Closed incompressible surfaces in the complements of positive knots

Autor(en): **Ozawa, Makoto**

Objekttyp: **Article**

Zeitschrift: **Commentarii Mathematici Helvetici**

Band (Jahr): **77 (2002)**

PDF erstellt am: **20.09.2024**

Persistenter Link: <https://doi.org/10.5169/seals-57925>

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Comment. Math. Helv. 77 (2002) 235-243 $0010-2571/02/020235-9$ \$ $1.50+0.20/0$

© 2002 Birkhäuser Verlag, Basel

^Commentarii Mat^hematici Helvetici

^Close^d incompressibl^e ^surface^s iⁿ t^h^e ^complement^s ^of positiv^e knot s

Makot^o ^Ozaw^a

This paper is dedicated to Professor Shin'ichi Suzuki for his 60th birthday

Abstract. We show that any closed incompressible surface in the complement of a positive knot is algebraically non-split from the knot, positive knots cannot bound non-free incompressible ^Seifert ^surface^s ^and that th^e ^splittability ^and th^e primenes^s ^of positiv^e knot ^s and link^s can b^e ^seen fro^m their ^positiv^e diagram^s

Mathematics Subject Classification (2000). 57M25.

Keywords. Positive knot, closed incompressible surface, order, free Seifert surface, splittability, primenes^s

1. Introduction

A knot K in the 3-sphere S^3 is called *positive* if it has an oriented diagram all crossings of which are positive crossings. For a closed surface F in $S^3 - K$, we
define the *order* $o(F; K)$ of F for K as follows ([5]). Let $i : F \to S^3 - K$ be the define the *order* $o(F; K)$ of F for K as follows ([5]). Let $i: F \to S^3 - K$ be the define the *order* $o(F; K)$ of F for K as follows ([5]). Let $i : F \to S^3 - K$ be the inclusion map and let $i_* : H_1(F) \to H_1(S^3 - K)$ be the induced homomorphism Since Im (i_*) is a subgroup of $H_1(S^3 - K) = \mathbb{Z}$ /meridian), there is Since $\text{Im}(i_*)$ is a subgroup of $H_1(S^3 - K) = \mathbb{Z}$ (meridian), there is an integer m such that $\text{Im}(i_*) = m\mathbb{Z}$. Then we define $o(S; K) = m$. such that $\lim_{k \to \infty} (i_*) = m \mathbb{Z}$. Then we define $o(S;K) = m$

n that $\text{Im}(i_*) = m\mathbb{Z}$. Then we define $o(S; K) = m$.
The positive knot complements have the following special properties

Theorem 1.1. Any closed incompressible surface in a positive knot complement ha^s non-z^er^o order

A Seifert surface F for a knot is said to be *free* if $\pi_1(S^3 - F)$ is a free group [5, Theorem 1.1], it is shown that a knot bounds a non-free incompressible In $[5,$ Theorem 1.1, it is shown that a knot bounds a non-free incompressible ^S^eifert ^surfac^e if ^and ^only if t^her^e ^exist^s ^a ^closed incompr^essibl^e ^surfac^e in th^e

^Partially ^supported ^b^y Fellowshi^p ^of t^h^e ^Japan ^Society for t^h^e ^Promotion ^of ^S^cienc^e for ^Japanes^e ^Junior ^Scientist s

knot complement whose order is equal to zero. Therefore, Theorem 1.1 gives us t^h^e ⁿext ^corollary

Corollary 1.2. Positive knots cannot bound non-free incompressible Seifert surfaces

Alt^hough ^positiv^e link^s ^whic^h hav^e ^conne^cte^d positiv^e ^diagram^s ^ar^e ⁿon-split becaus^e t^hey ^hav^e ^positiv^e linkin^g ⁿumber^s ^w^e ^caⁿ ^giv^e ^another ^geometrical proof ^of thi^s fact

Theorem 1.3. Positive links are non-split if their positive diagrams are connected

Positive diagrams of positive knots or links also tell us their primeness. We say that a knot or link diagram \tilde{K} on the 2-sphere S is *prime* if for any loop l in S that a knot or link diagram A on the 2-sphere S is *prime* if for a
intersecting \tilde{K} in 2 points, l bounds a disk intersecting \tilde{K} in an arc

Theorem 1.4. Non-trivial positive knots or links are prime if their positive dia^gram^s ar^e connected and prim^e

Remark 1.5. The referee suggested that one can show that: A non-trivial positive link is prime iff its positive diagram is connected and prime, with the addition of t^h^e ^assumption that th^e positiv^e link ^proje^ction^s ^contaiⁿ n^o ⁿugatory ^crossing^s In fact, the converse of Theorem 1.3 and 1.4 is true, but it needs $[2,$ Theorem 3].

Ther^e ^ar^e ^other result^s ^about determinin^g ^when ^a link proje^ctioⁿ repr^esent^s ^a non-split ^or ^prim^e link

For t^h^e ^splittability

- alternating links $([1, \text{ Theorem 10.2}], [4, \text{ Theorem 1 (a)}];$
- almost alternating links $([6])$;
- \bullet homogeneous links ([2, Corollary 3.1]

For t^h^e ^primenes^s

- alternating links $([4, \text{ Theorem 1 (b)]})$;
- positive braids $([3, 1.2 \text{ Theorem}]$

2. Proof of Theorem 1.1 and 1.3

Theorem 1.1 and 1.3 follow from the next Theorem.

Theorem 2.1. Let K be a positive knot or link in the 3-sphere S^3 and F a closed incompressible surface in the complement of K . Then one of the following conclu^sion^s hol^d

- (1) There exists a loop l in F such that $lk(l, K) \neq 0$.
- $2) \ F \ is \ a \ splitting \ sphere \ for \ K, \ and \ any \ positive \ diagram \ of \ K \ is \ disconnected.$

Henceforth, we shall prove Theorem 2.1.

Let S be a 2-sphere in S^3 and $p : S^3 - \{2 \text{ points}\} \cong S \times R \to S$ a projection k K so that $p(K)$ is a positive diagram. As usual way, we express K in a bridg Put K so that $p(K)$ is a positive diagram. As usual way, we express K in a bridge presentation. Thus we have the following data (see Figure 1).

- $S^3 = B^+ \cup_S B^-$ (S decomposes S^3 into two 3-balls
• $K = K^+ \cup_S K^-$, where $K^{\pm} \subset B^{\pm}$ (S cuts K into
- $K = K^+ \cup_S K^-$, where $K^{\pm} \subset B^{\pm}$ (S cuts K into over bridges and under bridges). bridge^s
- $K^{\pm} = K_1^{\pm} \cup K_2^{\pm} \cup ... K_n^{\pm}$ (*K* is presented as *n* over bridges and *n* under bridges). bridge^s
- $D^{\pm} = D_1^{\pm} \cup D_2^{\pm} \cup \ldots D_n^{\pm}$ (each $K_i^{\pm} \cup p(K_i^{\pm})$ bounds a disk D_i^{\pm} such that $p(D_i^{\pm}) = p(K_i^{\pm}))$. $p(D_i^{\pm}) = p(K_i^{\pm})$

Figure 1. View from level surface

We take *n* minimal over all bridge presentations of $p(K)$.

Lemma 2.2. We may assume that:

- a) $F \cap D^- = \emptyset$
b) $F \cap B^-$ con
- b) $F \cap B^-$ consists of disks
c) $F \cap D^+$ consists of arcs,
- c) $F \cap D^+$ consists of arcs, and
d) any component of $F \cap B^+$ –
- d) any component of $F \cap B^+ D^+$ is a disk

Proof. (a): Simply push out F near D^- into B^+ .

b): If there exists a component of $F \cap B^-$ which is not a disk, then $F \cap B^-$ (b): If there exists a component of $F \cap B^-$ which is not a disk, then $F \cap B^-$ has a compressing disk E in $B - N(D^-)$ since $B - N(D^-)$ is a 3-ball. By the incompressibility of F in $S^3 - K$, ∂E bounds a disk in F. Then by cu incompressibility of F in $S^3 - K$, ∂E bounds a disk in F. Then by cutting and pasting F along E, we have a new incompressible surface F' and a sphere F''. pasting F along E, we have a new incompressible surface F' and a sphere F'' . Replace F with F' and continue this operation.

c): Suppose there exists a loop component of $F \cap D^+$ and let E be an innermost in D^+ . Then the similar argument to (b) passes by using E. disk in D^+ . Then the similar argument to (b) passes by using E.

238 M Ozawa CMH

d): If there exists a component of $F \cap B^+ - D^+$ which is not a disk, then (d): If there exists a component of $F \cap B^+ - D^+$ which is not a disk, then $F \cap B^+ - D^+$ has a compressing disk E in $B^+ - D^+$. By using E, we can show (d) similarly. d) similarly. \square

We take a 2-tuple lexicographically ordered complexity measure $(|F \cap B^{-}|)$ We take a 2-tuple lexicographically ordered complexity measure $(|F \cap B^{-}|F \cap D^{+}|)$ minimal. Note that the complexity measure is not $(0, *)$. For $(0, *)$ $|F \cap D^+|$ minimal. Note that the complexity measure is not $(0, *)$. For $(0, *)$,
F fails to be incompressible in $S^3 - K$ since (B^+, K^+) is a trivial tangle. If the
complexity measure is $(1,0)$, then we have the conclusi complexity measure is $(1, 0)$, then we have the conclusion (2) .

Hereafter, we suppose that the complexity $(|F \cap B^{-}|, |F \cap D^{+}|) \geq (1, 1)$

Hereafter, we suppose that the complexity $(|F \cap B^-|, |F \cap D^+|) \ge (1,1)$.
Then we obtain a connected graph G in F by regarding $F \cap B^-$ and $F \cap D^+$ as Then we obtain a connected graph G in F by regarding $F \cap B^-$ and $F \cap D^+$ as vertices and edges respectively. Note that every vertex has a positive even valency ^by th^e ^construction

An arc α_j of $F \cap D_i^+$ divides D_i^+ into two disks δ_j and δ'_j , where δ'_j contains
Dubt $\beta_i = \delta_i \cap S$. We may assume that $p(\alpha_i) = p(\delta_i) = \beta_i$ for all α_i . We An arc α_j or $F \cap F_i$ arouses D_i muo two disks σ_j and σ_j , where σ_j contains K_i^+ . Put $\beta_j = \delta_j \cap S$. We may assume that $p(\alpha_j) = p(\delta_j) = \beta_j$ for all α_j . We assign an orientation endowed from K_i to α_j an assign an orientation endowed from K_i to α_j and β_j naturally (see Figure 2)

Figure 2. α_j and β_j have the orientation

Lemma 2.3. For any arc α_j of $F \cap D_i^+$, $\beta_j \cap p(K^-) \neq \emptyset$

Proof. Suppose that there exists an arc α_j of $F \cap D_i^+$ such that $\beta_j \cap p(K^-) = \emptyset$
By exchanging α_j if necessary, we may assume that α_j is outermost in D_i^+ , tha By exchanging α_j if necessary, we may assume that α_j is outermost in D_i^+ , that is, int $\delta_j \cap F = \emptyset$. If α_j connects different vertices, then a ∂ -compression of F
along δ_j reduces the complexity. Otherwise, α_j incidents a single vertex, say $D_k^$ along δ_j reduces the complexity. Otherwise, α_j incidents a single vertex, say D_k^- We perform a ∂ -compression of F along δ_j , and obtain an annulus A consisting of the disk D_k^- and the resultant band b. Since we chose an outermost arc α_j and $\beta_j \cap p(K^-) = \emptyset$, there exists a compressing disk for A in $B^- - K^-$. By retaking
F along the compressing disk, we can reduce the complexity. In both cases, there F along the compressing disk, we can reduce the complexity. In both cases, there is a contradiction in the assumption the complexity is minimal. \Box

Now we pay attention to a face f of G in F. A corner is a subarc of $\partial(F \cap B^-) - (F \cap D^+)$. The cycle ∂f for f is a loop consisting of edges and corners such that it bounds f. The edges have orientations as previously ment $F \cap D^+$). The *cycle* ∂f for f is a loop consisting of edges and corners such bounds f. The edges have orientations as previously mentioned. that it bounds f . The edges have orientations as previously mentioned

Lemma 2.4 (The cycle lemma). For any face f, the cycle ∂f can not be oriented

Proof. Suppose that there is a face f such that ∂f can be oriented. Then, since no corner of ∂f intersects $p(K)$, and by Lemma 2.3, $p(\partial f)$ has non-zero intersection number with $p(K⁻)$ on S. Figure 3 illustrates the projection of f and $K⁻$ on S. This is a contradiction. \Box

Figure 3. $p(\partial f)$ has non-zero intersection number

For each face f of G and any point in the interior of any edge of ∂f , we can find an arc γ on \hat{f} satisfying the following property

*) γ connects two edges of ∂f whose orientations are different in ∂f

Figure 4. γ with the property (*)

Lemma 2.4 assures the existence of such an arc γ

240 M. Ozawa M. Ozawa CMH

To find a loop l on F with $lk(l, K) \neq 0$, we depart a point in the interior of any edge of G, trace arcs with the property $(*)$, and will arrive at the face on which we have walked. Connecting these arcs, we will obtain an oriented loop l in $F \cap B^+$ have walked. Connecting these arcs, we will obtain an oriented loop l in $F \cap B^+$ with a suitable orientation such that l has a positive intersection number with edges of G on F. Thus we got an oriented loop l in F which has non-zero linking number with K. Since any loop in a splitting sphere is contractible in $S^3 - K$, we have the conclusion (1). have the conclusion (1) .

This completes the proof of Theorem 2.1.

3. Proof of Theorem 1.4

Let K be a positive knot or link in S^3 and F be a decomposing sphere for K. We put K and F as the proof of Theorem 2.1 except that two points p_1 and p_2 of $F \cap K$ are in int B^+ or int B^- . Note that p_1 and p_2 can not be the ends of a single $F \cap K$ are in int B^+ or int B^- . Note that p_1 and p_2 can not be the ends of a single
arc of $F \cap D^{\pm}$ because the tangle (B^{\pm}, K^{\pm}) is trivial and F is a decomposing
sphere. Hence, there are two arcs e_1 sphere. Hence, there are two arcs e_1 and e_2 of $F \cap D^{\pm}$ whose ends contain p_1 and p_2 respectively. We deform F by an isotopy relative to K so that $p(e_i) = p(p_i)$ p_2 respectively. We deform F by an isotopy relative to K so that $p(e_i) = p(p_i)$ $i = 1, 2$). We take the number of bridges n minimal

Thu^s ^w^e ^hav^e t^h^e followin^g dat^a in ^additioⁿ t^o th^e ^dat^a iⁿ t^h^e ^proof ^of Theorem 2.1.

- $F \cap K = p_1 \cup p_2 \subset \text{int } B^{\pm}$
• $F \cap D^{\pm} \supset e_i \supset p_i$ $(i = 1, 2)$
- $F \cap D^{\pm} \supseteq e_i \supseteq p_i$ $(i = 1, 2)$

 $p(e_i) = p(p_i)$ $(i = 1, 2)$.
- $p(e_i) = p(p_i)$ $(i = 1, 2)$

Lemma 3.1. We may assume that:

- a) $F \cap D^- \subset e_1 \cup e_2$
b) $F \cap B^-$ consists
- b) $F \cap B^-$ consists of disks
c) $F \cap D^+$ consists of arcs.
- c) $F \cap D^+$ consists of arcs, and
d) any component of $F \cap B^+$ –
- d) any component of $F \cap B^+ D^+$ is a disk

Proof. This can be done by an isotopy of F since Theorem 1.3 assures us that $S^3 - K$ is irreducible.

We take a 2-tuple lexicographically ordered complexity measure $(|F \cap B^{-}|, |(F \cap B^{-}|, \mathcal{L}_{\geq 2})|)$ minimal. Then we obtain a connected graph G in F by regarding We take a 2-tuple lexicographically ordered complexity measure ($|F \cap B^{-}|$, $|(F \cap D^{+}) - (e_1 \cup e_2)|$) minimal. Then we obtain a connected graph G in F by regarding $-(e_1 \cup e_2)$) minimal. Then we obtain a connected graph G in F by regarding 3^- and $(F \cap D^+) - (e_1 \cup e_2)$ as vertices and edges respectively. Corners of each $F \cap B^-$ and $(F \cap D^+) - (e_1 \cup e_2)$ as vertices and edges respectively. Corners of each $F \cap B^-$ and $(F \cap D^+) - (e_1 \cup e_2)$ as vertices and edges respectively. Corners of each face of G may contain two points $\partial e_1 - p_1$ and $\partial e_2 - p_2$. Note that the complexity measure is not $(0, *)$, otherwise F is not a decomp measure is not $(0, *),$ otherwise F is not a decomposing sphere since (B^{\pm}, K^{\pm}) is a trivial tangle. If the complexity measure is $(1,0)$, then $F \cap S$ gives a desired loop since $p(e_i) = p(p_i)$ $(i = 1, 2)$. since $p(e_i) = p(p_i)$ $(i = 1, 2)$

Lemma 3.2. For any arc α_j of $(F \cap D^+) - (e_1 \cup e_2), \ \beta_j \cap p(K^-) \neq \emptyset$

Vol. 77 (2002) Closed incompressible surfaces in the complements of positive knot s 241

Proof. This can be done by the same argument to Lemma 2.3.

Hereafter, we assume that \tilde{K} is prime

Lemma 3.3. There is no vertex of G with valency 1.

Proof. Suppose that there is a vertex V with valency 1. Then only one edge α incident to V, and hence exactly one of e_1 and e_2 is attached to V or contained in V. Thus ∂V intersects \tilde{K} in two points. Since \tilde{K} is prime, ∂V bounds a disk E in S which intersects $p(K)$ in an unknotted arc. In the former case, $p(K) \cap E$ lies under a subarc of K^+ by the minimality of the number of bridges n. Then by lies under a subarc of K^+ by the minimality of the number of bridges n. Then by an isotopy of F along the 3-ball which is bounded by $V \cup E$, we can reduce the complexity. See Figure 5. In the latter case, E intersects K in one point, and $V \cup E$ complexity. See Figure 5. In the latter case, E intersects K in one point, and $V \cup E$ complexity. See Figure 5. In the latter case, E intersects K in one point, and $V \cup B$ bounds a pair of a 3-ball and an unknotted subarc of K^- by the minimality of n Then an isotopy of F along the pair can reduce the complexity. See Figure 6. In both cases, there is a contradiction in the assumption the complexity is minimal. \Box

Figure 5. Isotopy of F along the 3-ball

Figure 6. Isotopy of F along the pair

Lemma 3.4. There is no face f of G in F such that ∂f is a loop of G

242 M Ozawa CMH

Proof. Suppose there exists a face f as Lemma 3.4. Then ∂f consists of an edge α of G and a subarc γ of the boundary of a vertex V of G. By Lemma 3.2, $p(\alpha)$ intersects $p(K^-)$. Moreover, since the loop $\gamma \cup p(\alpha)$ bounds a disk E in S
 $|p(\alpha) \cap p(K^-)| = 1$ and γ meets exactly one of e_1 and e_2 , say e_1 . Thus a loop $|p(\alpha) \cap p(K^-)| = 1$ and γ meets exactly one of e_1 and e_2 , say e_1 . Thus a loop $l = \partial N(\partial E; E) - \partial E$ intersects \tilde{K} in two points. Since \tilde{K} is prime, int E intersects $\tilde{d} = \partial N(\partial E; E) - \partial E$ intersects \tilde{K} in two points. Since \tilde{K} is prime, int E intersects $p(K)$ in an embedded arc. Then, there are two possibilities for $e_1, e_1 \subset f$ or $p(K)$ in an embedded arc. Then, there are two possibilities for $e_1, e_1 \subset f$ or $e_1 \subset V$. In the former case, $f \cup E$ bounds a pair of a 3-ball and an unknotted arc
and an isotopy of F along the pair eliminates α . In the latter case, $f \cup E$ bounds and an isotopy of F along the pair eliminates α . In the latter case, $f \cup E$ bounds and an isotopy of F along the pair eliminates α . In the latter case, $f \cup E$ bounds a 3-ball, and an isotopy of F along the 3-ball eliminates α . These contradict the minimality of the complexity. \Box

Henc^e w^e hav^e ^a ^conditioⁿ t^hat:

- \bullet *G* has at least two vertices
- \bullet every vertex has valency at least two, and
- all faces of G in F are disks
- Next, we pay attention to a face of G in F

Lemma 3.5. For any face f, the cycle ∂f can not be oriented

Proof. If all corners of f do not meet $e_1 \cup e_2$, then this is same to Lemma 2.4 If exactly one corner of f meets e_1 or e_2 at one point, then f and some K_i^+ If exactly one corner of f meets e_1 or e_2 at one point, then f and some K_i^+ have the intersection number ± 1 , or a vertex which meets f along the corner intersects some K_k^- in one point. Since $p(\partial f)$ and $p(K^-) \cap p(K_i^+)$ must have the intersection
number zero, ∂f is bounded by a loop of G consisting of a vertex and an edge α , number zero, ∂f is bounded by a loop of G consisting of a vertex and an edge α and $p(\alpha)$ intersects $p(K^-)$ in one point. Then Lemma 3.4 gives the conclusion

If some corners of f meet both e_1 and e_2 , then the corners of f have the intersection number zero with $p(K)$ because F and K have the intersection number zero. In such a situation, we have a contradiction same as the proof of Lemma 2.4.

By Lemma 3.5, starting a face f of G in F whose closure is a disk, we can get a loop *l* in $F - K$ with $|lk(l, K)| \geq 2$. But this is impossible because any loop in $F - K$ is null-homotopic in $S^3 - K$ or has linking number ± 1 with K. This in $F - K$ is null-homotopic in $S^3 - K$ or has linking number ± 1 with K. This finishes the proof of Theorem 1.4. finishes the proof of Theorem 1.4.

Acknowledgments. The author would like to thank Hiroshi Matsuda, Koya ^Shimokaw^a ^an^d t^h^e refer^e^e for ^heartful ^comment^s

Reference^s

 $\left[1\right]$ R. J. Aumann, Asphericity of alternating knots, $Ann.$ of Math. $\bf{64}$ (1956), 374–392

[2] P. R. Cromwell, Homogeneous links, *J. London Math. Soc.* (2) 39 (1989), 535-552.

Vol. 77 (2002) Closed incompressible surfaces in the complements of positive knot 243

- [3] P. R. Cromwell, Positive braids are visually prime, Proc. London Math. Soc. (3) 67 (1993), 384-424.
- [4] W. Menasco, Closed incompressible surfaces in alternating knot and link complements Topology 23 (1984), 37-44.
- [5] M. Ozawa, Synchronism of an incompressible non-free Seifert surface for a knot and an algebraically split closed surface in the knot complement, Proc. Amer. Math. Soc. 128 $(2000), 919 - 922.$
- $[6]$ T. Tsukamoto, A criterion for almost alternating links to be non-splittable, preprint.

Makot^o ^Ozaw^a Wased^a Universit^y ^School ^of ^Educ^ation Depart^ment ^of Mathematic^s Ni ^shiwaseda 1-6-1 ^Shinjuku-ku Tokyo 169-8050 Japan ^e-mail: ^ozawa@musubim^e ^com

Current addr^ess: Komazaw^a University Faculty ^of Letter^s Natural ^S^cienc^e Faculty 1-23-1 Komazawa, Setagaya-ku Tokyo, 154-8525 Japan

(Received: June 28, 2000)

To access this journal online: http://www.birkhauser.ch