> x\ i—>

• • • i—> X7 i—> xo, r :xo i-> xo, xi «-> X3, X2 <-> Xß, x^ 1—> X4, X5 <-> X7.
The proof is almost the same as that in Theorem 3.1. We shall make the same

change of variables, but the action may not be the same as in the proof of Theorem
3.1. We shall indicate the main modifications.
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We shall define yt, zt, ut, vt, wt by the same way as in Theorem 3.1. The
actions of a and p are the same. But we shall be careful about the action of t.
Note that

t :yo >->¦ yo, y\ >->¦ 2/3, y2 >->¦ -2/2, yz >->¦ yi,

/ T I T
U\ i—> —\—iU2, 1*2 '—* \~±Ui, 1x3 1—> 1x3, 1x4

V\ 1—> V\, V2 1—? ^2, ^3 '—? ~~ v ~1^2/^3i V4 '—* ~l
101 1—> 101, 102 >—> W2, W3 1—> — a/—l(lO2 + (1/W2) + 2)/lO3, W4 1—> —I/W4.

Thus the action of <tt is given by:

(TT : 101 1—> 101, 102 1—> I/102, W3 '"^ ~W3, W4 '"^ I/104.

Define io3 (102 — (l/w2))iO3; and we should redefine x io3 in the present
situation. Note that a(x) -*J^l{t2 - 4)(t + 2)/x, p{x) (t2 - 4)(t + 2)/x. All
the others remain the same.

Thus we define u, v, w by the same way. But a —a/—l(t2 — 4)(t + 2) in the
present situation. Note that

a
x y

bx

y

b

y
ay
X

" ' bx ay

y x

Define 10 (1 — \J—\)ujv. Then p{w) 10 as before.

Nowp(w) c/u where c io2/{(t2-4)io2 + 2(t2-4)(t + 2)}. Definep Aix/10

as before, but with A (t2 - 4)io2 + 2(t2 - 4)(t + 2).
It follows that the fixed field is K(s,t,w,pi,p2) K(r, s,w,pi,p2) where r

t — 2 and the relation becomes

p\+pl 4r(r + 4)io2 + 8r(r + 4)2.

We change the above relation as

PI \2 P2
X2 X X2 1 X X2

r

Thus r G K(w/(r + 4),pi/{r(r + 4:)},p2/{r(r + 4)}). D

Theorem 3.3. If G is the modular group, then K{G) is rational over K.

Proof. We shall prove that K(xq, • • • xj)G is rational over K where a : xq i—> xi i—>

• • • i-^ x7 i-^ x0, t : x0 i-^ x0, xi <-? x5, x2 i-^ x2, x3 ^ x7, x4 i-> x4, x6 i-^ x6.
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Note that t : yç, i—> yg, 2/1 '—> —2/1, 2/2 >—> 2/2, 2/3 '—> —2/3- The situation is different
from the previous two cases, and we cannot copy the proof of them. Fortunately
the present situation turns out to be easier.

Define zo=y%, 21=2/1/2/0, ^2 =2/2/2/1, -23 =2/3/2/2- Then K(yo,~- /y;i)<a >

K(zq, ¦ ¦ ¦ 23). Note that

d '. Zq

t : z0

t-> Z0

i-> Zn

Z\, Z\

Z\ l->

>->¦ Z2 \

— Z\

~^Z3

z2 i->

^-l/(
-^2, ^;

^1 ^2

—> -Z'A

By Theorem 2.f it suffices to prove that K(z\, z2, z3)<tJT> is rational over K
Defîne t z\z%, x z\, y z2. Then we get

a : t 1—> —1/t, x 1—> y 1—> t/x,
t : t 1—> t, iH —x, y 1—> —y.

Note that cr2(t) t, cr2(x) t/x, cr2(y) -f/ty. Hence define

b 1

x —

xy-

a
—
X

—
xy

X

xy

t
— —

X
1 '

-\

xy

ab - 1

xy xy-\
xy xy

where a t,b -1/t. By Theorem 2.3, K(t,x,y)<<j2> K(t,u,v).
We find that r(t) t, t(u) —u, t(v) —v. The action of a is given by

y i— — — x
a(u) -7 —, a(v)ty x v ' ty x

x ty x ty

Define w u/v. Then a(w) —1/w and t(w) w.
It is not difficult to check that

V + Ty tv

x ty

Hence we find that a(u) t/{u(w + (t2/w))}.
Note that K(t, u, w)<T> K(t, u2,w).
Define z u2(w + (t2/w))/t. Then a(z) l/z.
In summary, we will consider K(t,u2,w)<a> K(t,w,z)<a> with a(t)

— 1/t, a(w) —1/w, a(z) l/z.
Define p (l-z)/(l + z). Then a(p) -p. By Theorem 2.1, K(t,w, z)<<7>

K(t, w,p)<<J> is rational provided that K(t, w)<tJ> is rational. However the
rationality of K(t, w)<IJ> follows from Theorem 2.3. D
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