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Marked length rigidity for symmetric spaces

Fran»coise Dal'Bo and Inkang Kim1

Abstract We give conditions under which a homomorphism between two Zariski dense sub-
groups of connected semisimple Lie groups G and G0 without compact factors and with trivial
center can be extended to a continuous isomorphism between G and G0 In particular we prove

the marked length rigidity and the marked translation vector rigidity This last result was mo-
tivated by a Margulis's question

Mathematics Subject Classi¯cation 2000 22E40 22F30

Keywords Symmetric spaces length spectrum

Introduction

Let G; G0 be connected semisimple Lie groups without compact factors and with
trivial center The motivation of this paper is to give conditions under which a
homomorphism between two Zariski dense subgroups of G and G0 can be extended
to a continuous isomorphism between G and G0 Much study of lattices has been
done yet the study of general co-in¯nite volume groups is relatively less carried
out Fix a closed Weyl chamber A+ included in the Lie algebra of G The trans-
lation vector v g of g 2 G is by de¯nition the unique a 2 A+ such that ea is
conjugate to the hyperbolic part of the Jordan decomposition of g see section 1
The Euclidean norm of v g is denoted ` g and is called the length of g If X is a
symmetric space associated to G one has: ` g Inf

x2X
d x; g x In the particular

case where G P SL n; R and A+ is the set of diagonal matrices diag a1; ¢ ¢ ¢ ; an
with a1 ¸ ¢ ¢ ¢ ¸ an one has: v g diag Log j¸1j; ¢ ¢ ¢ Log j¸nj where ¸i is the

ith complex eigenvalue of g Let ¡ ½ G the limit cone L ¡ associated to ¡ is
by de¯nition the smallest closed cone in A

+ containing all v ° for ° 2 ¡ An
important result due to Y Benoist [1] says that the interior of L ¡ is not empty if
¡ is a Zariski dense group The originality of this paper is to explore this property
to obtain strong rigidity results in a short and elementary way

Let us give the main results

1Partially supported by the KOSEF interdisciplinary grant 1999-2-101-5
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Theorem A Let ¡ ½ G;¡0
½ G0 be Zariski dense subgroups If ' is a surjective

homomorphism between ¡ and ¡0 such that ` ° ` ' ° for any ° 2 ¡ then 'can be extended to a continuous isomorphism between G and G0

Following the way of A Parreau [15] we give applications of Theorem A to the

space of representations of an abstract group into G
Theorem A is already known for symmetric spaces of rank 1 [4] [11] and

their products [12] For simple Lie groups it is shown in [6] Along this line

Besson Courtois Gallot and HamenstÄadt [2] [9] showed that if M is a nega-
tively curved locally symmetric compact manifold and N is an arbitrary negatively
curved manifold which has the same marked length spectrum with M then they
are isometric Actually it is conjectured that two negatively curved compact man-
ifolds with the same marked length spectrum are isometric This conjecture is
proved in dimension 2 [14]

The following theorem gives a positive answer to a Margulis's question raised
during the rigidity conference at Paris in June 1998

Theorem B Suppose G G0 and rank G ¸ 2 Let ¡;¡0 be Zariski dense sub-
groups of G If ' is a surjective homomorphism between ¡ and ¡0 such that for all
° 2 ¡ there exists k ° 2 R¤ such that v ' ° k ° v ° then ' can be extended
to a continuous automorphism of G

We ¯rst study the simple case where G and G0 are simple Using a criterion
of conjugacy proved in [6] we give a family of conditions including conditions

of Theorems A and B under which a surjective homomorphism between Zariski
dense subgroups can be extended

1 Benoist's theorem for limit cone

An element g of a real reductive connected linear group can be uniquely written
g ehu where e si elliptic all the eigenvalues have modulus 1 u is unipotent u-
Id is nilpotent h is hyperbolic all the eigenvalues are real positive and all three

commute This decomposition is called the Jordan decomposition of g If G KAN
is any Iwasawa decomposition of a connected semisimple Lie group G then e is
conjugate to an element in K h is conjugate to an element in A and u is conjugate

to an element in N [1] [7] Fix a closed Weyl chamber A+ in the Lie algebra of G
there exists a unique a 2 A+ called the translation vector of g and denoted v g
such that h is conjugate to ea Geometrically if X is a symmetric space associated
to G then kv g k ` g where ` g Inf

x2X
d x; g x see [15] for an interpretation

of v g Let ¡ be a subgroup of G one de¯nes the limit cone of ¡ denoted L ¡
as the smallest closed cone in A+ containing v ¡ If G PSL 2 R £PSL 2 R and

A+ f r1M; r2M r1; r2 2 R+
g where M µ

1 0
0 ¡1 ¶ then L ¡ is the closure
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of f r` °1 M; r` °2 M r 2 R+; °1; °2 2 ¡g where ` °i 0 if °i is elliptic or
parabolic and ` °i > 0 is the displacement of °i if °i is hyperbolic The following

result due to Y Benoist plays a key role in this paper

Theorem 1 1 [1] If ¡ is a Zariski dense subgroup of G then L ¡ is convex and
has nonempty interior

In the particular case where ¡ is a Zariski dense subgroup of PSL 2 R £
PSL 2 R associated to the diagonal action of two isomorphic Fuchsian groups

¡1 '¡¡¡¡ ¡2 this theorem says that ` °1

` ' °1
;°1 2 ¡1 is an interval [a; b] ½

[0;1] with a
6

b This property was already remarked in the context of rank 1
semisimple groups by M Burger [4] see also [5]

2 Rigidity results for simple groups

In this section one supposes that G and G0 are connected noncompact simple
Lie groups with trivial center Let ' : ¡ ¡0 be a homomorphism between two
subgroups of G and G0 One de¯nes the graph group ¡' ½ G £ G0 by ¡'f °;' ° ° 2 ¡g The following result is proved in [6]

Criterion of conjugacy 2 1 [6] Let ' be a surjective homomorphism between
two Zariski dense subgroups ¡ ¡0 included in connected non compact simple Lie
groups G and G0 with trivial center The following properties are equivalent:

1 ' can be extended to a continuous isomorphism between G and G0

2 ¡' is not Zariski dense in G £ G0

This criterion is false if G a G0 are not simple Take for example G PSL 2 R
and G0 G £ G Denote A+ the closed Weyl chamber of G de¯ned by A+

frM r 2 R+
g where M µ

1 0
0 ¡1 ¶ Let ' : ¡1 ¡2 be an isomorphism between

non conjugate and non elementary Fuchsian groups The groups ¡1 and ¡1'are Zariski dense subgroups respectively of G and G0 Consider the isomorphism
ª : ¡1 ¡1' de¯ned by ª ° °;' ° The limit cone of the graph group
associated to ª is included in f rM; rM; sM r; s 2 R+

g ½ A+ £ A+ and hence

has empty interior According to Benoist's theorem section 1 ¡1ª is not Zariski
dense On the other hand ª cannot be extended

One deduces from the previous criterion the following corollary

Corollary 2 2 Let Ad be the adjoint representation If there exists an algebraic
relation satis¯ed by all Ad ° Ad ' ° with ° 2 ¡ then ' can be extended to
a continuous isomorphism between G and G0
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In the case where G PSL n; R G0 PSL n0; R and ' preserves the trace

Corollary 2 2 is proved in [16]
Remark that the condition ` ° ` ' ° for each ° 2 ¡ is not in general

an algebraic condition But in this case since kv ° k kv ' ° k for ° 2 ¡ the

limit cone of the graph group has empty interior Applying Benoist's theorem one

concludes that ¡' is not Zariski dense and hence that ' can be extended More

generally one has the following result

Corollary 2 3 If the interior of L ¡' is empty then ' can be extended to a
continuous isomorphism between G and G0

Let us give three di®erent conditions under which ¡' is not Zariski dense and
hence ' can be extended:

1 ` ° ` ' ° for any ° 2 ¡
2 v ° and v ' ° are colinear for any ° 2 ¡
3 The largest modulus of the complex eigenvalue or Ad ° equals the largest

one of Ad ' ° for any ° 2 ¡
Conditions 1 and 2 correspond to Theorems A and B when G and G0 are

simple Contrary to the conditions 1 and 2 if ' satis¯es condition 3 and G
and G0 are not simple ' cannot be necessarily extended For example ¯x two

isomorphic Schottky groups ½ : ¡ ¡0 in PSL 2 R Suppose that ` ° > ` ½ °
for each ° 2 ¡ see [5] for the construction of such groups Consider the iso-
morphism ' : ¡ ¡½ de¯ned by ' ° °; ½ ° The groups ¡;¡½ are Zariski
dense respectively in PSL 2 R and PSL 2 R £ PSL 2 R and the condition 3 is
satis¯ed but ' cannot be extended

3 Proofs of Theorems A and B

In this section G and G0 denote connected semisimple groups with trivial center
and without compact factor Such a group can be decomposed into a product of
connected noncompact simple groups with trivial center

Lemma 3 1 Let ¡ ¡0 be Zariski dense subgroups of G and G0 Suppose that 'is a surjective homomorphism between ¡ and ¡0 and set ¡' f °;' ° ° 2 ¡g
The projections of the identity component of the Zariski closure of ¡' into G and

G0 are surjective

Proof The Lie algebra G of G can be decomposed into a direct sum of simple
ideals G F1 + ¢ ¢ ¢ + Fn Moreover each ideal of G is a direct sum of certain Fi
[10] corollary II 6 3 Let Gi be the connected Lie subgroup in G associated to Fi

Since G has trivial center G G1 £ ¢ ¢ ¢£Gn Let H be the identity component of
the Zariski closure of ¡' Denote p the projection of H into G and Tp its tangent
map at identity The image F of the Lie algebra of H by T p is a non trivial
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subalgebra of G normalized by ¡ Since ¡ is Zariski dense F is an ideal and hence

F Fi1 + ¢ ¢ ¢ + Fik k · n This implies that p H Gi1 £ ¢ ¢ ¢ £ Gik Since the

index of H in the Zariski closure of ¡' is ¯nite and ¡ is Zariski dense p H is
also Zariski dense This proves that k n and thus that p is surjective Since 'is surjective the same argument holds for the projection of H into G0 ¤

Proof of Theorem A Denote H the identity component of the Zariski closure of
¡' and H its Lie algebra We want to prove that the projection p resp p0 of H
into G resp G0 is injective Let us ¯rst show that H is semisimple Consider its

solvable radical R ½ H The image of R by the tangent map T p of p at identity
is normalized by ¡ Since ¡ is Zariski dense in G T p R is a solvable ideal The

semi simplicity of G implies that T p R is trivial Since ' is surjective the same

argument holds for p0 This shows that R is trivial Fix a Cartan decomposition

H P
00 +T

00 of H since G£G0 is semisimple there exists a Cartan decomposition

P +T of the Lie algebra of G£G0 such that P
00

½ P and T
00

½ T [10] VI exercise

8 i Choose a Weyl chamber W ½ P 00 since P 00
½ P one has W ½ A £ A0

where A and A0 are Cartan subalgebras of the Lie algebra G; G
0 of G and G0 Let

us analyze Ker p This group is normalized by ¡0 because ' is surjective Since

¡0 is Zariski dense and the center of G0 is trivial either Ker p fIdg or Kerp
is a normal non trivial Lie subgroup of G0 In the last case denote I the Lie
algebra of the identity component of Kerp One has I I 01

+ ¢ ¢ ¢ + I0p
where I 0jare noncompact simple ideals of G

0 such that G I 01
+ ¢ ¢ ¢ + I0k

with k ¸ p [10]
corollary II 6 3 It follows that W contains an element a 0; 2 A £ A0 with
k k 6 0 Since ¡' \H is Zariski dense in H according to Benoist's theorem the

interior of its limit cone LW ¡' \ H relatively to W is not empty Moreover
LW ¡'\H is included in S f u; u0 2 A£A0

kuk ku0

kg because ' preserves

the translation length and LW ¡' \ H is included in the image of the limit
cone of ¡' \ H relatively to A+ £ A

0+ by the Weyl group Let b u; u0 an
element of the interior of LW ¡' \ H ½ W One can suppose kuk ku0

k 1
Since the interior of LW ¡' \ H in W is not empty the intersection of the

plane generated by a and b with LW ¡' \ H contains an open disc There is
a contradiction with the fact that the intersection of this plane with S is the

curve f®a + ¯b 2®¯ hu0; i+ ®2
k k

2 0g In conclusion p is injective The same

argument holds for p0 because ' is surjective Applying the lemma 3 1 one obtains

that p and p0 are bijective Consider now the projections q resp q0 of the Zariski
closure ¡Z' of ¡' into G resp G0 The maps q and q0 are surjective Let us prove

that they are injective Take g 2 Ker q for any h 2 H one has q ghg¡1h¡1 Id
Since H is normalized by ¡z' and p is injective gh hg Using the fact that p0

is surjective one obtains p0 g g0 g0p0 g for any g0 2 G0 Because the center of
G0 is trivial g Id The same argument also holds for p0 Consider the map

f p0
± p¡1 it is a continuous isomorphism between G and G0 whose restriction

to ¡ coincides with ' ¤
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Proof of Theorem B The proof is similar to the previous one Let us just adapt the

end of the proof of Theorem A when we suppose that Kerp is nontrivial Under
this assumption one obtains that W contains an element a 0; 2 A £ A with

6

0 Since v ° k ° v ' ° for each ° 2 ¡ the limit cone LA
+£A

+ ¡'\H is
included in T f u; u0 2 A

+ £A+ u and u0 are colinearg and hence LW ¡'\H
is included in [g2Weyl

gT where Weyl is the Weyl group of A £ A The interior of

LW ¡' \ H in W is not empty according to Benoist's theorem It follows that
for some g 2 Weyl the interior I of g T is not empty in W Let b u; u0 2 I
Since rank G ¸ 2 one can assume that u0 is not colinear to w The intersection
of the plane P generated by a and b with I contains an open disc There is a
contradiction with the fact that the intersection of T with g¡1 P is a line ¤

4 Applications of Theorem A to the space of representations

Fix a connected semisimple Lie group G without compact factor and with trivial
center and a symmetric space X associated to G A subgroup of G is said parabolic
if it ¯x a point of the geometric boundary @X of X

Proposition 4 1 Let ¡ be a nonparabolic subgroup of G and H the identity
component of its identity component If H 6 G then H ¯x a totally geodesic
submanifold Y $ X

Proof We thank P Eberlein for helpful arguments

The group H is reductive or parabolic [3] corollaire 3 3 The last case cannot
happens because H is normalized by ¡ which does not ¯x any point in @X Let
H ST be the Levi decomposition of H where S is a connected semisimple group
and T is a torus corresponding to the identity component of the center of H If
T

6 Id there exists a °at totally geodesic submanifold T ½ X such that T leaves

F invariant and F T is compact [8] Let C be the union of all totally geodesic
submanifolds which are parallel to F Then C is invariant under H and is isometric
to F £ N for some closed convex subset N of X [7] proposition 1 6 7 The set
C is a totally geodesic submanifold possible with boundary Let Y be a complete
totally geodesic submanifold of X with dim Y dim C Since H leaves C invariant
and C contains an open subset of Y the group H leaves Y invariant Remark
that Y

6 X because Y contains an Euclidean factor If T fIdg then H is
semisimple and there exists x 2 X such that Hx is a totally geodesic submanifold
[13] lemma 7 21 By the assumption H 6 G hence Hx 6 X ¤

Let ¡ be an abstract group and ½ : ¡ G be a faithful representation One

always supposes that the Zariski closure H½ of ½ ¡ is connected and that the

representation ½ is nonparabolic i e ½ ¡ is nonparabolic In this case H½ is
reductive proof of proposition 4 1 Let H½ ST be the Levi decomposition
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of H½ The representation ½ is noncompact if S is a semisimple group without
compact factor and with trivial center Under this assumption H½ stabilizes a

totally geodesic submanifold of X isometric to N£F where N is a symmetric space

on which S acts transitively and F is a °at on which T acts by translation with
compact quotient proof of the proposition 4 1 Two faithful nonparabolic and
noncompact representations ½ and ½0 of ¡ are equivalent if there exists a isometry
f between N £ F and N 0 £ F 0 such that f ± ½ ° ½0 ° ± f for any ° 2 ¡ If
F and F 0 are empty then ½ and ½0 are equivalent if and only if ½0

± ½¡1 can be

extended to a continuous isomorphism between S and S0 [7] proposition 3 9 11
Denote Rfnpnc » the space of faithful nonparabolic noncompact representations

of ¡ into G up to the equivalence relation The following result is an application
of Theorem A to the context of representations

Proposition 4 2 The map L: Rfnpnc » R¡ de¯ned by L [½] ° ` ½ ° is
injective

Proof Let ½1; ½2 2 Rfnpnc Suppose L ½1 L ½2 For i 1; 2 set ¡i
½i ¡ ; Hi H½i and Hi SiTi

a Suppose S1 S2 feg then Ti acts by translation on the °at Fi; hii and
Fi Ti is compact Let us identify ½i ° with its translation vector Choose a basis
½1 °1 ; ¢ ¢ ¢ ; ½1 °n of F1 such a basis exists because ¡1 is Zariski dense in T1 For
° 2 ¡ write ½1 °

P
n
i 1 ai½1 °i and ½2 °

P
n
i 1 bi½2 °i + where is

orthogonal to each ½2 °i Since k½1 ° k k½2 ° k one has
h½1 ° ; ½1 °0 i1

h½2 ° ; ½2 °0 i2 for any °; °0 2 ¡ Put cij h½1 °i ; ½1 °ji1 h½2 °i ; ½2 °j i2
One has

h½1 ° ; ½1 °j i1 P
n
i 1 aicij and h½2 ° ; ½2 °j i1 P

n
i 1 bicij hence

P
n
i 1 ai ¡ bi cij 0 for any 1 · j · n This proves that ai bi Moreover

k½1 ° k k½2 ° k hence 0 One thus obtains ½2 °
P

n
i 1 ai½2 °i and dim

F2 n because ¡2 is Zariski dense in T2 The linear map f : F1 F2 de¯ned by
f ½1 °i ½2 °i is an isometry satisfying f ± ½1 ° ½2 ° ±f hence [½1] [½2]

b Suppose S1 6 feg then S2 6 feg Decompose Si into a product of non-
compact simple factors with trivial center Si Si1 £ ¢ ¢ ¢ £ Siki and denote pis
the projection of Si into Sis Since ¡i is Zariski dense in Si £ Ti then pis ¡ is
Zariski dense in Sis Set D [¡;¡] and Di ½i D The group Di is normalized
by ¡i and is included in Si hence one can suppose that the Zariski closure of
Di equals Si1 £ ¢ ¢ ¢ £ Sini with ni · ki Moreover ni ki because pis Di is
normalized by pis ¡ which is Zariski dense in Sis and the center of Sis is trivial
In conclusion Di is Zariski dense in Si By assumption ` ½1 d ` ½2 d for
any d 2 D One deduces from Theorem A that the restriction of ½2 ± ½¡1

1 to D1
can be extended to a continuous isomorphism ' between S1 and S2 Up to 'one can suppose S1 S2 and ½1 d ½2 d for any d 2 D Let ° 2 ¡ since

½1 °d°¡1 ½2 °d°¡1 and ½1 d ½2 d the projection of ½¡1
2 ° ½1 ° into S1

commutes with all ½1 d Since D1 is Zariski dense and the center of S1 is trivial
the projection of ½¡1

2 ° ½1 ° into S1 is trivial Consider now the projection pi of
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¡i into Ti One has ` p1 ± ½1 ° ` p2 ± ½2 ° moreover pi ¡i is Zariski dense

in Ti Using arguments developped in a one obtains the existence of a isometry
f : F1 F2 such that f ± p1 ± ½1 ° p2 ± ½2 ° ± f hence [½1] [½2] ¤

The following part is inspired by the section 5 of A Parreau's thesis [15]
Let us consider the particular case where ¡ is an in¯nite group of ¯nite type Fix
a ¯nite set S of generators One associates to a representation ½ : ¡ G its

minimal displacement ¸ ½ Inf
x2X

Sup
s2S

d x; ½ s x If ¸ ½ 0 there exists a

sequence xn n¸1 in X such that lim
n

d xn; ½ s xn 0 for any s 2 S Up to a

subsequence one can suppose that xn n¸1 converges in X[@X If lim
n

xn x 2 X
then ½ s x x for any s 2 S and hence ½ ¡ belongs to a compact subgroup
Otherwise lim

n
xn » 2 @X and ½ s » » for any s 2 S In this case ½ is

parabolic In conclusion if ½ 2 Rfnpnc then ¸ ½ > 0 Let us consider the map
V

¸
: Rfnpnc » R¡ de¯ned by L [½] ° ` ½ °

¸ ½
This map is continuous [15]

propositions V 2 3 and V 3 8 and its image is included in a compact set [15]
proposition V 4 1 One deduces from these properties and from the proposition
4 2 the following result

Corollary 4 3 The map L
¸ : Rfnpnc » R¡ is injective continuous and its

image is included in a compact set
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