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Abstract We show that for certain classes of actions of Zd d ¸ 2 by automorphisms of the

torus any measurable conjugacy has to be a±ne hence measurable conjugacy implies algebraic
conjugacy; similarly any measurable factor is algebraic and algebraic and a±ne centralizers

provide invariants of measurable conjugacy Using the algebraic machinery of dual modules and
information about class numbers of algebraic number ¯elds we construct various examples of Zd-
actions by Bernoulli automorphisms whose measurable orbit structure is rigid including actions

which are weakly isomorphic but not isomorphic We show that the structure of the centralizer
for these actions may or may not serve as a distinguishing measure-theoretic invariant
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1 Introduction

Description of results

In the course of the last decade various rigidity properties have been found for
two di®erent classes of actions by higher-rank abelian groups: on the one hand
certain Anosov and partially hyperbolic actions of Zd and Rd; d ¸ 2 on compact
manifolds [9 10 12] and on the other actions of Zd; d ¸ 2 by automorphisms

of compact abelian groups cf e g [8 16] Among these rigidity phenomena is a

relative scarcity of invariant measures which stands in contrast with the classical
case d 1 [11]

In this paper we make the ¯rst step in investigating a di®erent albeit related
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to the Center for Dynamical Systems at Penn State University for hospitality and support while
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phenomenon: rigidity of the measurable orbit structure with respect to the natural
smooth invariant measure

In the classical case of actions by Z or R there are certain natural classes of
measure-preserving transformations which possess such rigidity: ergodic transla-

tions on compact abelian groups give a rather trivial example while horocycle
°ows and other homogeneous unipotent systems present a much more interest-
ing one [20 21 22] In contrast to such situations individual elements of the

higher-rank actions mentioned above are Bernoulli automorphisms The measur-
able orbit structure of a Bernoulli map can be viewed as very \soft" Recall that
the only metric invariant of Bernoulli automorphisms is entropy [19] ; in par-
ticular weak isomorphism is equivalent to isomorphism for Bernoulli maps since

it implies equality of entropies Furthermore description of centralizers factors

joinings and other invariant objects associated with a Bernoulli map is impossible
in reasonable terms since each of these objects is huge and does not possess any
discernible structure

In this paper we demonstrate that some very natural actions of Zd; d ¸ 2 by
Bernoulli automorphisms display a remarkable rigidity of their measurable orbit
structure In particular isomorphisms between such actions centralizers and
factor maps are very restricted and a lot of algebraic information is encoded in
the measurable structure of such actions see Section 5

All these properties occur for broad subclasses of both main classes of actions

of higher-rank abelian groups mentioned above: Anosov and partially hyperbolic
actions on compact manifolds and actions by automorphisms of compact abelian
groups However at present we are unable to present su±ciently de¯nitive general
results due to various di±culties of both conceptual and technical nature Trying

to present the most general available results would lead to cumbersome notations

and inelegant formulations To avoid that we chose to restrict our present analysis
to a smaller class which in fact represents the intersection of the two namely
the actions of Zd; d ¸ 2 by automorphisms of the torus Thus we study the

measurable structure of such actions with respect to Lebesgue Haar measure

from the point of view of ergodic theory
Our main purpose is to demonstrate several striking phenomena by means

of applying to speci¯c examples general rigidity results which are presented in
Section 5 and are based on rigidity of invariant measures developed in [11] see

[7] for further results along these lines including rigidity of joinings Hence we

do not strive for the greatest possible generality even within the class of actions

by automorphisms of a torus The basic algebraic setup for irreducible actions

by automorphisms of a torus is presented in Section 3 Then we adapt further
necessary algebraic preliminaries to the special but in a sense most representative

case of Cartan actions i e to Zn¡1-actions by hyperbolic automorphisms of the

n-dimensional torus see Section 4
The role of entropy for a smooth action of a higher-rank abelian group G on a

¯nite-dimensional manifold is played by the entropy function on G whose values
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are entropies of individual elements of the action see Section 2 2 for more details
which is naturally invariant of isomorphism and also of weak isomorphism and is
equivariant with respect to a time change

In Section 6 we produce several kinds of speci¯c examples of actions by er-
godic and hence Bernoulli automorphisms of tori with the same entropy func-
tion These examples provide concrete instances when general criteria developed
in Section 5 can be applied Our examples include:

i actions which are not weakly isomorphic Section 6 1
ii actions which are weakly isomorphic but not isomorphic such that one

action is a maximal action by Bernoulli automorphisms and the other is
not Section 6 2

iii weakly isomorphic but nonisomorphic maximal actions Section 6 3
Once rigidity of conjugacies is established examples of type i appear in a

rather simple-minded fashion: one simply constructs actions with the same entropy
data which are not isomorphic over Q This is not surprising since entropy contains

only partial information about eigenvalues Thus one can produce actions with
di®erent eigenvalue structure but identical entropy data

Examples of weakly isomorphic but nonisomorphic actions are more sophisti-
cated We ¯nd them among Cartan actions see Section 4 The centralizer of
a Cartan action in the group of automorphisms of the torus is isomorphic to a

¯nite extension of the acting group and in some cases Cartan actions isomorphic
over Q may be distinguished by looking at the index of the group in its centralizer
type ii ; see Examples 2a and 2b The underlying cause for this phenomenon

is the existence of algebraic number ¯elds K Q ¸ where ¸ is a unit such that
the ring of integers OK 6 Z[¸] In general ¯nding even simplest possible exam-
ples for n 3 involves the use of data from algebraic number theory and rather
involved calculations For examples of type ii one may use some special tricks

which allow to ¯nd some of these and to show nonisomorphism without a serious

use of symbolic manipulations on a computer
A Cartan action ® of Zn¡1 on Tn is called maximal if its centralizer in the

group of automorphisms of the torus is equal to ® £ f§Idg A maximal Cartan
action turns out to be maximal in the above sense: it cannot be extended to any
action of a bigger abelian group by Bernoulli automorphisms

Examples of maximal Cartan actions isomorphic over Q but not isomorphic
type iii are the most remarkable Conjugacy over Q guarantees that the ac-

tions by automorphisms of the torus Tn arising from their centralizers are weakly
isomorphic with ¯nite ¯bres The mechanism providing obstructions for algebraic
isomorphism in this case involves the connection between the class number of an
algebraic number ¯eld and GL n; Z -conjugacy classes of matrices in SL n; Z
which have the same characteristic polynomial see Example 3 In ¯nding these

examples the use of computational number-theoretic algorithms which in our case

were implemented via the Pari-GP package has been essential
One of our central conclusions is that for a broad class of actions of Zd; d ¸2 see condition R in Section 2 2 the conjugacy class of the centralizer of
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the action in the group of a±ne automorphisms of the torus is an invariant of
measurable conjugacy Let Zmeas ® be the centralizer of the action ® in the group
of measurable automorphisms As it turns out in all our examples but Example
3b the conjugacy class of the pair Zmeas ® ; ® is a distinguishing invariant of
the measurable isomorphism Thus in particular Example 3b shows that there

are weakly isomorphic but nonisomorphic actions for which the a±ne and hence

the measurable centralizers are isomorphic as abstract groups

We would like to acknowledge a contribution of J -P Thouvenot to the early
development of ideas which led to this paper He made an important observation
that rigidity of invariant measures can be used to prove rigidity of isomorphisms

via a joining construction see Section 5 1

2 Preliminaries

2 1 Basic ergodic theory

Any invertible over Q integral n £ n matrix A 2 M n; Z \GL n; Q determines

an endomorphism of the torus Tn Rn Zn which we denote by FA Conversely
any endomorphism of Tn is given by a matrix from A 2 M n; Z \GL n; Q If
in addition detA §1 i e if A is invertible over Z then FA is an automorphism
of Tn the group of all such A is denoted by GL n; Z The map FA preserves

Lebesgue Haar measure ¹; it is ergodic with respect to ¹ if and only if there are

no roots of unity among the eigenvalues of A as was ¯rst pointed out by Halmos

[6] Furthermore in this case there are eigenvalues of absolute value greater
than one and FA; ¸ is an exact endomorphism If FA is an automorphism it
is in fact Bernoulli [14] For simplicity we will call such a map FA an ergodic
toral endomorphism respectively automorphism if A is invertible If all eigen-
values of A have absolute values di®erent from one we will call the endomorphism
automorphism FA hyperbolic

When it does not lead to a confusion we will not distinguish between a matrix
A and corresponding toral endomorphism FA

Let ¸1; : : : ; ¸n be the eigenvalues of the matrix A listed with their multiplici-
ties The entropy h¹ FA of FA with respect to Lebesgue measure is equal to

Xfi:j¸ij>1g

log j¸ij:

In particular entropy is determined by the conjugacy class of the matrix A over
Q or over C Hence all ergodic toral automorphisms which are conjugate over Q
are measurably conjugate with respect to Lebesgue measure

Classi¯cation up to a conjugacy over Z of matrices in SL n;Z which are

irreducible and conjugate over Q is closely related to the notion of class number of
an algebraic number ¯eld A detailed discussion relevant to our purposes appears

in Section 4 2 Here we only mention the simplest case n 2 which is not directly
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related to rigidity In this case trace determines conjugacy class over Q and in
particular entropy However if the class number of the corresponding number ¯eld
is greater than one there are matrices with the given trace which are not conjugate

over Z This algebraic distinctiveness is not re°ected in the measurable structure:
in fact in the case of equal entropies the classical Adler{Weiss construction of the

Markov partition in [1] yields metric isomorphisms which are more concrete and
speci¯c than in the general Ornstein isomorphism theory and yet not algebraic

2 2 Higher rank actions

Let ® be an action by commuting toral automorphisms given by integral matrices

A1; : : : ; Ad It de¯nes an embedding ½® : Zd GL n; Z by

½n
® An1

1 : : : And
d ;

where n n1; : : : ; nd 2 Zd and we have

®n F½n® :

Similarly we write ½® : Zd
+ M n;Z \GL n; Q for an action by endomorphisms

Conversely any embedding ½ : Zd GL n; Z respectively ½ : Zd
+ M n; Z \GL n; Q de¯nes an action by automorphisms respectively endomorphisms of

Tn denoted by ®½

Sometimes we will not explicitly distinguish between an action and the cor-
responding embedding e g we may talk about \the centralizer of an action in
GL n; Z " etc

De¯nitions Let ® and ®0 be two actions of Zd Zd
+ by automorphisms endo-

morphisms of Tn and Tn0 respectively The actions ® and ®0 are measurably
or metrically or measure-theoretically isomorphic or conjugate if there exists a

Lebesgue measure-preserving bijection ' : Tn Tn0 such that ' ± ® ®0
± 'The actions ® and ®0 are measurably isomorphic up to a time change if there

exist a measure-preserving bijection ' : Tn Tn0 and a C 2 GL d; Z such that' ± ® ± C ®0
± 'The action ®0 is a measurable factor of ® if there exists a Lebesgue measure-

preserving transformation ' : Tn Tn0 such that ' ± ® ®0
±' If in particular

' is almost everywhere ¯nite-to-one then ®0 is called a ¯nite factor or a factor
with ¯nite ¯bres of ®

Actions ® and ®0 are weakly measurably isomorphic if each is a measurable
factor of the other

A joining between ® and ®0 is a measure ¹ on Tn £ Tn0 Tn+n0 invariant
under the Cartesian product action ® £ ®0 such that its projections into Tn and
Tn0 are Lebesgue measures As will be explained in Section 5 conjugacies and
factors produce special kinds of joinings
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These measure-theoretic notions have natural algebraic counterparts

De¯nitions The actions ® and ®0 are algebraically isomorphic or conjugate
if n n0 and if there exists a group automorphism ' : Tn Tn such that' ± ® ®0

± 'The actions ® and ®0 are algebraically isomorphic up to a time change if there

exists an automorphism ' : Tn Tn and C 2 GL d;Z such that '±®±C ®0
±'The action ®0 is an algebraic factor of ® if there exists a surjective homomor-

phism ' : Tn Tn0 such that ' ± ® ®0
± 'The actions ® and ®0 are weakly algebraically isomorphic if each is an algebraic

factor of the other In this case n n0 and each factor map has ¯nite ¯bres

Finally we call a map ' : Tn Tn0 a±ne if there is a surjective continuous

group homomorphism Ã : Tn Tn0 and x0 2 Tn0 s t ' x Ã x + x0 for every
x 2 Tn

As already mentioned we intend to show that under certain condition for d ¸ 2
measure theoretic properties imply their algebraic counterparts

We will say that an algebraic factor ®0 of ® is a rank-one factor if ®0 is an
algebraic factor of ® and ®0 Zd

+ contains a cyclic sub-semigroup of ¯nite index
The most general situation when certain rigidity phenomena appear is the

following :

R0 : The action ® does not possess nontrivial rank-one algebraic factors

In the case of actions by automorphisms the condition R0 is equivalent to the

following condition R cf [27] :

R : The action ® contains a group isomorphic to Z2 which consists of ergodic
automorphisms

By Proposition 6 6 in [25] Condition R is equivalent to saying that the re-
striction of ® to a subgroup isomorphic to Z2 is mixing

A Lyapunov exponent for an action ® of Zd is a function Â : Zd R which
associates to each n 2 Zd the logarithm of the absolute value of the eigenvalue

for ½n
® corresponding to a ¯xed eigenvector Any Lyapunov exponent is a linear

function; hence it extends uniquely to Rd The multiplicity of an exponent is
de¯ned as the sum of multiplicities of eigenvalues corresponding to this exponent
Let Âi; i 1; : : : ; k be the di®erent Lyapunov exponents and let mi be the

multiplicity of Âi Then the entropy formula for a single toral endomorphism
implies that

h® n h¹ ½n
® Xfi:Âi n >0g

miÂi n :

The function h® : Zd R is called the entropy function of the action ® It
naturally extends to a symmetric convex piecewise linear function of Rd Any
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cone in Rd where all Lyapunov exponents have constant sign is called a Weyl
chamber The entropy function is linear in any Weyl chamber

The entropy function is a prime invariant of measurable isomorphism; since

entropy does not increase for factors the entropy function is also invariant of a
weak measurable isomorphism Furthermore it changes equivariantly with respect
to automorphisms of Zd

Remark it is interesting to point out that the convex piecewise linear structure

of the entropy function persists in much greater generality namely for smooth
actions on di®erentiable manifolds with a Borel invariant measure with compact
support

2 3 Finite algebraic factors and invariant lattices

Every algebraic action has many algebraic factors with ¯nite ¯bres These factors

are in one-to-one correspondence with lattices ¡ ½ Rn which contain the standard
lattice ¡0 Zn and which satisfy ½® ¡ ½ ¡ The factor-action associated with
a particular lattice ¡ ¾ ¡0 is denoted by ®¡ Let us point out that in the case of
actions by automorphisms such factors are also invertible: if ¡ ¾ ¡0 and ½® ¡ ½¡ then ½® ¡ ¡

Let ¡ ¾ ¡0 be a lattice Take any basis in ¡ and let S 2 GL n; Q be the

matrix which maps the standard basis in ¡0 to this basis Then obviously the

factor-action ®¡ is equal to the action ®S½®S¡1 In particular ½® and ½®¡ are

conjugate over Q although not necessarily over Z Notice that conjugacy over Q
is equivalent to conjugacy over R or over C

For any positive integer q the lattice 1
q¡0 is invariant under any automorphism

in GL n;Z and gives rise to a factor which is conjugate to the initial action: one

can set S 1
q Id and obtains that ½® ½® 1

q ¡0
On the other hand one can ¯nd

for any lattice ¡ ¾ ¡0 a positive integer q such that 1
q¡0 ¾ ¡ take q the least

common multiple of denominators of coordinates for a basis of ¡ Thus ® 1
q¡0

appears as a factor of ®¡ Summarizing we have the following properties of ¯nite

factors

Proposition 2 1 Let ® and ®0 be Zd-actions by automorphism of the torus Tn

The following are equivalent
1 ½® and ½®0 are conjugate over Q;
2 there exists an action ®00 such that both ® and ®0 are isomorphic to ¯nite

algebraic factors of ®00;
3 ® and ®0 are weakly algebraically isomorphic i e each of them is isomor-

phic to a ¯nite algebraic factor of the other

Obviously weak algebraic isomorphism implies weak measurable isomorphism
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For Z-actions by Bernoulli automorphisms weak isomorphism implies isomor-
phism since it preserves entropy the only isomorphism invariant for Bernoulli
maps In Section 5 we will show that for actions by toral automorphisms sat-
isfying Condition R measurable isomorphism implies algebraic isomorphism
Hence existence of such actions which are conjugate over Q but not over Z pro-
vides examples of actions by Bernoulli maps which are weakly isomorphic but not
isomorphic

2 4 Dual modules

For any action ® of Zd by automorphisms of a compact abelian group X we denote
by ®̂ the dual action on the discrete group X̂

of characters of X For an element
Â 2 X̂ we denote

X̂®;Â the subgroup of X̂
generated by the orbit ®̂Â

De¯nition The action ® is called cyclic if X̂®;Â X̂ for some Â 2 X̂
Cyclicity is obviously an invariant of algebraic conjugacy of actions up to a

time change

More generally the dual group X̂ has the structure of a module over the ring

Z[u§1
1 ; : : : ; u§1

d ] of Laurent polynomials in d commuting variables Action by the

generators of ®̂ corresponds to multiplications by independent variables This
module is called the dual module of the action ® cf [24 25] Cyclicity of the action
corresponds to the condition that this module has a single generator The structure

of the dual module up to isomorphism is an invariant of algebraic conjugacy of the

action up to a time change

In the case of the torus X Tn which concerns us in this paper one can
slightly modify the construction of the dual module to make it more geometric A
Zd-action ® by automorphisms of the torus Rn Zn naturally extends to an action
on Rn this extension coincides with the embedding ½® if matrices are identi¯ed
with linear transformations This action preserves the lattice Zn and furnishes

Zn with the structure of a module over the ring Z[u§1
1 ; : : : ; u§1

d
] This module

is | in an obvious sense | a transpose of the dual module de¯ned above In
particular the condition of cyclicity of the action does not depend on which of
these two de¯nitions of dual module one adopts

2 5 Algebraic and a±ne centralizers

Let ® be an action of Zd by toral automorphisms and let ½® Zd f½n
® : n 2 Zd

g
The centralizer of ® in the group of automorphisms of Tn is denoted by Z ® and
is not distinguished from the centralizer of ½® Zd in GL n; Z

Similarly the centralizer of ® in the semigroup of all endomorphisms of Tn
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identi¯ed with the centralizer of ½® Zd in the semigroup M n; Z \GL n; Q is
denoted by C ®

The centralizer of ® in the group of a±ne automorphisms of Tn will be denoted
by ZA® ®

The centralizer of ® in the semigroup of surjective a±ne maps of Tn will be

denoted by CA® ®

3 Irreducible actions

3 1 De¯nition

The action ® on Tn is called irreducible if any nontrivial algebraic factor of ® has

¯nite ¯bres

The following characterization of irreducible actions is useful cf [2]

Proposition 3 1 The following conditions are equivalent:
1 ® is irreducible;
2 ½® contains a matrix with characteristic polynomial irreducible over Q;
3 ½® does not have a nontrivial invariant rational subspace or equivalently

any ®-invariant closed subgroup of Tn is ¯nite

Corollary 3 2 Any irreducible free action ® of Zd
+; d ¸ 2 satis¯es condition

R0

Proof A rank one algebraic factor has to have ¯bres of positive dimension Hence

the pre-image of the origin under the factor map is a union of ¯nitely many rational
tori of positive dimension and by Proposition 3 1 ® cannot be irreducible

3 2 Uniqueness of cyclic actions

Cyclicity uniquely determines an irreducible action up to algebraic conjugacy
within a class of weakly algebraically conjugate actions

Proposition 3 3 If ® is an irreducible cyclic action of Zd; d ¸ 1 on Tn and ®0

is another cyclic action such that ½® and ½®0 are conjugate over Q then ® and ®0

are algebraically isomorphic

For the proof of Proposition 3 3 we need an elementary lemma

Lemma 3 4 Let ½ : Zd GL n;Z be an irreducible embedding The centralizer
of ½ in GL n; Q acts transitively on Zn

n f0g
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Proof By diagonalizing ½ over C and taking the real form of it one immediately
sees that the centralizer of ½ in GL n; R acts transitively on vectors with nonzero
projections on all eigenspaces and thus has a single open and dense orbit Since the

centralizer over R is the closure of the centralizer over Q the Q-linear span of the

orbit of any integer or rational vector under the centralizer is an invariant rational
subspace Hence any integer point other than the origin belongs to the single open
dense orbit of the centralizer of ½ in GL n; R This implies the statement of the

lemma

Proof of Proposition 3 3 Choose C 2 M n; Z such that C½®0 C¡1 ½® Let
k; l 2 Zn be cyclic vectors for ½®jZn and ½®0 jZn respectively

Now consider the integer vector C l and ¯nd D 2 GL n; Q commuting with
½® such that DC l k We have DC½®0 C¡1D¡1 ½® The conjugacy DC
maps bijectively the Z-span of the ½®0 -orbit of l to Z-span of the ½®-orbit of k By
cyclicity both spans coincide with Zn and hence DC 2 GL n; Z

3 3 Centralizers of integer matrices and algebraic number ¯elds

There is an intimate connection between irreducible actions on Tn and groups of
units in number ¯elds of degree n Since this connection in the particular case

where the action is Cartan and hence the number ¯eld is totally real plays a
central role in the construction of our principal examples type ii and iii of the

Introduction we will describe it here in detail even though most of this material
is fairly routine from the point of view of algebraic number theory

Let A 2 GL n;Z be a matrix with an irreducible characteristic polynomial f
and hence distinct eigenvalues The centralizer of A in M n; Q can be identi¯ed
with the ring of all polynomials in A with rational coe±cients modulo the principal
ideal generated by the polynomial f A and hence with the ¯eld K Q ¸ where

¸ is an eigenvalue of A by the map

° : p A 7 p ¸ 1

with p 2 Q[x] Notice that if B p A is an integer matrix then ° B is an
algebraic integer and if B 2 GL n; Z then ° B is an algebraic unit converse is
not necessarily true

Lemma 3 5 The map ° in 1 is injective

Proof If ° p A 1 for p A 6 Id then p A has 1 as an eigenvalue and hence

has a rational subspace consisting of all invariant vectors This subspace must be

invariant under A which contradicts its irreducibility

Denote by OK the ring of integers in K by UK the group of units in OK by
C A the centralizer of A in M n; Z and by Z A the centralizer of A in the group



728 A Katok S Katok and K Schmidt CMH

GL n; Z

Lemma 3 6 ° C A is a ring in K such that Z[¸] ½ ° C A ½ OK and

° Z A UK \ ° C A

Proof ° C A is a ring because C A is a ring As we pointed out above images

of integer matrices are algebraic integers and images of matrices with determinant
§1 are algebraic units Hence ° C A ½ OK Finally for every polynomial p
with integer coe±cients p A is an integer matrix hence Z[¸] ½ ° C A

Notice that Z ¸ is a ¯nite index subring of OK ; hence ° C A has the same

property

Remark The groups of units in two di®erent rings say O1 ½ O2 may coincide

Examples can be found in the table of totally real cubic ¯elds in [4]

Proposition 3 7 Z A is isomorphic to Zr1+r2¡1
£ F where r1 is the number

the real embeddings r2 is the number of pairs of complex conjugate embeddings of
the ¯eld K into C and F is a ¯nite cyclic group

Proof By Lemma 3 6 Z A is isomorphic to the group of units in the order
° C A the statement follows from the Dirichlet Unit Theorem [3] Ch 2 x4 3

Now consider an irreducible action ® of Zd on Tn Denote ½® Zd by ¡ and let ¸
be an eigenvalue of a matrix A 2 ¡ with an irreducible characteristic polynomial
The centralizers of ¡ in M n;Z and GL n;Z coincide with C A and Z A
correspondingly The ¯eld K Q ¸ has degree n and we can consider the map
° as above By Lemma 3 6 ° ¡ ½ UK

For the purposes of purely algebraic considerations in this and the next section
it is convenient to consider actions of integer n £ n matrices on Qn rather than
on Rn and correspondingly to think of ® as an action by automorphisms of the

rational torus Tn
Q Qn Zn

Let v v1; : : : ; vn be an eigenvector of A with eigenvalue ¸ whose coordinates

belong to K Consider the \projection" ¼ : Qn K de¯ned by ¼ r1; : : : rn

P
n
i 1 rivi It is a bijection [29] Prop 8 which conjugates the action of the

group ¡ with the action on K given by multiplication by corresponding eigenvalues

Q
d
i 1 ¸kii ; k1; : : : ; kd 2 Z Here A1; : : : ; Ad 2 ¡ are the images of the generators of

the action ® and Aiv ¸iv; i 1; : : : ; d The lattice ¼Zn
½ K is a module over

the ring Z[¸1; : : : ; ¸d]
Conversely any such data consisting of an algebraic number ¯eld K Q ¸

of degree n a d-tuple ¹̧ ¸1; : : : ; ¸d of multiplicatively independent units in
K and a lattice L ½ K which is a module over Z[¸1; : : : ;¸d] determine an Zd-
action ®¹̧;L

by automorphisms of Tn up to algebraic conjugacy corresponding to
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a choice of a basis in the lattice L This action is generated by multiplications by

¸1; : : : ;¸d which preserve L by assumption The action ®¹̧;L
diagonalizes over

C as follows Let Á1 id; Á2; : : : ; Án be di®erent embeddings of K into C The

multiplications by ¸i; i 1; : : : ; d are simultaneously conjugate over C to the

respective matrices

Ã
¸i 0 ::: 0
0 Á2 ¸i ::: 0
::: ::: ::: :::
0 0 ::: Án ¸i

; i 1; : : : ; d:

We will assume that the action is irreducible which in many interesting cases

can be easily checked
Thus all actions ®¹̧;L

with ¯xed ¹̧ are weakly algebraically isomorphic since

the corresponding embeddings are conjugate over Q Proposition 2 1 Actions

produced with di®erent sets of units in the same ¯eld say ¹̧ and ¹¹ ¹1; : : : ;¹d
are weakly algebraically isomorphic if and only if there is an automorphism g of K
such that ¹i g¸i; i 1; : : : ; d By Proposition 3 3 there is a unique cyclic action
up to algebraic isomorphism within any class of weakly algebraically isomorphic

actions: it corresponds to setting L Z[¸1; : : : ; ¸d]; we will denote this action by
®min

¹̧
Cyclicity of the action ®min

¹̧
is obvious since the whole lattice is obtained

from its single element 1 by the action of the ring Z[¸§1
1 ; : : : ;¸§1

d ]
Let us summarize this discussion

Proposition 3 8 Any irreducible action ® of Zd by automorphisms of Tn is
algebraically conjugate to an action of the form ®¹̧;L It is weakly algebraically
conjugate to the cyclic action ®min

¹̧
The ¯eld K Q[¸1; : : : ;¸d] has degree n and

the vector of units ¹̧ ¸1; : : : ; ¸d is de¯ned up to an automorphism of K

Apart from the cyclic model ®min
¹̧ there is another canonical choice of the

lattice L namely the ring of integers OK We will denote the action ®¹̧;OK
by

®max
¹̧

More generally one can choose as the lattice L any subring O such that
Z[¸1; : : : ; ¸d] ½ O ½ OK

Proposition 3 9 Assume that O Z[¸1; : : : ;¸d] Then the action ®¹̧;O is not
algebraically isomorphic up to a time change to ®min

¹̧ In particular if OK 6
Z[¸1; : : : ; ¸d] then the actions ®max

¹̧
and ®min

¹̧
are not algebraically isomorphic up

to a time change

Proof Let us denote the centralizers in M n; Z of the actions ®¹̧;O
and ®min

¹̧by C1 and C2 respectively The centralizer C1 contains multiplications by all
elements of O For if one takes any basis in O the multiplication by an element
¹ 2 O takes elements of the basis into elements of O which are linear combinations

with integral coe±cients of the basis elements; hence the multiplication is given
by an integer matrix On the other hand any element of each centralizer is a
multiplication by an integer in K Lemma 3 6
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Now assume that the multiplication by ¹ 2 OK belongs to C2 This means that
this multiplication preserves Z[¸1; : : : ; ¸d]; in particular ¹ ¹ ¢

1 2 Z[¸1; : : : ; ¸d]
Thus C2 consists of multiplication by elements of Z[¸1; : : : ;¸d] An algebraic
isomorphism up to a time change has to preserve both the module of polynomials
with integer coe±cients in the generators of the action and the centralizer of the

action in M n; Z which is impossible

The central question which appears in connection with our examples is the

classi¯cation of weakly algebraically isomorphic Cartan actions up to algebraic
isomorphism

Proposition 3 9 is useful in distinguishing weakly algebraically isomorphic ac-
tions when OK 6 Z[¸1; : : : ;¸d] Cyclicity also can serve as a distinguishing invari-
ant

Corollary 3 10 The action ®¹̧;O
is cyclic if and only if O Z[¸1; : : : ; ¸d]

Proof The action ®min
¹̧

corresponding to the ring Z[¸1; : : : ;¸d] is cyclic by def-
inition since the ring coincides with the orbit of 1 By Proposition 3 3 if ®¹̧;O
were cyclic it would be algebraically conjugate to ®min

¹̧
which by Proposition 3 9

implies that O Z[¸1; : : : ; ¸d]

The property common to all actions of the ®¹̧;O
is transitivity of the action

of the centralizer C ®¹̧;O
on the lattice Similarly to cyclicity this property is

obviously an invariant of algebraic conjugacy up to a time change

Proposition 3 11 Any irreducible action ® of Zd by automorphisms of Tn whose

centralizer C ® in M n; Z acts transitively on Zn is algebraically isomorphic to
an action ®¹̧;O

where O ½ OK is a ring which contains Z[¸1; : : : ; ¸d]

Proof By Proposition 3 8 any irreducible action ® of Zd by automorphisms of
Tn is algebraically conjugate to an action of the form ®¹̧;L

for a lattice L ½ K
Let C be the centralizer of ®¹̧;L in the semigroup of linear endomorphisms of L
We ¯x an element ¯ 2 L with C¯ L and consider conjugation of the action
®¹̧;L

by multiplication by ¯¡1; this is simply ®¹̧;¯¡1L
The centralizer of ®¹̧;¯¡1Lacts on the element 1 2 ¯¡1

L transitively By Lemma 3 6 the centralizer consists

of all multiplications by elements of a certain subring O ½ OK which contains

Z[¸1; : : : ; ¸d] Thus 1 2 ¯¡1
L O

3 4 Structure of algebraic and a±ne centralizers for irreducible actions

By Lemma 3 6 the centralizer C ® as an additive group is isomorphic to Zn

and has an additional ring structure In the terminology of Proposition 3 7 the
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centralizer Z ® for an irreducible action ® by toral automorphisms is isomorphic
to Zr1+r2¡1

£ F
An irreducible action ® has maximal rank if d r1 + r2 ¡ 1 In this case Z ®

is a ¯nite extension of ®
Notice that any a±ne map commuting with an action ® by toral automorphisms

preserves the set Fix ® of ¯xed points of the action This set is always a subgroup
of the torus and hence for an irreducible action always ¯nite The translation by
any element of Fix ® commutes with ® and thus belongs to ZA® ® Furthermore

the a±ne centralizers ZA® ® and CA® ® are generated by these translations and
respectively Z ® and C ®

Remark Most of the material of this section extends to general irreducible ac-
tions of Zd by automorphisms of compact connected abelian groups; a group pos-
sessing such an action must be a torus or a solenoid [25 26] In the solenoid
case which includes natural extensions of Zd-actions by toral endomorphisms the

algebraic numbers ¸1; : : : ;¸d which appear in the constructions are not in general
integers As we mentioned in the introduction we restrict our algebraic setting
here since we are able to exhibit some of the most interesting and striking new
phenomena using Cartan actions and certain actions directly derived from them
However other interesting examples appear for actions on the torus connected
with not totally real algebraic number ¯elds actions on solenoids and actions on
zero-dimensional abelian groups cf e g [16 24 25 26]

One can also extend the setup of this section to certain classes of reducible
actions Since some of these satisfy condition R basic rigidity results still hold
and a number of further interesting examples can be constructed

4 Cartan actions

4 1 Structure of Cartan actions

Of particular interest for our study are abelian groups of ergodic automorphisms

of Tn of maximal possible rank n¡ 1 in agreement with the real rank of the Lie
group SL n; R

De¯nition An action of Zn¡1 on Tn for n ¸ 3 by ergodic automorphisms is
called a Cartan action

Proposition 4 1 Let ® be a Cartan action on Tn

1 Any element of ½® other than identity has real eigenvalues and is hyperbolic
and thus Bernoulli

2 ® is irreducible
3 The centralizer of Z ® is a ¯nite extension of ½® Zn¡1
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Proof First let us point out that it is su±cient to prove the proposition for
irreducible actions For if ® is not irreducible it has a nontrivial irreducible
algebraic factor of dimension say m · n ¡ 1 Since every factor of an ergodic
automorphism is ergodic we thus obtain an action of Zn¡1 in Tm by ergodic
automorphisms By considering a restriction of this action to a subgroup of rank
m¡ 1 which contains an irreducible matrix we obtain a Cartan action on Tm By
Statement 3 for irreducible actions the centralizer of this Cartan action is a ¯nite

extension of Zm¡1 and thus cannot contain Zn¡1 a contradiction
Now assuming that ® is irreducible take a matrix A 2 ½® Zn¡1 with irre-

ducible characteristic polynomial f Such a matrix exists by Proposition 3 1 It
has distinct eigenvalues say ¸ ¸1; : : : ;¸n Consider the correspondence ° de-
¯ned in 1 By Lemma 3 6 for every B 2 ½® Zn¡1 we have ° B 2 UK hence the

group of units UK in K contains a subgroup isomorphic to Zn¡1 By the Dirichlet
Unit Theorem the rank of the group of units in K is equal to r1 + r2 ¡ 1 where

r1 is the number of real embeddings and r2 is the number of pairs of complex
conjugate embeddings of K into C Since r1 + 2r2 n we deduce that r2 0 so

the ¯eld K is totally real that is all eigenvalues of A and hence of any matrix in
½® Zn¡1 are real The same argument gives Statement 3 since any element of
the centralizer of ½® Zn¡1 in GL n; Z corresponds to a unit in K Hyperbolicity
of matrices in ½® Zn¡1 is proved in the same way as Lemma 3 5

Lemma 4 2 Let A be a hyperbolic matrix in SL n; Z with irreducible character-
istic polynomial and distinct real eigenvalues Then every element of the centralizer
Z A other than f§1g is hyperbolic

Proof Assume that B 2 Z A is not hyperbolic As B is simultaneously diag-
onalizable with A and has real eigenvalues it has an eigenvalue +1 or ¡1 The

corresponding eigenspace is rational and A-invariant Since A is irreducible this
eigenspace has to coincide with the whole space and hence B §1

Corollary 4 3 Cartan actions are exactly the maximal rank irreducible actions

corresponding to totally real number ¯elds

Corollary 4 4 The centralizer Z ® for a Cartan action ® is isomorphic to
Zn¡1

£ f§1g

We will call a Cartan action ® maximal if ® is an index two subgroup in Z ®
Let us point out that ZA® ® is isomorphic Z ® £ Fix ® Thus the factor

of ZA® ® by the subgroup of ¯nite order elements is always isomorphic to Zn¡1

If ® is maximal this factor is identi¯ed with ® itself In the next Section we will
show Corollary 5 4 that for a Cartan action ® on Tn; n ¸ 3 the isomorphism
type of the pair ZA® ® ; ® is an invariant of the measurable isomorphism Thus

in particular for a maximal Cartan action the order of the group Fix ® is a
measurable invariant
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Remark An important geometric distinction between Cartan actions and gen-
eral irreducible actions by hyperbolic automorphisms is the absence of multiple
Lyapunov exponents This greatly simpli¯es proofs of various rigidity properties

both in the di®erentiable and measurable context

4 2 Algebraically nonisomorphic maximal Cartan actions

In Section 3 3 we described a particular class of irreducible actions ®¹̧;O
which is

characterized by the transitivity of the action of the centralizer C ®¹̧;O
on the

lattice Proposition 3 11 In the case OK Z[¸] there is only one such action
namely the cyclic one Corollary 3 10 Now we will analyze this special case for
totally real ¯elds in detail and show how information about the class number of
the ¯eld helps to construct algebraically nonisomorphic maximal Cartan actions

This will in particular provide examples of Cartan actions not isomorphic up to a

time change to any action of the form ®¹̧;OIt is well-known that for n 2 there are natural bijections between conjugacy
classes of hyperbolic elements in SL 2; Z of a given trace ideal classes in the

corresponding real quadratic ¯eld and congruence classes of primitive integral in-
de¯nite quadratic forms of the corresponding discriminant This has been used by
Sarnak [23] in his proof of the Prime Geodesic Theorem for surfaces of constant
negative curvature see also [13] It follows from an old Theorem of Latimer and
MacDu®ee see [17] [28] and a more modern account in [29] that the ¯rst bijec-
tion persists for n > 2 Let A a hyperbolic matrix A 2 SL n; Z with irreducible
characteristic polynomial f and distinct real eigenvalues K Q ¸ where ¸ is
an eigenvalue of A and OK Z[¸] To each matrix A0 with the same eigenvalues

we assign the eigenvector v v1; : : : ; vn with eigenvalue ¸: A0v ¸v with all
its entries in OK which can be always done and to this eigenvector an ideal in
OK with the Z-basis v1; : : : ; vn The described map is a bijection between the

GL n; Z -conjugacy classes of matrices in SL n;Z which have the same charac-
teristic polynomial f and the set of ideal classes in OK Moreover it allows us to
reach conclusions about centralizers as well

Theorem 4 5 Let A 2 SL n;Z be a hyperbolic matrix with irreducible char-
acteristic polynomial f and distinct real eigenvalues K Q ¸ where ¸ is an
eigenvalue of A and OK Z[¸] Suppose the number of eigenvalues among

¸1; : : : ;¸n that belong to K is equal to r If the class number h K > r then there
exists a matrix A0 2 SL n;Z having the same eigenvalues as A whose centralizer
Z A0 is not conjugate in GL n; Z to Z A Furthermore the number of matri-
ces in SL n;Z having the same eigenvalues as A with pairwise nonconjugate in
GL n; Z centralizers is at least [h K

r ] + 1 where [x] is the largest integer < x

Proof Suppose the matrix A corresponds to the ideal class I1 with the Z-basis
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v 1 Then
Av 1 ¸v 1 :

Since h K > 1 there exists a matrix A2 having the same eigenvalues which
corresponds to a di®erent ideal class I2 with the basis v 2 and we have

A2v 2 ¸v 2 :

The eigenvectors v 1 and v 2 are chosen with all their entries in OK Now assume

that Z A2 is conjugate to Z A Then Z A2 contains a matrix B2 conjugate to
A Since B2 commutes with A2 we have B2v 2 ¹2v 2 and since B2 is conjugate
to A ¹2 is one of the roots of f Moreover since B2 2 SL n; Z and all entries of
v 2 are in K ¹2 2 K Thus ¹2 is one of r roots of f which belongs to K

From B2 S¡1AS S 2 GL n; Z we deduce that ¹2 Sv 2 A Sv 2

Since I1 and I2 belong to di®erent ideal classes Sv 2
6 kv 1 for any k in the

quotient ¯eld of OK and since ¸ is a simple eigenvalue for A we deduce that
¹2 6 ¸ and thus ¹2 can take one of the r¡ 1 remaining values

Now assume that A3 corresponds to the third ideal class i e

A3v 3 ¸v 3 ;

and B3 commutes with A3 and is conjugate to A and hence to B2 Then
B3v 3 ¹3v 3 where ¹3 is a root of f belonging to the ¯eld K By the pre-
vious considerations ¹3 6 ¸ and ¹3 6 ¹2 An induction argument shows that
if the class number of K is greater than r there exists a matrix A0 such that
no matrix in Z A0 is conjugate to A i e Z A0 and Z A are not conjugate in
GL n; Z

Since A0 has the same characteristic polynomial as A continuing the same

process we can ¯nd not more than r matrices representing di®erent ideal classes

having centralizers conjugate to Z A0 and the required estimate follows

5 Measure-theoretic rigidity of conjugacies centralizers and fac-
tors

5 1 Conjugacies

Suppose ® and ®0 are measurable actions of the same group G by measure-
preserving transformations of the spaces X;¹ and Y; º respectively If H :
X;¹ Y; º is a metric isomorphism conjugacy between the actions then the

lift of the measure ¹ onto the graph H ½ X £ Y coincides with the lift of º to
graph H¡1 The resulting measure ´ is a very special case of a joining of ® and ®0:
it is invariant under the diagonal product action ® £ ®0 and its projections to
X and Y coincide with ¹ and º respectively Obviously the projections establish
metric isomorphism of the action ® £ ®0 on X £ Y; ´ with ® on X;¹ and ®0 on
Y; º correspondingly
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Similarly if an automorphism H : X;¹ X;¹ commutes with the action
® the lift of ¹ to graph H ½ X £ X is a self-joining of ® i e it is ® £ ®-invariant
and both of its projections coincide with ¹ Thus an information about invariant
measures of the products of di®erent actions as well as the product of an action
with itself may give an information about isomorphisms and centralizers

The use of this joining construction in order to deduce rigidity of isomorphisms

and centralizers from properties of invariant measures of the product was ¯rst
suggested in this context to the authors by J -P Thouvenot

In both cases the ergodic properties of the joining would be known because of
the isomorphism with the original actions Very similar considerations apply to
the actions of semi-groups by noninvertible measure-preserving transformations

We will use the following corollary of the results of [11]

Theorem 5 1 Let ® be an action of Z2 by ergodic toral automorphisms and let
¹ be a weakly mixing ®-invariant measure such that for some m 2 Z2 ®m is a K-
automorphism Then ¹ is a translate of Haar measure on an ®-invariant rational
subtorus

Proof We refer to Corollary 5 2' from [11] \Corrections " According to this
corollary the measure ¹ is an extension of a zero entropy measure for an algebraic
factor of smaller dimension with Haar conditional measures in the ¯ber But since

® contains a K-automorphism it does not have non-trivial zero entropy factors

Hence the factor in question is the action on a single point and ¹ itself is a Haar
measure on a rational subtorus

Conclusion of Theorem 5 1 obviously holds for any action of Zd; d ¸ 2 which
contains a subgroup Z2 satisfying assumptions of Theorem 5 1 Thus we can
deduce the following result which is central for our constructions

Theorem 5 2 Let ® and ®0 be two actions of Zd by automorphisms of Tn and Tn0

correspondingly and assume that ® satis¯es condition R Suppose that H : Tn

Tn0 is a measure-preserving isomorphism between ®;¸ and ®0;¸ where ¸ is
Haar measure Then n n0 and H coincides mod 0 with an a±ne automorphism
on the torus Tn and hence ® and ®0 are algebraically isomorphic

Proof First of all condition R is invariant under metric isomorphism hence

®0 also satis¯es this condition But ergodicity with respect to Haar measure can
also be expressed in terms of the eigenvalues; hence ® £ ®0 also satis¯es R
Now consider the joining measure ´ on graphH ½ Tn+n0 The conditions of
Theorem 5 1 are satis¯ed for the invariant measure ´ of the action ® £ ®0 Thus ´
is a translate of Haar measure on a rational ®£®0-invariant subtorus T0

½ Tn+n0

Tn £ Tn0 On the other hand we know that projections of T0 to both Tn and Tn0

preserve Haar measure and are one-to-one The partitions of T0 into pre-images of
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points for each of the projections are measurable partitions and Haar measures on
elements are conditional measures This implies that both projections are onto
both partitions are partitions into points and hence n n0 and T0 graph I
where I : Tn Tn is an a±ne automorphism which has to coincide mod 0 with
the measure-preserving isomorphism H

Since a time change is in a sense a trivial modi¯cation of an action we are pri-
marily interested in distinguishing actions up to a time change The corresponding
rigidity criterion follows immediately from Theorem 5 2

Corollary 5 3 Let ® and ®0 be two actions of Zd by automorphisms of Tn and

Tn0 respectively and assume that ® satis¯es condition R If ® and ®0 are
measurably isomorphic up to a time change then they are algebraically isomorphic
up to a time change

5 2 Centralizers

Applying Theorem 5 2 to the case ® ®0 we immediately obtain rigidity of the

centralizers

Corollary 5 4 Let ® be an action of Zd by automorphisms of Tn satisfying con-
dition R Any invertible Lebesgue measure-preserving transformation commuting

with ® coincides mod 0 with an a±ne automorphism of Tn

Any a±ne transformation commuting with ® preserves the ¯nite set of ¯xed
points of the action Hence the centralizer of ® in a±ne automorphisms has a

¯nite index subgroups which consist of automorphisms and which corresponds to
the centralizer of ½® Zd in GL n;Z

Thus in contrast with the case of a single automorphism the centralizer of
such an action ® is not more than countable and can be identi¯ed with a ¯nite

extension of a certain subgroup of GL n; Z As an immediate consequence we

obtain the following result

Proposition 5 5 For any d and k 2 · d · k there exists a Zd-action by hy-
perbolic toral automorphisms such that its centralizer in the group of Lebesgue

measure-preserving transformations is isomorphic to f§1g £ Zk

Proof Consider a hyperbolic matrix A 2 SL k + 1; Z with irreducible character-
istic polynomial and real eigenvalues such that the origin is the only ¯xed point
of FA Consider a subgroup of Z A isomorphic to Zd and containing A as one of
its generators This subgroup determines an embedding ½ : Zd SL k + 1; Z
Since d ¸ 2 and by Proposition 4 2 all matrices in ½ Zd are hyperbolic and hence

ergodic condition R is satis¯ed Hence by Corollary 5 4 the measure-theoretic
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centralizer of the action ®½ coincides with its algebraic centralizer which in turn
and obviously coincides with centralizer of the single automorphism FA isomorphic
to f§1g £ Zk

5 3 Factors noninvertible centralizers and weak isomorphism

A small modi¯cation of the proof of Theorem 5 2 produces a result about rigidity
of factors

Theorem 5 6 Let ® and ®0 be two actions of Zd by automorphisms of Tn and Tn0

respectively and assume that ® satis¯es condition R Suppose that H : Tn Tn0

is a Lebesgue measure-preserving transformation such that H ± ® ®0
± H Then

®0 also satis¯es R and H coincides mod 0 with an epimorphism h : Tn Tn0

followed by translation In particular ®0 is an algebraic factor of ®

Proof Since ®0 is a measurable factor of ® every element which is ergodic for ® is
also ergodic for ®0 Hence ®0 also satis¯es condition R As before consider the

product action ® £ ®0 which now by the same argument also satis¯es R Take

the ®£®0 invariant measure ´ Id£H ¤¸ on graph H This measure provides a

joining of ® and ®0 Since ®£®0; Id£H ¤¸ is isomorphic to ®;¸ the conditions

of Corollary 5 1 are satis¯ed and ´ is a translate of Haar measure on an invariant
rational subtorus T0 Since T0 projects to the ¯rst coordinate one-to-one we deduce

that H is an algebraic epimorphism mod 0 followed by a translation

Similarly to the previous section the application of Theorem 5 6 to the case

® ®0 gives a description of the centralizer of ® in the group of all measure-
preserving transformations

Corollary 5 7 Let ® be an action of Zd by automorphisms of Tn satisfying

condition R Any Lebesgue measure-preserving transformation commuting with
® coincides mod 0 with an a±ne map on Tn

Now we can obtain the following strengthening of Proposition 2 1 for actions

satisfying condition R which is one of the central conclusions of this paper

Theorem 5 8 Let ® be an action of Zd by automorphisms of Tn satisfying condi-
tion R and ®0 another Zd-action by toral automorphisms Then ®; ¸ is weakly
isomorphic to ®0; ¸0 if and only if ½® and ½®0 are isomorphic over Q i e if ®
and ®0 are ¯nite algebraic factors of each other

Proof By Theorem 5 6 ® and ®0 are algebraic factors of each other This implies

that ®0 acts on the torus of the same dimension n and hence both algebraic factor-
maps have ¯nite ¯bres Now the statement follows from Proposition 2 1
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5 4 Distinguishing weakly isomorphic actions

Similarly we can translate criteria for algebraic conjugacy of weakly algebraically
conjugate actions to the measurable setting

Theorem 5 9 If ® is an irreducible cyclic action of Zd; d ¸ 2 on Tn and ®0 is
a non-cyclic Zd-action by toral automorphisms Then ® and ®0 are not measurably
isomorphic up to a time change

Proof Since action ® satis¯es condition R Corollary 3 2 we can apply Theorem
5 8 and conclude that we only need to consider the case when ½® and ½®0 are

isomorphic over Q up to a time change But then by Proposition 3 3 ® and ®0

are not algebraically isomorphic up to a time change and hence by Corollary 5 3

they are not measurably isomorphic up to a time change

Combining Proposition 3 9 and Corollary 5 3 we immediately obtain rigidity
for the minimal irreducible models

Corollary 5 10 Assume that O Z[¸1; : : : ; ¸d] Then the action ®¹̧;O
is not

measurably isomorphic up to a time change to ®min
¹̧ In particular if OK

Z[¸1; : : : ; ¸d] then the actions ®max
¹̧

and ®min
¹̧

are not measurably isomorphic up
to a time change

6 Examples

Now we proceed to produce examples of actions for which the entropy data coin-
cide but which are not algebraically isomorphic and hence by Theorem 5 2 not
measure-theoretically isomorphic

6 1 Weakly nonisomorphic actions

In this section we consider actions which are not algebraically isomorphic over Q
or equivalently over R and hence by Theorem 5 8 are not even weakly isomor-

phic The easiest way is as follows

Example 1a Start with any action ® of Zd; d ¸ 2 by ergodic automorphisms

of Tn We may double the entropies of all its elements in two di®erent ways: by
considering the Cartesian square ®£® acting on T2n and by taking second powers

of all elements: ®n
2 ®2n for all n 2 Zd Obviously ® £ ® is not algebraically

isomorphic to ®2 since for example they act on tori of di®erent dimension Hence

by Theorem 5 2 ® £ ®;¸ is not metrically isomorphic to ®2; ¸ either
Now we assume that ® contains an automorphism FA where A is hyperbolic
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with an irreducible characteristic polynomial and distinct positive real eigenvalues

In this case it is easy to ¯nd an invariant distinguishing the two actions namely the

algebraic type of the centralizer of the action in the group of measure-preserving

transformations By Corollary 5 4 the centralizer of ® in the group of measure-
preserving transformations coincides with the centralizer in the group of a±ne

maps which is a ¯nite extension of the centralizer in the group of automorphisms

By the Dirichlet Unit Theorem the centralizer of Z ®2 in the group of automor-
phisms of the torus is isomorphic to f§1g£Zn¡1 whereas the centralizer of ®£®
contains the Z2 n¡1 -action by product transformations ®n1 £®n2 ; n1; n2 2 Zn¡1

In fact the centralizer of ® £ ® can be calculated explicitly:

Proposition 6 1 Let ¸ be an eigenvalue of A Then K Q ¸ is a totally real
algebraic ¯eld If its ring of integers OK is equal to Z[¸] then the centralizer of
® £ ® in GL 2n; Z is isomorphic to the group GL 2; OK i e the group of 2 £ 2
matrices with entries in OK whose determinant is a unit in OK

Proof First we notice that a matrix in block form B X Y
Z T with X; Y; Z; T 2

M n; Z commutes with A 0
0 A if an only if X; Y; Z; T commute with A and can

thus be identi¯ed with elements of OK In this case B can be identi¯ed with a
matrix in M 2; OK Since det X Y

Z T det XT ¡ Y Z §1 cf [5] the norm
of the determinant of the 2£2 matrix corresponding to B is equal §1 Hence this
determinant is a unit in OK and we obtain the desired isomorphism

It is not di±cult to modify Example 1a to obtain weakly nonisomorphic actions

with the same entropy on the torus of the same dimension

Example 1b For a natural number k de¯ne the action ®k similarly to ®2:
®n

k ®kn for all n 2 Zd

The actions ®3 £ ® and ®2 £ ®2 act on T2n have the same entropies for all
elements and are not isomorphic

As before we can see that centralizers of these two actions are not isomorphic
In particular the centralizer of ®3 £ ® is abelian since it has simple eigenvalues

while the centralizer of ®2 £ ®2 is not

6 2 Cartan actions distinguished by cyclicity or maximality

We give two examples which illustrate the method of Section 3 3 They provide

weakly algebraically isomorphic Cartan actions of Z2 on T3 which are not alge-
braically isomorphic even up to a time change i e a linear change of coordinates

in Z2 by Proposition 3 9 These examples utilize the existence of number ¯elds

K Q ¸ and units ¹̧ ¸1; ¸2 in them for which OK 6 Z[¸1;¸2] In each
example one action has a form ®min

¹̧
and the other ®max

¹̧
Hence by Corollary 5 10

they are not measurably isomorphic up to a time change
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In other words in each example one action namely ®min
¹̧

is a cyclic Cartan
action and the other is not

We will also show that in these examples the conjugacy type of the pair
Z ® ; ® distinguishes weakly isomorphic actions Let us point out that a non-

cyclic action for example ®max
¹̧

may be maximal for example when fundamental
units lie in a proper subring of OK However in our examples centralizers for the

cyclic actions will be di®erent and thus will serve as a distinguishing invariant
The information about cubic ¯elds is either taken from [4] or obtained with

the help of the computer package Pari-GP Some calculations were made by Arsen
Elkin during the REU program at Penn State in summer of 1999

We construct two Z2-actions ® generated by commuting matrices A and B
and ®0 generated by commuting matrices A0 and B0 in GL 3;Z These actions are

weakly algebraically isomorphic by Proposition 3 8 since they are produced with
the same set of units on two di®erent orders Z[¸] and OK but not algebraically
isomorphic by Proposition 3 9 In these examples the action ® is cyclic by Corollary
3 10 and will be shown to be a maximal Cartan action Thus Z ® ® £ f§Idg
The action ®0 is not maximal speci¯cally Z ®0 f§Idg is a nontrivial ¯nite ex-
tension of ®0

Example 2a Let K be a totally real cubic ¯eld given by the irreducible polyno-
mial f x x3+3x2¡6x+1 i e K Q ¸ where ¸ is one of its roots The discrim-
inant of K is equal to 81 hence its Galois group is cyclic and [OK : Z[¸]] 3 The

algebraic integers ¸1 ¸ and ¸2 2¡ 4¸¡ ¸2 are units with f ¸1 f ¸2 0

The minimal order in K containing ¸1 and ¸2 is Z[¸1;¸2] Z[¸] and the maximal
order is OK A basis in fundamental units is ² ¸2+5¸+1

3
and ²¡ 1 hence UK is

not contained in Z[¸]
With respect to the basis f1; ¸; ¸2

g in Z[¸] multiplications by ¸1 and ¸2 are

given by the matrices

A ³
0 1 0
0 0 1

¡1 6 ¡3´ ; B ³
2 ¡4 ¡1
1 ¡4 ¡1
1 ¡5 ¡1´ ;

respectively if acting from the right on row-vectors A direct calculation shows

that this action is maximal
With respect to the basis f¡ 2

3 + 5
3¸+ 1

3¸2;¡ 1
3 + 7

3¸+ 2
3¸2

g in OK multiplications

by ¸1 and ¸2 are given by the matrices

A0

³
1 2 ¡1

¡1 ¡2 2
2 5 ¡2´ ; B0

³
1 ¡1 ¡1

¡1 ¡2 ¡1

¡1 ¡4 ¡2´ :

We have A0 V AV ¡1 B0 V BV ¡1 for V ³
2 ¡2 ¡1
0 ¡3 0
1 ¡4 ¡2´ Since A is a companion

matrix of f ® hA; Bi has a cyclic element in Z3 If A0 also had a cyclic element
m m1;m2; m3 2 Z3 then the vectors

m m1;m2;m3 ; mA0 m1¡m2+2m3;2m1¡2m2+5m3;¡m1+2m2¡2m3

m A0 2 ¡3m1+5m2¡7m3;¡7m1+12m2¡16m3;5m1¡7m2+12m3 ;
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would have to generate Z3 or equivalently

det³
m1 m2 m3

m1¡m2+2m3 2m1¡2m2+5m3 ¡m1+2m2¡2m3

¡3m1+5m2¡7m3 ¡7m1+12m2¡16m3 5m1¡7m2+12m3 ´
3m3

1
+ 18m2

1
m3 ¡ 9m1m2

2¡ 9m1m2m3

+ 27m1m2
3
+ 3m3

2¡ 9m2m2
3
+ 3m3

3
1:

This contradiction shows that A0 has no cyclic vector and since B0 2¡4A0¡A0
2

the action ®0 is not cyclic In this example both actions ® and ®0 have a single ¯xed
point 0; 0; 0 hence their linear and a±ne centralizers coincide and by Corollary
5 3 ® and ®0 are not measurably isomorphic up to a time change

The action ®0 is not maximal because Z ®0 contains fundamental units

Example 2b Let us consider a totally real cubic ¯eld K given by the irreducible
polynomial f x x3 ¡ 7x2 + 11x ¡ 1 Thus K Q ¸ where ¸ is one of its

roots In this ¯eld the ring of integers OK has basis f1; ¸; 1
2¸2 + 1

2 g and hence

[OK : Z[¸]] 2 The fundamental units in OK are f 1
2¸2 ¡ 2¸ + 1

2 ;¸ ¡ 2g We

choose the units ¸ ¸1
1
2¸2 ¡ 2¸+ 1

2
2 and ¸2 ¸¡ 2 which are contained in

both orders OK and Z[¸]
In Z[¸] we consider the basis f1; ¸;¸2

g relative to which the multiplication by

¸1 is represented by the companion matrix A ³
0 1 0
0 0 1
1 ¡11 7´ and multiplication

by ¸2 is represented by the matrix B ³¡
2 1 0
0 ¡2 1
1 ¡11 5´

For OK with the basis f1;¸; 1
2¸2 + 1

2 g multiplications by ¸1 and ¸2 are repre-

sented by the matrices A0

³
0 1 0

¡1 0 2

¡3 ¡5 7´ and B0

³¡
2 1 0

¡1 ¡2 2

¡3 ¡5 5´
It can be seen directly that ® and ®0 are not algebraically conjugate up to a

time change since A0 is a square of a matrix from SL 3; Z : A0

³
0 ¡2 1

¡1 ¡5 3

¡2 ¡9 6´
2

while A is not a square of a matrix in GL 3;Z which is checked by reducing
modulo 2 In this case it is also easily seen that the action ®0 is not cyclic since

the corresponding determinant is divisible by 2 The action ® has 2 ¯xed points on
T3: 0; 0; 0 and 1

2 ; 1
2 ; 1

2
while the action ®0 has 4 ¯xed points: 0; 0; 0 1

2 ; 1
2 ; 1

2
1
2 ; 1

2 ; 0 and 0; 0; 1
2

Hence the a±ne centralizer of ® is Z ® £ Z 2Z and the

a±ne centralizer of ®0 is Z ®0 £ Z 2Z £ Z 2Z
By Lemma 4 2 the group of elements of ¯nite order in ZA® ® is Z 2Z£Z 2Z

and in ZA® ®0 it is Z 2Z£ Z 2Z £Z 2Z The indices of each action in its a±ne

centralizer are [ZA® ® : ®] 4 and [ZA® ®0 : ®0] 16
This gives two alternative arguments that the actions are not measurably iso-

morphic up to a time change
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6 3 Nonisomorphic maximal Cartan actions

We ¯nd examples of weakly algebraically isomorphic maximal Cartan actions

which are not algebraically isomorphic up to time change For such an action
® the structure of the pair Z ® ; ® is always the same: Z ® is isomorphic as

a group to ® £ f§Idg The algebraic tool which allows to distinguish the actions

is described in Section 4 2 In particular due to Theorem 4 5 we may conclude

existence of such actions from certain information about the class number and the

Galois group
Let A a hyperbolic matrix A 2 SL n; Z with irreducible characteristic poly-

nomial f and distinct real eigenvalues K Q ¸ where ¸ is an eigenvalue of A
Nontrivial time changes in a Cartan action which includes A exist only if another
root belongs to the ¯eld Q ¸ Proposition 3 8 For the image B of A under
such a time change must have the same characteristic polynomial as A and hence

° B 2 Q ¸ is the root in question For n 3 this situation correspond to the

Galois group of the ¯eld being cyclic

Example 3a An example for n 3 can be obtained from a totally real cubic
¯eld with class number 2 and the Galois group S3 The class number 2 guarantees

that the actions obtained from two di®erent ideal classes are not isomorphic and
the Galois group S3 guarantees that there are no nontrivial time changes

The smallest discriminant for such a ¯eld is 1957 [4] Table B4 and it can
be represented as K Q ¸ where ¸ is a unit in K with minimal polynomial
f x x3 ¡ 2x2 ¡ 8x ¡ 1 In this ¯eld the ring of integers OK Z[¸] and the

fundamental units are ¸1 ¸ and ¸2 ¸ + 2 Two actions are constructed
with this set of units fundamental hence multiplicatively independent on two
di®erent lattices OK with the basis f1; ¸; ¸2

g representing the principal ideal
class and L with the basis f2; 1+¸; 1+ ¸2

g representing to the second ideal class

Notice that the units ¸1 and ¸2 do not belong to L but L is a Z[¸]-module The

¯rst action ® is generated by the matrices A ³
0 1 0
0 0 1
1 8 2´ and B ³

2 1 0
0 2 1
1 8 4´ which

represent multiplication by ¸1 and ¸2 respectively on OK The second action ®0

is generated by matrices A0

³¡
1 2 0

¡1 1 1

¡5 9 2´ and B0

³
1 2 0

¡1 3 1

¡5 9 5´ which represent
multiplication by ¸1 and ¸2 respectively on L in the given basis By Proposition
3 8 these actions are weakly algebraically isomorphic By Theorem 4 5 they are

not algebraically isomorphic Since the Galois group is S3 there are no nontrivial
time changes which produce conjugacy over Q Therefore by Theorem 5 2 the

actions are not measurably isomorphic
It is interesting to point out that for actions ® and ®0 the a±ne centralizers

ZA® ® and ZA® ®0 are not isomorphic as abstract groups The action ® has 2

¯xed points on T3: 0; 0; 0 and 1
2 ; 1

2 ; 1
2

while the action ®0 has a single ¯xed point
0; 0; 0 Hence ZA® ® is isomorphic to Z ® £ Z 2Z ZA® ®0 is isomorphic to

Z ®0 As abstract groups ZA® ® ¼ Z2
£Z 2Z£Z 2Z and ZA® ®0

¼ Z2
£Z 2Z
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Hence by Corollary 5 4 the measurable centralizers of ® and ®0 are not conju-
gate in the group of measure-preserving transformation providing a distinguishing

invariant of measurable isomorphism
Example 3b This example is obtained from a totally real cubic ¯eld with class

number 3 Galois group S3 and discriminant 2597 It can be represented as

K Q ¸ where ¸ is a unit in K with minimal polynomial f x x3¡2x2¡8x+1

In this ¯eld the ring of integers OK Z[¸] and the fundamental units are ¸1 ¸
and ¸2 ¸ + 2 Three actions are constructed with this set of units on three

di®erent lattices OK with the basis f1; ¸; ¸2
g representing the principal ideal

class L with the basis f2; 1 + ¸; 1 + ¸2
g representing the second ideal class and

L
2 with the basis f4; 3 + ¸; 3 + ¸2

g representing the third ideal class

Multiplications by ¸1 and ¸2 generate the following three weakly algebraically
isomorphic actions which are not algebraically isomorphic by Theorem 4 5 even
up to a time change and therefore not measurably isomorphic:

A ³
0 1 0
0 0 1

¡1 8 2´ and B ³
2 1 0
0 2 1

¡1 8 4´ ;

A0

³¡
1 2 0

¡1 1 1

¡6 9 2´ and B0

³
1 2 0

¡1 3 1

¡6 9 4´ ;

A00

³ ¡3 4 0

¡3 3 1

¡10 11 2´ and B00

³ ¡1 4 0

¡3 5 1

¡10 11 4´ :

Each action has 2 ¯xed point in T3 0; 0; 0 and 1
2 ; 1

2 ; 1
2

Hence all a±ne

centralizers are isomorphic as abstract groups to Z2
£ Z 2Z £ Z 2Z

Example 3c Finally we give an example of two nonisomorphic maximal Cartan
actions which come from the vector of fundamental units ¹̧ ¸1; ¸2 in a totally
real cubic ¯eld K such that Z ¸1;¸2 6 OK Thus the whole group of units

does not generate the ring OK Both actions ®min
¹̧

and ®max
¹̧

of the group Z2 are

maximal Cartan actions by Lemma 3 6 However by Corollary 3 10 the former is
cyclic and the latter is not and hence they are not measurably isomorphic up to a

time change by Corollary 5 10

For a speci¯c example we pick the totally real cubic ¯eld K Q ® with class

number 1 discriminant 1304 given by the polynomial x3¡x2¡11x¡1 For this ¯eld
we have [OK : Z ® ] 2 Generators in OK can be taken to be f1; ®;¯ ®2+1

2 g
Fundamental units are ¸1 ¡®; ¸2 ¡5 + 14® + 10¯ 14® + 5®2

2 Z[®]
Thus the whole group of units lies in Z[¸] To construct the generators for two
non-isomorphic action ®min

¹̧
and ®max

¹̧
we write multiplications by ¸1 and ¸2 in

bases f1; ®; ®2
g and f1; ®; ¯g correspondingly The resulting matrices are:

A ³
0 ¡1 0
1 0 ¡1
1 11 1´ B ³

0 14 5
5 55 19

19 214 74´ ;

A0

³
0 ¡1 0
1 0 ¡2
0 ¡6 ¡1´ B ³ ¡5 14 10

¡14 55 38

¡30 114 79´ :

The ¯rst action has only one ¯xed point the origin; the second has four ¯xed
points 0; 0; 0 1

2 ; 1
2 ; 1

2
1
2 ; 1

2 ; 0 and 0; 0; 1
2 Thus we have an example of
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two maximal Cartan actions of Z2 which have nonisomorphic a±ne and hence

measurable centralizers
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