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Abstract We show that any closed incompressible surface in the complement of a positive knot
is algebraically non-split from the knot positive knots cannot bound non-free incompressible
Seifert surfaces and that the splittability and the primeness of positive knots and links can be
seen from their positive diagrams
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1 Introduction

A knot K in the 3-sphere S3 is called positive if it has an oriented diagram all
crossings of which are positive crossings For a closed surface F in S3 ¡ K we

de¯ne the order o F ; K of F for K as follows [5] Let i : F S3 ¡ K be the

inclusion map and let i¤ : H1 F H1 S3 ¡K be the induced homomorphism
Since Im i¤ is a subgroup of H1 S3 ¡ K Zhmeridiani there is an integer m
such that Im i¤ mZ Then we de¯ne o S;K m

The positive knot complements have the following special properties

Theorem 1 1 Any closed incompressible surface in a positive knot complement
has non-zero order

A Seifert surface F for a knot is said to be free if ¼1 S3 ¡ F is a free group
In [5 Theorem 1 1] it is shown that a knot bounds a non-free incompressible
Seifert surface if and only if there exists a closed incompressible surface in the
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knot complement whose order is equal to zero Therefore Theorem 1 1 gives us

the next corollary

Corollary 1 2 Positive knots cannot bound non-free incompressible Seifert sur-
faces

Although positive links which have connected positive diagrams are non-split
because they have positive linking numbers we can give another geometrical proof
of this fact

Theorem 1 3 Positive links are non-split if their positive diagrams are con-
nected

Positive diagrams of positive knots or links also tell us their primeness We say
that a knot or link diagram ~K on the 2-sphere S is prime if for any loop l in S
intersecting ~K in 2 points l bounds a disk intersecting ~K in an arc

Theorem 1 4 Non-trivial positive knots or links are prime if their positive dia-
grams are connected and prime

Remark 1 5 The referee suggested that one can show that: A non-trivial positive

link is prime i® its positive diagram is connected and prime with the addition of
the assumption that the positive link projections contain no nugatory crossings

In fact the converse of Theorem 1 3 and 1 4 is true but it needs [2 Theorem 3]

There are other results about determining when a link projection represents a

non-split or prime link
For the splittability
² alternating links [1 Theorem 10 2] [4 Theorem 1 a ] ;

² almost alternating links [6] ;

² homogeneous links [2 Corollary 3 1]
For the primeness

² alternating links [4 Theorem 1 b ] ;

² positive braids [3 1 2 Theorem]

2 Proof of Theorem 1 1 and 1 3

Theorem 1 1 and 1 3 follow from the next Theorem

Theorem 2 1 Let K be a positive knot or link in the 3-sphere S3 and F a closed

incompressible surface in the complement of K Then one of the following conclu-
sions hold
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1 There exists a loop l in F such that lk l; K 6 0
2 F is a splitting sphere for K and any positive diagram of K is disconnected

Henceforth we shall prove Theorem 2 1
Let S be a 2-sphere in S3 and p : S3 ¡ f2 pointsg » S £ R S a projection

Put K so that p K is a positive diagram As usual way we express K in a bridge

presentation Thus we have the following data see Figure 1

² S3 B+ [S B¡ S decomposes S3 into two 3-balls

² K K+ [S K¡ where K§ ½ B§ S cuts K into over bridges and under
bridges

² K§ K§1 [ K§2 [ : : : K§n K is presented as n over bridges and n under
bridges

² D§ D§1 [ D§2 [ : : : D§n each K§i [ p K§i bounds a disk D§i such that
p D§i p K§i

Figure 1 View from level surface

We take n minimal over all bridge presentations of p K

Lemma 2 2 We may assume that:
a F \D¡ ;b F \B¡ consists of disks

c F \D+ consists of arcs and
d any component of F \ B+ ¡D+ is a disk

Proof a : Simply push out F near D¡ into B+
b : If there exists a component of F \ B¡ which is not a disk then F \ B¡

has a compressing disk E in B ¡ N D¡ since B ¡ N D¡ is a 3-ball By the

incompressibility of F in S3 ¡K @E bounds a disk in F Then by cutting and
pasting F along E we have a new incompressible surface F 0 and a sphere F 00

Replace F with F 0 and continue this operation
c : Suppose there exists a loop component of F\D+ and let E be an innermost

disk in D+ Then the similar argument to b passes by using E
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d : If there exists a component of F \ B+ ¡ D+ which is not a disk then
F \ B+ ¡ D+ has a compressing disk E in B+ ¡D+ By using E we can show
d similarly ¤

We take a 2-tuple lexicographically ordered complexity measure jF \ B¡j
jF \ D+j minimal Note that the complexity measure is not 0; ¤ For 0; ¤
F fails to be incompressible in S3 ¡ K since B+; K+ is a trivial tangle If the

complexity measure is 1; 0 then we have the conclusion 2
Hereafter we suppose that the complexity jF \B¡j jF \D+j ¸ 1; 1

Then we obtain a connected graph G in F by regarding F \B¡ and F \D+ as

vertices and edges respectively Note that every vertex has a positive even valency
by the construction

An arc ®j of F \ D+
i divides D+

i into two disks ±j and ±
0j

where ±
0j

contains

K+
i Put ¯j ±j \ S We may assume that p ®j p ±j ¯j for all ®j We

assign an orientation endowed from Ki to ®j and ¯j naturally see Figure 2

Figure 2 ®j and ¯j have the orientation

Lemma 2 3 For any arc ®j of F \D+
i ¯j \ p K¡ 6 ;

Proof Suppose that there exists an arc ®j of F \ D+
i such that ¯j \ p K¡ ;By exchanging ®j if necessary we may assume that ®j is outermost in D+

i that
is int ±j \ F ; If ®j connects di®erent vertices then a @-compression of F
along ±j reduces the complexity Otherwise ®j incidents a single vertex say D¡k
We perform a @-compression of F along ±j and obtain an annulus A consisting of
the disk D¡k and the resultant band b Since we chose an outermost arc ®j and

¯j \ p K¡ ; there exists a compressing disk for A in B¡ ¡K¡ By retaking

F along the compressing disk we can reduce the complexity In both cases there

is a contradiction in the assumption the complexity is minimal ¤

Now we pay attention to a face f of G in F A corner is a subarc of @ F \B¡ ¡ F \D+ The cycle @f for f is a loop consisting of edges and corners such
that it bounds f The edges have orientations as previously mentioned

Lemma 2 4 The cycle lemma For any face f the cycle @f can not be oriented
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Proof Suppose that there is a face f such that @f can be oriented Then since no
corner of @f intersects p K and by Lemma 2 3 p @f has non-zero intersection
number with p K¡ on S Figure 3 illustrates the projection of f and K¡ on S
This is a contradiction ¤

Figure 3 p @f has non-zero intersection number

For each face f of G and any point in the interior of any edge of @f we can

¯nd an arc ° on f satisfying the following property

* ° connects two edges of @f whose orientations are di®erent in @f

Figure 4 ° with the property *

Lemma 2 4 assures the existence of such an arc °
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To ¯nd a loop l on F with lk l; K 6 0 we depart a point in the interior of any
edge of G trace arcs with the property * and will arrive at the face on which we

have walked Connecting these arcs we will obtain an oriented loop l in F \B+
with a suitable orientation such that l has a positive intersection number with
edges of G on F Thus we got an oriented loop l in F which has non-zero linking
number with K Since any loop in a splitting sphere is contractible in S3¡K we

have the conclusion 1
This completes the proof of Theorem 2 1

3 Proof of Theorem 1 4

Let K be a positive knot or link in S3 and F be a decomposing sphere for K We

put K and F as the proof of Theorem 2 1 except that two points p1 and p2 of
F \K are in intB+ or intB¡ Note that p1 and p2 can not be the ends of a single
arc of F \ D§ because the tangle B§; K§ is trivial and F is a decomposing
sphere Hence there are two arcs e1 and e2 of F \D§ whose ends contain p1 and
p2 respectively We deform F by an isotopy relative to K so that p ei p pi
i 1; 2 We take the number of bridges n minimal

Thus we have the following data in addition to the data in the proof of Theorem
2 1

² F \K p1 [ p2 ½ intB§

² F \D§ ¾ ei ¾ pi i 1; 2

² p ei p pi i 1; 2

Lemma 3 1 We may assume that:
a F \D¡ ½ e1 [ e2
b F \B¡ consists of disks

c F \D+ consists of arcs and
d any component of F \ B+ ¡D+ is a disk

Proof This can be done by an isotopy of F since Theorem 1 3 assures us that
S3 ¡K is irreducible ¤

We take a 2-tuple lexicographically ordered complexity measure jF\B¡j; j F \D+ ¡ e1[e2 j minimal Then we obtain a connected graph G in F by regarding

F \B¡ and F \D+ ¡ e1[e2 as vertices and edges respectively Corners of each
face of G may contain two points @e1¡p1 and @e2¡ p2 Note that the complexity
measure is not 0; ¤ otherwise F is not a decomposing sphere since B§; K§ is
a trivial tangle If the complexity measure is 1; 0 then F \S gives a desired loop
since p ei p pi i 1; 2

Lemma 3 2 For any arc ®j of F \D+ ¡ e1 [ e2 ¯j \ p K¡ 6 ;
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Proof This can be done by the same argument to Lemma 2 3 ¤

Hereafter we assume that ~K is prime

Lemma 3 3 There is no vertex of G with valency 1

Proof Suppose that there is a vertex V with valency 1 Then only one edge ®
incident to V and hence exactly one of e1 and e2 is attached to V or contained
in V Thus @V intersects ~K in two points Since ~K is prime @V bounds a disk
E in S which intersects p K in an unknotted arc In the former case p K \ E
lies under a subarc of K+ by the minimality of the number of bridges n Then by
an isotopy of F along the 3-ball which is bounded by V [ E we can reduce the

complexity See Figure 5 In the latter case E intersects K in one point and V [E
bounds a pair of a 3-ball and an unknotted subarc of K¡ by the minimality of n
Then an isotopy of F along the pair can reduce the complexity See Figure 6 In
both cases there is a contradiction in the assumption the complexity is minimal

¤

Figure 5 Isotopy of F along the 3-ball

Figure 6 Isotopy of F along the pair

Lemma 3 4 There is no face f of G in F such that @f is a loop of G
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Proof Suppose there exists a face f as Lemma 3 4 Then @f consists of an edge

® of G and a subarc ° of the boundary of a vertex V of G By Lemma 3 2

p ® intersects p K¡ Moreover since the loop ° [ p ® bounds a disk E in S

jp ® \ p K¡ j 1 and ° meets exactly one of e1 and e2 say e1 Thus a loop

l @N @E;E ¡@E intersects ~K in two points Since ~K is prime intE intersects

p K in an embedded arc Then there are two possibilities for e1 e1 ½ f or
e1 ½ V In the former case f [E bounds a pair of a 3-ball and an unknotted arc
and an isotopy of F along the pair eliminates ® In the latter case f [ E bounds

a 3-ball and an isotopy of F along the 3-ball eliminates ® These contradict the

minimality of the complexity ¤

Hence we have a condition that:

² G has at least two vertices

² every vertex has valency at least two and

² all faces of G in F are disks

Next we pay attention to a face of G in F

Lemma 3 5 For any face f the cycle @f can not be oriented

Proof If all corners of f do not meet e1 [ e2 then this is same to Lemma 2 4
If exactly one corner of f meets e1 or e2 at one point then f and some K+

i have

the intersection number §1 or a vertex which meets f along the corner intersects

some K¡k in one point Since p @f and p K¡ \p K+
i must have the intersection

number zero @f is bounded by a loop of G consisting of a vertex and an edge ®
and p ® intersects p K¡ in one point Then Lemma 3 4 gives the conclusion

If some corners of f meet both e1 and e2 then the corners of f have the

intersection number zero with p K because F and K have the intersection number
zero In such a situation we have a contradiction same as the proof of Lemma
2 4 ¤

By Lemma 3 5 starting a face f of G in F whose closure is a disk we can get
a loop l in F ¡ K with jlk l; K j ¸ 2 But this is impossible because any loop
in F ¡ K is null-homotopic in S3 ¡ K or has linking number §1 with K This
¯nishes the proof of Theorem 1 4
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