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Restriction map in a regular reduction of SU(n) g

Sébastien Racanière

Abstract. The quasi-Hamiltonian reduction of SU(re) 9 at a regular value, in the centre of
SU(ra), of the moment map is isomorphic to a moduli-space of semi-stable vector bundles over a
Riemann surface. We describe the restriction map from the equivariant cohomology of SU(ra)29
to the cohomology of the moduli space in terms of natural multiplicative generators of these
cohomologies.

Mathematics Subject Classification (2000). 53D20, 14H60.
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Motivations

All cohomologies will be taken with coefficients in the field Q of rational numbers.
For a compact connected Lie group G, we denote EG —? BG the universal
principal G-bundle. If G acts on a manifold M, we denote {M)q the space Mxg
EG. The equivariant cohomology Hq(M) of M with respect to the action of G
is by definition the Cech cohomology of (M)a- For an account of equivariant
cohomology see [6] and [14].

Let g be an integer bigger than 1. Let tt be the group

n (ai, 5i,..., as,5fl,c; JJ[afc,6fc] c,cn 1).

fc=i

Let n and d be integers with n bigger than 1 and let be the n-th root of unity
e~27Tl™ Put ß (I, where I is the identity matrix in the special unitary

group SU(n). We define

SU(n)) | p(c) ß}
the space of SU(n)-representations of ty such that ß is the image of c. Because ß
is in the centre of SU(n), the group SU(n) acts on Sß and its quotient

mß Sß/S\J(n)

is the moduli space of SU(n)-representations of ty that send c to ß.
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Narasimhan and Seshadri [17] have shown that vt\ß is isomorphic to the moduli
space ol holomorphic semi-stable vector bundles ol rank n, degree d, and fixed
determinant over a compact Riemann surface X of genus g. For d and n co prime,
trig is compact and smooth. In this case, Atiyah and Bott [1] showed that this
space is symplectic, proposed a family of multiplicative generators of its cohomol-

ogy and gave an inductive formula (on the rank n) for the Betti numbers of tng.
Their method consists in studying an infinité dimensional Hamiltonian space. In
1993, Huebschmann [8] and Jeffrey [10] independently gave a group cohomology
construction of the symplectic form on vt\ß (their results are summarised in a joint
paper [9]). In 1998, Alekseev, Malkin and Meinrenken [2] showed that
Huebschmann and Jeffrey's construction fits in a more general setting: one can get the
moduli space vt\ß (and many others, moduli spaces of flat connections on a principal

bundle) as the Marsden-Weinstein reduction of a quasi-Hamiltonian space.
This space is SU(n) 9, it is relatively simple in contrast with the usual descriptions

of mß as a Hamiltonian reduction. A quasi-Hamiltonian (or q-Hamiltonian
for short) space is a Hamiltonian space with a group valued moment map. Its
2-form is not symplectic in general but the Marsden-Weinstein reduction is well
defined and the reduced space is symplectic.

An important result about Hamiltonian spaces is the

Theorem 0.1 (Kirwan). Let M be a symplectic manifold. Assume G is a compact
Lie group acting symplectically on M and assume there exists a moment map <f>

for this action. Let 0 be the null vector of the dual of the Lie algebra of G. The

restriction map
H*G(M) ^ HZ(<f>-\0))

is surjectwe.

It is a natural question to ask if this theorem is still true for q-Hamiltonian
spaces. It is quite easy to see that the answer is no. For example, to get trig, one

considers SU(n) 9 with moment map /x

SU(n)2fl —> SU(n)

the product of the commutators and a certain 2-form (see [2] for more details).
Then the reduced space at ß being symplectic and compact, its degree two
cohomology (which is isomorphic to ff|U(n)(M1 (/?))) contains a non trivial class

whereas i7|u(n)(SU(n)2fl) {0}. Thus the map

r : H*SXJ{n)(S\J(nfa) -^ H*SXJ{n)^-\ß))

is not surjective.
Our aim is to give a description of this last map r (Theorem 5.1) when d and

n are co prime. Note that in [3], a theorem of localisation in the context of quasi-
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Hamiltonian spaces is given. It may be interesting to see how our theorem could
be used to apply this localisation theorem to the reduction of SU(n) 9 at ß.

This paper is organised in the following way. Section 2 gives a (very short)
review of the prerequisites on q-Hamiltonian spaces and semi-stable bundles. In
particular, Narasimhan and Seshadri's theorem (see Theorems 2.9 and 2.13) is
used throughout this article to identify tng with /z~1(/?)/SU(n) and H*(mß) with
^sum^1^))- In Section 3, we give a construction of a universal bundle on

trig x X, we then recall how Biswas and Raghavendra [4] use this bundle to define

a set {ak, bf-j, dk, 2 <k <n, 1 < j < 2g} of canonical multiplicative generators of
the cohomology of tng (Theorem 3.4). In the next section we define a bundle on

SU(n) 9 x X — {point} and use it to get a set {ck, akj, 2 < k < n, 1 < j < g} of
multiplicative generators for the equivariant cohomology of SU(n) 9 (Theorems
4.4 and 4.6). Finally in Section 5 we prove the

Theorem 5.1. The restriction map

r : ff^u(

is given by

r{ck) ak for k 2,...,n

1. Acknowledgement

I would like to thank M. Audin and F. Kirwan for their help in writing this article.
I would also like to thank J. Huebschmann and L. Jeffrey for sending their articles
to me, they have been very useful. Finally, I would like to thank the referee for
his reading and his comments.

2. Prerequisites

In paragraph 2.1, we recall the définition of semi-stability for holomorphic vector
bundles and state Narasimhan and Seshadri's theorem (Theorem 2.9). Then in
§2.2, we give the définition of a q-Hamiltonian space and restate Narasimhan and
Seshadri's result in the language of q-Hamiltonian spaces (Theorem 2.13).

2.1. Semi-stable bundle

The following constructions are due to Narasimhan and Seshadri [17]. Apart from
the proof of Proposition 2.1, everything in this paragraph is from their article.
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Let X be a Riemann surface of genus g, g > 2. Fix a point xq of X. We will
first give a construction of a ramified covering Y —> X used in [17].

Proposition 2.1. There exists a simply connected covering

p:Y —>X

with only one point of ramification xq of order n. Outside of this point, the map

Y-{p-l(x0)}^X-{x0}
is a covering with group

g

¦n (ai,6i,.. .,ag,bg,c;c JJ [ak, bk], cn 1).

fc=i

Proof. We start by constructing Y, then we show that it is simply connected. Let
D be an open neighbourhood of xo biholomorphic to an open disc in C centred
at zero. Let D' D — {xç>}- The fundamental group of X' X — {xç>} has a

presentation

tti(X') (ai,6i,... ,ag,bg),

such that the element 111=1 [afci M is the class of a small circle 7 included in D'
and going counter clockwise around xq. Let tt be the group

g

¦n {a1,b1,...,ag,bg,c;c= JJ [ak, bk], cn 1).

fc=i

The natural surjective map

defines a galoisian covering

p : y -^ x'
with group 7T. Fix a point xi ofD'. We take it as the base point for the fundamental
groups of X, X' and D'. Let us decompose p 1(D') in its different connected

components

P-\D') U 14.

Each

is a connected covering. As D' is a disc minus its centre, this last covering group
is generated by the element in tt corresponding to the loop 7. The connected
covering of a disc with its centre removed is either the upper half complex plane
with the exponential as a projective map or a disc with its centre removed and
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a projection map of the type z i—> zm, where m is a positive integer. Here, the
class of 7 acts as c, thus Va is a disc with its centre removed and, for each a,

is the map z i—> zn. Let

Y=(Y' (J (A <*))/-

where for y G Y' and (x, a) G (D, a)

y ~ (x, a) if and only if p(x) y.

The natural projection
Y —>X

is a covering with a unique ramification point at xo with order n. We now have to
check that Y is simply connected. We get Y' from Y by removing a discrete set
of points. Hence the map

is surjective. The sequence

{1} -^ 7n(y') -^ ^i(X') -^ it -^ {1}
is exact. The kernel of tti(X') —> tt is the normal subgroup generated by cn. Let
a in tti(X') be the class of a loop ?y : [0,1] —> X'. The class of 7™ is cn. Let us

lift 1] • 7™ • ry^1 in y'. To do so we have to take a lift rj of ?y in y and then take
a lift 7™ of 7™ satisfying 7™(0) 77(1). The loop we wanted is r\ • 7™ • r\ l. There
exists a. such that

7" C Va,

thus 7™ is homotopic to the constant loop in Y. The image of a ¦ cn ¦ a~l by
vri(y') —> 7Ti(y) is 1, hence the image of tti{Y') —> ^i{Y) is {1} and

D

Choose a yo in p^1(xo). In the presentation
a

tt (aubu...,ag,bg,c; Y[[ak,bk] c,cn 1}

fc=i

of 7T, we can assume that c is a generator of the isotropy group -nyo of yo
For a representation p : tt —> GL(n) of tt, we denote E^{p) the vector bundle

FxC" —? y
with the action:

ix(YxC") —> Y
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Let E be the sheaf of germs of holomorphic sections of E^ (p). The group tt acts

on the image sheaf p*(E). Let p*(E) be the subsheaf of tt-invariant elements of
p*(E). It is a rank n locally free sheaf of Ox-modules. It defines a holomorphic
vector bundle, p*(Ep), of rank n on X. A set of transition functions is obtained
in the following way. Let {Ui\YLo be a finite open covering of X satisfying:

(1) all non-empty intersections of sets of the type Ui is contractible,
(2) xo G Uo and \J?=1 Ut X - {x0},
(3) there exist discs {-Djj^g in Y such that yo G -Do and Uq is the quotient of

-Do by TYyo, the restriction p\r>^ is an homeomorphism of Di with C/j, for all
non zero {.

For each triplet i,j, k, choose a connected component Wyfc of p~1(Ul C\Uj)C\ D]..
If Ui n Uj is not empty, we denote 7^ the element of tt satisfying 7jjWyj Wßj.
According to [17, p. 550] :

Proposition 2.2. On each {E^}I2=o> the bundle p1(Ep) is trivial and a set of
transition functions is given by:

Qi 1 pili 1) m U, n £/,, for i. j ^ 0

90,i h,ip{lo,i) in Uo n Ui, for i =é 0

where /q j : Uo (1(7; —? C* depends only on t.

Definition 2.3. Let W be a degree d(W) and rank r(T/l/) holomorphic vector
bundle on X. It is said to be stable, resp. semi-stable, if for each proper subbundle
V, we have

d(V) d(W) d(V) d(W)

Remark 2.4. If d(W) and r(W) are co prime then the notions of stability and

semi-stability are equivalent.

Recall that d is an integer, 0 < d < n — 1, and e~27™^ is an n-th root of
unity. Let z be a coordinate in a neighbourhood of yo such that TYyo is the group of
multiplications by (k. Up to a change of generator c of 7ryo, we can assume that c

acts by multiplication by e " Let t be the character of 7Tj,0 defined by t(c)
A representation p : tt —> U(n) is said to be of type t if for all 7 G 7ryo, we have

P(l) T(7)I- For any representation p of type t we have:

d(p:(SP)) d-n (see [5, p. 13]).

Again, according to [17]:

Theorem 2.5. A holomorphic vector bundle of rank n and degree d — n on X
is semi-stable if and only if it is isomorphic to a p^(Ep), where p : ty —> U(n)
is a unitary representation of type t. This bundle is stable if and only if the
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representation p is irreducible. Moreover, two such bundles are isomorphic if and

only if their corresponding unitary representations are isomorphic.

Remark 2.6. For d and n co prime, any representation p : tt —> U(n) of type t
is irreducible [17, Prop. 9.3].

Let n be the moduli space of rank n, degree d, stable holomorphic vector
bundles over X.

Remark 2.7. Let M be a holomorphic line bundle of degree 1 over X (it always
exists). The moduli space of rank n stable holomorphic vector bundles with fixed
determinant of degree d — n over X is isomorphic to the moduli space of rank n
stable holomorphic vector bundles with fixed determinant of degree d over X. The
isomorphism is induced by the map which to a bundle E —> X associates E <g> M.

We fix such a bundle M and use it to identify the two moduli spaces of Remark
2.7. Thus we have

Theorem 2.8. The moduli space n is isomorphic to the quotient of the space of
unitary representations of type t of ti by the action o/U(n).

The map which to a class of bundles in n associates its determinant is a fibration
over the moduli space of line bundles of degree d. Its fibre is called the moduli
space of rank n stable holomorphic line bundles over X with fixed determinant
(of degree d). We get all such bundles by taking only representations p : ty —>

SU(n) of type t. Let S be the set of such representations. We identify it with
{(Au Bu..., Ag, Bg) e SU(n)2s | U9k=1[Ak, Bk] CI} by:

g

S -^ {(Au Bu...,Ag,Bg)e SU(n)2s | JJ [Ak, Bk] ÇI}
fc=i

P ' *¦ (p(al),P(bl),---,P(ag),P(bg))-

The action of SU(n) on the representations becomes, under this identification, the

diagonal action by conjugation of SU(n) on SU(n) s.In this article we work with
m rather than n. We have:

Theorem 2.9. Let d be an integer, 1 < d < n — 1, co prime with n. Let m be

the moduli space of rank n holomorphic stable vector bundles over X with fixed
determinant (of degree d). The map

S —> m

p -^ pl(Ep)

is a PSU(n)-principal bundle.
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Proof. The only thing that is left to check is that for a representation p
{A\, B\,... ,Ag,Bg) G S (recall we have identified S with a set of matrices), its
stabiliser Stab(p) is the centre of SU(n). Let C be in the stabiliser of p. Let A

be an eigenvalue of C and let E\ be its eigenspace. As C commutes with each

of the At, Bt, the subspace E\ is stable by the unitary representation p. As p is

irreducible, E\ Cn and C is in the centre of SU(n). On the other hand, any
matrix in the centre of SU(n) does leave p invariant. We have indeed a free action
of PSU(n) on S. D

2.2. Quasi-Hamiltonian spaces

The définition of a q-Hamiltonian space is due to Alekseev, Malkin and Mein-
renken. Roughly speaking this is a Hamiltonian space with a group valued
moment map. When the group is a torus, the définition reduces to the usual one of
a Hamiltonian torus action whose moment map takes its values in the torus itself
(see McDuff [15] and Weitsmann [19]).

Let G be a compact Lie group. Let 9 and 9 be respectively the left invariant and

right invariant Maurer-Cartan forms on G. Choose a G-invariant scalar product
(,} on the Lie algebra q of G. Define a 3-form x on G by

Definition 2.10 ([2]). Let (M, G, to, jj) be a 4-tuple where M is a manifold acted

on by a compact Lie group G, to is a G-invariant 2-form on M and jj, is an equivari-
ant map from M to G (for the action by conjugation of G on itself). This 4-tuple
(or simply M if there is no risk of confusion) is a q-Hamiltonian space if

(Bl) dw -p*x
{B2)i{v^ \p*(9 + 9,i)
(B3) kerwx {v^x) \ £ e ker AdM(x) + 1}.

The map /x is called the moment map.

This définition is a generalisation of the definition of a Hamiltonian space in the
sense that any compact Hamiltonian space can be endowed with a q-Hamiltonian
structure (this is an easy corollary of [2, Prop. 3.4.]).

A first example of a q-Hamiltonian space is a conjugacy class in a Lie group
with moment map the inclusion of the conjugacy class in the group (see [2, §3]).
The example that will be of interest to us is

Theorem 2.11 ([2]). Let G be a compact Lie group and g > 1 an integer. There
exists a 2-form us on G2g such that the map

H : G2b —> G

(a1,b1,...,ag,bg) i—> IlLiKA]
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and the diagonal action of G on G2g by conjugation makes (G2fl, G, u>, /x) into a

q-Harmltoman space.

In particular we will apply this theorem with G SU(n). An important
fact about q-Hamiltonian spaces is that one can take their Marsden-Weinstein
reduction. More precisely:

Theorem 2.12 ([2]). Let (M, G, w, /x) be a q-Hamiltonian space. Let h be in the

centre of G. The moment map /x is a submersion at x G M if and only if the

stabiliser ofx in G is finite. If this is the case for any point of ^T^{K), the reduced

space /x—1 (h) /'G is an orbifold (a manifold if the action ofG on /j,~^(h) is principal)
on which the restriction of ui to ^ 1(h) descends to define a symplectic form. We

call this space the reduction of M at h.

As a corollary of Theorems 2.2, 2.12 and 2.9 we have:

Theorem 2.13. Let n,d be co prime integers, n > 2 and 0 < d < n — 1. Let
e~27"™ be an n-th root of unity and ß (I in the centre of SU (n). The moduli

space tng of rank n stable holomorphic vector bundles with fixed determinant (and
degree d) over a Riemann surface X ofgenus g is isomorphic to the reduction of the

q-Hamiltonian space SU(n) 9 at ß. It is a compact smooth symplectic manifold.Q-

2.3. Characteristic classes of principal bundles

Following Biswas and Raghavendra [4], we define in this section some characteristic
classes of a projective bundle. We will see that when the projective bundle comes
from a vector bundle of degree 0, these characteristic classes are the same as the
Chern classes of the vector bundle.

Let Q[Xi,... ,Xn] be a polynomial ring in n variables. The cohomology of
BU(n) is isomorphic to the subalgebra of invariant polynomials in the algebra
Q[Xi,... ,Xn], under the action of the symétrie group Sn on the variables. For
k an integer in [l,n], the Chern class ck in H*(BU(n)) corresponds to the Schur

polynomial

J2 Xtl...Xik.
l<il< <tk<n

The projection from U(n) to PU(n) defines a fibration BU(n) —> BPU(n) with
fiber SU(1). This fibration is cohomologically trivial and H*(BPU(n)) injects
into H*(BU(n)). Let us define

„ „ 1

The image of H*(BPU(n)) in H*(BU(n)) is the ideal generated by the polyno-
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mials

Pk J2 Yll...Ylk,îor2<k< n.
l<il< <ik<n

The k-th characteristic class of a projective bundle over a manifold M is the pull-
back of pi. under the classifying map M —> BPU(n).

For a vector bundle F of degree 0, that is when the first Chern class vanishes,
we have Pk(F) Ck{F) for k in [2,n]. It will be the case in particular if the
structure group of the vector bundle is SU(n). This corresponds to the fact that
the projection BSU(n) —> BPU(n) defines an isomorphism in cohomology.

3. Construction of a universal bundle

In this section, we fix d, n, and ß as in Theorem 2.13. We use the notations
of that theorem and of Theorem 2.2 with G SU(n). We construct a universal
bundle on tng, that is a vector bundle U over m^ x X, holomorphic in the X
direction, such that for any class [E] in tng, the restriction of U to {[E]} x X is in
the class [E]. We then use this bundle to define natural multiplicative generators
of the cohomology of m^.

Recall that we defined page 399 an open covering of X by subsets {Ut}"!=0.
Define a complex vector bundle T over S x X (where we have identified S to

1
as being trivial over the S x Ui and with transition functions:

(S x Ui) n (5 x U3) —> U(n)

According to Proposition 2.2:

Proposition 3.1. The bundle T satisfies: for all p in S

t\{p}xX=pUep).

Define an action of SU(n) on T by defining it on each T\sxu^ by

SU(n) x(S xUtxCn) —> S x Ut x C"
(g,(p,x,u)) i—> (g- p,x,g(u)).

This action is well defined because if x G UJC\Ul and £ (p, x, m) is in S x C/j x Cn,
then in the trivialisation S x Uj x Cn, t is written t (p, x, v(x)p(jij)(u)) where

v(x) is a scalar and

g ¦ (p, x, v(x)p(nj)(u)) (g-p, x, g{v{x)p{^5){u)))
(g-p, x,v1This last term is (g ¦ p,x,g(u)) written in S x Uj x Cn. This action is a lift for

the action of SU(n) on S x X. Unfortunately it does not come from an action of
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PSU(n) and the bundle T does not descend to a bundle on m x X. Indeed the
centre Z/nZ of SU(n) acts trivially on S but the generator (I of Z/nZ acts by
multiplication by Ç, in the fibres. To overcome this problem, we can construct a

line bundle L on S with an action of SU(n) lifting the action on S and such that
(I also acts by multiplication by in the fibres. We will also denote L the induced
bundle on S x X. The bundle T <g> L* has the property of Proposition 3.1 but the
action of SU(n) reduces to an action of PSU(n). By taking the quotient we get

Proposition 3.2. Let M be the line bundle of Remark 2.7. The bundle

£/ M <g> (T <g> L*)/PSU(n) —> m x X
is a universal bundle for tng. That is, if [E] G tng is the class of a bundle E —> X
then U\[e]xx is isomorphic to E.

We still have to prove the existence of the bundle L.

Lemma 3.3. There exists a line bundle L over S with an action o/SU(n) lifting
the one o/SU(n) on S. This action satisfies: CJ. acts by multiplication by Q in the

fibres.

Proof. The proof is inspired from [16].
The bundle M <g> T is a family (parameterised by S) of rank n, degree d stable

holomorphic vector bundles. Let E be in this family and let k be an integer. By
Serre duality,

h\e <g) (o^)fc) h°(ev <g) (n1x)1-ky

and this is the null vector space. Otherwise there would exist a non zero homo-

morphism (Qx)k 1 —> Ev and thus a subbundle of Ev of degree bigger than or
equal to 2(g — l)(k — 1) > 0. This is impossible because E is stable.

The H°{E (g) (&x)k) form a holomorphic bundle (see [13]) Ak over S of rank
U]~ the dimension of H°(E (g) (Qx)k). By Riemann-Roch, we have

uk d(E <g> (Qx)k) + n(l - g)

d(E) + 2nk(g - 1) + n(l - g)

2hk + d-h (where h n(g - 1)).

We have
(w2, mi) 1 <^ (d + 3h, d + h) 1 & (2h, d+h) l
¦& d + h is odd and (d, h) 1.

As d and n are co prime, d and h are co prime if and only if d and g — 1 are co

prime. If in addition we assume c? — 1 is odd then d + n(g — 1) is odd (d and n have
different parities). In this case, there exist integers a and b such that au\ + 5«2 1

and we can take
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Otherwise, there exists g' > g such that g' — 1 is odd and (d, g' — 1) 1. The

injection

SU(n)2fl —> SU(n)2fl'

(AuBu...,Ag,Bg) ^ (AuBu...,Ag,Bg,l,l,...,l,l)
restricts to an equivariant injection

where S' is the set of 2</-tuple of matrices

B

S' {(A1,B1,...,Ag,,Bg,),J{[Ak,Bk] Çl}.
fc=i

We have seen we can construct on S' a line bundle with the required properties.
We take L to be the restriction of this bundle to S. D

Let us use the universal bundle to define classes in H*(mß).

FIGURE 1. Bouquet of 2g circles (with g 4)

Let B be a bouquet of 2g circles (Figure 1) embedded in X' in such a way that
X' retracts on B. Each of the 2g circles defines a class in H\(X). Let a.\,..., aig
be their Pomcaré duals. They form a basis of Hl(X). Let k be the class of the
volume form on X of volume 1. Let us decompose the characteristic classes of the
projective bundle P{U). For k in [2,n]:

Pk(P(U)) ak®l

Then, according to Biswas and Raghavendra [4], we have



406 S. Racanière CMH

Theorem 3.4. The family

{ßfc, bkj, dk, 2 < k < n, 1 < j < 2g)

is a multiplicative system of generators of H*(xtiß) —

4. A bundle over (SU(n) ô)su(n) x X' and its Chern classes

Let B be a bouquet of 2g circles (Figure 1) embedded in X' in such a way that X'
retracts on B. The theory of vector bundles with their Chern classes is the same on
B and X'. We want to construct a complex vector bundle on (SU(n) s)su(n) x B.
Denote B' the star with 2g branches (see Figure 2), that is B' (U^JO, l]j)/ -,

FIGURE 2. A star with 2g branches (with again g 4)

where — is the equivalence relation that identifies all the 0 to a point. There is a

natural map
f]\B' —>B.

It is defined by means of the exponential exp : [0,1] —> S1. Denote

Dn (SU(n)2fl x EV(n) x B' x Cn)/ ~

where — is the relation:

((pi, • • •, yO2S), e, 0, w) - ((AdAPi, • • •, AdAyO2S), A-e,U,Ao pi(v)),

V«G [f,2g], \/Ae SU(n).

The projection
Dn -^ (SU(n)2s)su(n) x S

makes _Dn into a rank n complex vector bundle over (SU(n) s)su(n) x B. We
wish to compute the characteristic classes of the projectivised bundle P(Dn) of
Dn. Notice that as the structure group of Dn reduces to SU(n), the classes

Pk(P(D)) are equal to the Chern classes Ck(D).
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Let us describe the cohomology of (SU(n) s)su(n) x B. By the Künneth
formula, we have

F*((SU(n)2s)su(n) xB)= H*sv{n)(S\J(n)29) <g> H*(B).

Proposition 4.1. Let G be a compact Lie group. Let k be an integer bigger than
0. Let G act on Gk diagonally by conjugation. The equwariant cohomology of Gk

is isomorphic, as a graded algebra, to H*(Gk) <g> H*(BG).

Proof. The fibration (Gk)a —> BG is cohomologically trivial (see [3]) so that
we have an isomorphism of graded vector spaces between H^{Gk) and H*(Gk) <g>

H*(BG). The proposition then follows from the fact that for any compact Lie

group, its cohomology is an exterior algebra on a finite number of elements and
from the

Lemma 4.2. Let q : N —> M be a cohomologically trivial fibration with fiber F.
Assume that the cohomology of F is an exterior algebra on a family {£i,. £r}.
Thenthe cohomology of N is isomorphic, as a graded algebra, to the tensor product
ofH*{F) andH*(M).

Proof. Let 3 be the set of strictly increasing sequences of integers / («i,..., ip)
such that «i > 1 and iv < r. For Ie3 with / («i,..., ip), let

The family {C/}/ea forms a basis of H*(F).
To say that the fibration N —? M is cohomologically trivial is equivalent (by

the Leray-Hirsch Theorem) to saying that the inclusion of a fiber F into N induces
a surjection H*(N) —> H*(F). For « G [l,r], let Ci, in H*(N), be a pre-image of
&. For / G 3 with / (iu ip), let

The map

H*(F) —> H*(N)

is a morphism of algebra and the map

H* (F) <g) H* (M) —> H* (N)

is an isomorphism of graded algebra. D

D
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According to the previous proposition, we have isomorphisms

~ <g)f=1H*(SXJ(n))(g)H*(BSXJ(n)). (3.1)

For all k > 2, the fibration SU(fc) —> S2^1 with fiber SU(A; - 1) is cohomo-

logically trivial (see Hatcher [7]). Let ^k be the volume form of volume 1 on
S2k 1. The cohomology of SU(n) is the exterior algebra freely generated by the
family {ak, 2 < k < n}, where ak is a class of degree 2k — 1 which pulls-back
under the restriction SU(fc) —> SU(n) to the image of ~/k by H2k~1(S2k~1) —>
H2k-1(S\J(k)). Denote akJ the image of ak £ H2k-1(S\J(n)) by the homomor-

phism H*(S\J(n)) —> H*(S\J(n) 9) induced by the projection on the j-th factor
SU(n)2fl -> SU(n). We have

Lemma 4.3. The algebra i7*(SU(n) g) is the exterior algebra freely generated by

the family {<Jkj, 2 < k < n, 1 < j < 2g, deg akj 2k — 1}.

In addition, we know that H*(BS\J(n)) Q[c2,..., cn]. From the preceding
lemma and Proposition 4.1, we deduce

Theorem 4.4. Let A be the exterior algebra freely generated by the family {ffkj,
2 < k < n, 1 < j < 2g, deg akj 2k — 1}. The SU(n)-equwariant cohomology

of SU(n) 9 is isomorphic, as a graded algebra, to A <g> Q[c2, cn].

When there is no risk of confusion, we will write ck and akj instead of respectively

1 (g) ck and (Tfcj- (g) 1.

Remark 4.5. The injection 1 of SU(n) into SU(n + 1) and the map BSU(n) —>

BSU(n + 1) induce isomorphisms

Ffc(SU(n+l)) -^Ffc(SU(n)) for A; < 2n and A; 2n + 2 (4.1)

and

Hk(BSXJ(n + 1)) -^ Hk(BSXJ(n)) for A; < 2n. (4.2)

With the notations of Theorem 4.4, we have

Proposition 4.6. The Chern classes of Dn are:

co(Dn) 1,

ci(Dn) 0,

ck(Dn) (1 <g) cfc) <g) 1 + EjliK.j «> 1) «> «j /or A; > 2.

Proof. The classes co(Dn) and ci(_Dn) are trivially 1 and 0 (the structure group is

SU(n)). Assume from now on that k > 2. Let us write the Chern classes of Dn
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We will prove the proposition by induction on n. For n 1, SU(1) is just a point,
the bundle D\ is trivial and we are already done. Suppose the proposition to be

true for a given n, n > 1 and let us prove it for n + 1. We need to prove that

(n+l) -, j ^(n+1) »

7fc 1 <8> cfc and /ï^ <7fciJ- <g> 1.

Let
m : (SU(n)2s)su(n) -^ (SU(n + l)2s)su(n+i),

the map induced by the inclusion SU(n) —? SU(n + 1) and

£ m x idB : (SU(n)2s)su(n) xß^ (SU(n + l)2s)su(n+i) x B.

The bundle f_Dn+i is isomorphic to _Dn©C. Hence, for all k, we have C].{1*Dn+i)
ck(Dn). Thus

From this we deduce

* (n+l) (n) *n(n+l) _ R{n)m 7fc - 7fc and m /?fcJ - /?fcJ

Because of the isomorphisms (4.1), (4.2) and the induction hypothesis, we have:

Tk 1 (g) cfc for fc < n,
/3fc™+ (Tk,j <£> 1 îor k < n.

There only remains to compute 7^\ and the ß^-yy I¦ The class 7„"j^ belongs
to

p+g=2n+2

Let us decompose it

7i"++i1) E
fc=0

4"+1)where 4"+1) is in F2n+2-2fc(SU(n + l)2fl) and where we have put c0 1 in

F°(BSU(n)), ci 0. The classes ß^1] are in
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We decompose them in
n

fc=0

where ^™+1) belongs to F2n+1-2fc(SU(n + if9). The bundle £*Dn+1 Dn 0 C
has a nowhere vanishing section, hence its Euler class (*cn+i{Dn+i) vanishes.

Because of the isomorphisms (4.1) and (4.2), we deduce that the {£j™+ 1 <
k < n} and the (4™+1\ I < k < n, 1 < j < 2g} vanish. Remark that the

{."n+ij-i 1
— 3 — ^9} are lmear combinations of the <J2n+i,j, 1 < j < 2gr. Let us

define a section

s : BSU(n+ 1) -^ (SU(n + l)2s)SU(„+i) x B
[e] ^ ([(I,...,I),e],l)

where, for e in EU(n + 1), we denote by [e] its class in BSXJ(n + 1). The Euler
class of the bundle s* Dn+\ is eXn+i. Since s* Dn+\ is equal to EXJ(n + l)xsu(n+i)
Cn+1 we have e 1. As a conclusion we have

(n+l) _ 1 v7n+l — J- "»^-n+l-

Let
7 OTT/' i 1 \^Q /'OTT/' 1 1 N^O Nft: sU(n + l) —> (»U(n + 1) )su(n+i)

be the inclusion of a fiber (we will always write h this application, omitting the
subscript n). The bundle

is isomorphic to
Fl9+1 (SU(n + if9 x B' x C™+1)/ ~,

where ~ is the relation:

((pi,..., p2fl), lj,«) - ((pi,... ,p2fl), O,^1^)), for all j in [1, 2g].

The Euler class of F^9+1 is

Let /j : S1 -> B (resp. ^ : SU(n + 1) -? SU(n + l)2fl) be the inclusion of the j-th
circle (resp. SU(n+ 1)) in B (resp. SU(n + if9). The /îi+Vj are characterised
by:

((idi)29 x /J)*JF2(;+1)) /3^+S (8. /;«,-,

or

(n+i)s9 x /J)*JF2(;+1)) /?£Ö (8. ^. (4.3)
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Let us define a vector bundle E over SU(n+ 1) x S1 by

E (SU(n + 1) x [0,1] x C)/ -,
where — is the relation

The bundle (idSU(-n+1-)2g x fjYF^g is isomorphic to (gj x idsi)*E. Hence there
exists a real A such that

_,,
dé»

Cn+1{E) Acr2n+1 ® —.

If (p,t,w) belongs to SU(n+ 1) x [0,1] x Cn+1, let us write [p,t,v] for its class

in E. Let (ei,..., en+i) be the canonical basis, over the field C, of Cn+1. The

family (ei, ie\,..., en+i, «en+i) is then a basis of Cn+1 over R. A section of E is

given by:
s : SU(n+l) x S1 —> E

(A, e2i«e) ^ [A, 0, {6A + (1 - ö)id)ei].

Let us determine its zeros. The vector (6A + (1 — 0)id)ei vanishes if 6 \ and

[—101—
~j A e U(n), detA -1. Fix £ an n-th root of -1. The zero set Z

0 AJ

Lemma 4.7. T/ie section s intersects the zero section sq transversally.

Proof. We want to prove that for all x of Z

Ts{x)Ims + Ts{x)Ims0 T{xfi)E.

We have

T{xfl)E ~ Tx(SU(n + 1) x S11) 0 Cn+1 ~ su(n + 1) 0 R 0 Cn+1

and
Ts{x)lms0 su(n + 1) 0 R 0 {0},

Let x be the point (A ~

[A è + e, ((è + e)^ + (^ - e)id)ei]

[A è + e, -2eei]

(0,1,-2ei).
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Let J be in su(n +1),

£|e=o[exp(eJ)A, \, ±(exp(eJ)(-ei)

We conclude the proof of Lemma 4.7 by noticing that, for any k, it is possible to
find J in su(n + 1) such that Je\ is equal to e^ or «e^. D

Lemma 4.8. The Euler class of the bundle E is

,„, dé»

Cn+li-C/J ö"2n+l <8> 7—¦

Proof. According to the preceding lemma, the Euler class of E is Poincaré dual of
Z, that is it is characterised by

VveHn2-1(S\J(n+l)xS1), v= I vhcn+1(E)
JZ JSU(n+l)xS!

where n2 — 1 dim(SU(n + 1) x S1) — 2(n + 1). This Euler class is of the type

Cn+1(E) Acr2n+1 <8> 7^—

where A is a real we are going to compute. The injection

SU(n) —? SU(n + l)

identifies SU(n) to the fibre above — 1,0,... ,0) of the projection SU(n + 1) —>

S'2n+1, that is Z. Let 7 be the cohomology class of a volume form of volume 1 over
SU(n). The decomposition ff*(SU(re+ 1)) ff*(SU(n)) <g) H*(S2n+1) defines a

class

z/ 7 <8> 1-

As the integral of v on Z is 1, we have

z/Acn+i(£) 1,

SU(n+l)xS!

that is

A/ (7®l)A(o-2n+i<8)—) 1.

The conclusion follows since the integral in the left-hand side of the equality is
equal to 1. D

Proposition 4.6 follows from this lemma. D
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5. Description of the restriction map

Using results of the previous sections, we wish to prove:

Theorem 5.1. The restriction map r is described by

r(ck) ak for k 2,...,n
r(°"fc,j) bkj for k 2, n, j 1,. 2g.

In particular, Im(r) is multiplicatwely generated by

Im(r) (ak,bkiJ,k 2,. ,n,j 1,. ,2g).

Notice that for n equals 2, we get that r is surjective modulo the symplectic
form on tng (this result has been in [18]).

It is also very interesting to compare this theorem with [11, Theo. 7.1] where a

group cohomological construction of multiplicative generators of H*{vt\ß) is given.

Proof. The key point of the proof is to compare the bundles U of Section 3 and
Dn of Section 4.

From now on, if g G SU(n), we denote g its class in PSU(n). Over each S xt/„
i 0,..., m, the bundle M <g> T <g> L* is trivial. In each of these sets, the action of
PSU(n) on M <g> T <g> L* is

PSU(n) x M ® (S x Ut x Cn) ® L* —> M <g) (S x Ut x C") <g) L*
m (g) (g, (p, x, u) (g) /) i—> m® (g- p, x, g(u)) ®{g-l).

Lemma 5.2. We have

V{U) P(M <g) (T <g) L*)/PSU(n)) ^ P(T)/PSU(n).

Proof. This time, PSU(n) acts on P(T) by

PSU(n) x(Sx[f;x CPn) —*(Sxl/,x CPn)
(g,(p,x,u)) i—>¦ (g-p,x,g(u))

and the announced isomorphism is

P(t/) ^ P(T)/PSU(n)
class of m (g (p, x, m) (g / i—s- class of (p, x, m).

D

Lemma 5.3. ÏTiere existe an action of n x PSU(n) on S xY' x CP™^1 such that
the quotient

(S xY' x CPn"1)/(7T x PSU(n))

is isomorphic to
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Proof. The bundle T restricted to S x X' is trivial on each S x U-ll i ^ 0 and
transition functions are given by

(S x Ui) D(Sx Uj) —> SU(n)
(P,x) '—> P(iij)-

The group tt acts freely on Y' and T|sxx' is (S x Y' x Cn)/-K, where the action
of 7T is

n x (S x Y' x C") —> S x Y' x Cn
(7, (p, y, u)) 1—> (p, 7 • y, ,9(7)«).

Let us consider the projective bundle P(T)\sxxr- It is isomorphic to (S x Y' x
CPn 1)/?r. The subspace P(T)\Sxx' is stable by PSU(n) and the action cornes
from an action of PSU(n) onSxY'x CP™"1. That is

PSU(n) x (S* x F' x OP""1) —> S x Y' x CP""1
(g,(p,y,u)) '—*¦ (g-p,y,g(u))-

This action commutes indeed with the one of tt, the result follows. D

The pull-back of the bundle U -^ (5/PSU(n)) x X' to (5)su(n) x X' by the
natural map

/ : (S)suw x X' -^ (SyPSU(n)) x X'
is a vector bundle, we will denote it F. Its projectivised bundle is

P(F) (P(T))SU(n) — (S)sU(n) X X'.
We will now state a proposition which will be our main tool in the study of the

map r:

Proposition 5.4. There is a projective bundle P(-D) over (SU(n) s)su(n) x X'
whose restriction to (S')su(n) x X' «s isomorphic to V(F).

First proof. The projection p : Y' —> X' is a covering. Its group is^jr. Let
q : Y"' —> Y' be the universal covering of y. The composed mapp po</ : Y"' —> X'
is the universal covering of X'. Its group is

tti(X') (ai,6i,.. .,ag,bg)

and we have a projection tti(X') —> tt whose kernel is the group of the covering

y -^ y.
The open covering of X' by the {Ui}™=1 is such that any intersection of open

sets of the type C/j is contractible. In particular, for all {, there exists a disc _D4 in
Y' such that ^J : L>i —> C/j is a diffeomorphism. Choose, for all {, j, k, a connected

component WjJjfc of p 1(C/j n Uj) D Dk. If Ut n C/j 7^ 0, let 7^ be the element of

tti(X') such that ~hjWt0J WJtil. In Proposition 2.2, we can take the W^ and

7jj such that
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Let us identify the set of representations p : -ni(X') —> SU(n) to SU(n) 9 by

p i-> (p(ai), p{bi), p(ag), p{bg)).

Let
T' -? SU(n)2s x X'

be the rank n complex vector bundle defined by the following properties:
T'lsu(n)29x(7, is trivial,

(2) the transition functions are

9i,j p{ïi,j) on SU(n)2s x(C/,n[/3).

The restriction of this bundle to S x X' is T\Sxx'- The action of SU(n) on T\Sxx'
is then the restriction of the SU(n) action on T' defined on each T'lsu(n)29x(7» ^y

SU(n) x (SU(n)2fl x£/,x C") —> SU(n)2fl xl/.xC"
(fir, (p,x,w)) i—> (g-p,x,g(u)).

Notice that this action is a lift of the action of SU(n) on SU(n) 9 x X'. Thus the
bundle

P(F) (P(T))su(n) - (^)su(n) x X'
is the restriction of the bundle

(P(T/))su(n) -+ (SU(n)2s)su(„) x X'.

Second proof. We have seen that

P(^)|m^xX' (S X y' X CP™-1)/^ X PSU(n)),

hence

V{F) (S x ÊU(n) x y' x CPn"1)/(7r x SU(n)).

Let us defîne, in a similar way as before, an action of tti(X') on SU(n) 9 x i?U(n) x

y x Cn and denote _D the bundle we obtain when quotienting by tti(X') x SU(n).
The projection S x EU(n) xFxC^Sx EU(n) xfxC" is equivariant for
the respective actions of tti(X') and tt. It induces an action on the quotient and
defines an isomorphism between

(S x ÊU(n) x Y^ x Cn)/(7T1(X/) x SU(n))

and

(5 x £U(n) x y' x Cn)/(7T x SU(n)).

We deduce that P(F) is isomorphic to P(_D)|(s)su(ri)XX/. D

Remark 5.5. The bundle D -? (SU(n)2s)su(n) x X' is isomorphic to (V x
ÊU(n))/SU(n).
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When restricted to (SU(n) s)su(n) x B, the bundle D is isomorphic to Dn
(restricted to (m 1(CI))su(n) x B). Denote w the injection of (S')su(n) x X1 in

(SU(n) s)su(n) x X'. The induced map w* in cohomology is r x iàH*^X')- The
restriction w*Dn oîDn to (S')su(n) xi' has the same projectivisation as F. Thus,
because of Proposition 4.6, we have for every k

pk(P(F)) ak®l + Y,K®ai (51)

ç, 1 _|_ \ / o -i *i ^ / r f)\

Theorem 5.1 follows from the comparison of Line (5.1) and Line (5.2). D
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