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The Huber theorem for non-compact
conformally °at manifolds

Gilles Carron and Marc Herzlich

Abstract It was proved in 1957 by Huber that any complete surface with integrable Gauss

curvature is conformally equivalent to a compact surface with a ¯nite number of points removed
Counterexamples show that the curvature assumption must necessarily be strengthened in order
to get an analogous conclusion in higher dimensions We show in this paper that any non
compact Riemannian manifold with ¯nite Ln 2-norm of the Ricci curvature satis¯es Huber-type

conclusions if either it is a conformal domain with volume growth controlled from above in a
compact Riemannian manifold or if it is conformally °at of dimension 4 and a natural Sobolev
inequality together with a mild scalar curvature decay assumption hold We also get partial
results in other dimensions

Mathematics Subject Classi¯cation 2000 53C21 58J60

Keywords Non compact Riemannian manifolds Ricci curvature conformal geometry com-
pacti¯cation asymptotically locally euclidean manifolds

1 Introduction

The main theme of this paper is the study of the geometry of non-compact man-
ifolds with asymptotically zero Ricci curvature In other words we will consider
throughout this paper complete Riemannian manifolds M; g satisfying

Z
M jRicg j

n
2 < 1: 1 1

Our goal is to investigate the consequences of assumption 1 1 on the asymptotic
behaviour of the metric We are mainly interested in possible generalizations in
higher dimensions of the well-known and beautiful 1957's result by Huber [18]:
every complete surface with integrable negative part of the Gauss curvature has

integrable Gauss curvature and is conformally equivalent to a compact surface

with a ¯nite number of points removed It is well known that any naive gener-
alization of this result in higher dimensions is wrong For instance examples of
manifolds with asymptotically non-negative curvature in an integral sense and
in¯nite homotopy type i e they are not equivalent to the interior of a compact
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manifold with boundary are known [26] Moreover there exist as well complete

Riemannian manifolds with ¯nite volume bounded curvature and in¯nite topo-
logical type On the other hand Abresch and later Kasue showed that some

topological information may be available as soon as the curvature Kg satis¯es

Z
R+

maxfjKg x j ; r x > ½g ½ d½ < 1
where r is the distance to a ¯xed point see [1 20] To obtain precise geometrical
information it is usually necessary to add an extra volume or diameter growth
assumption see for example [25 31] And the asymptotic geometry is known to
be simple only when the whole curvature tensor decays at in¯nity in a very strong
sense e g if Kg O r¡2¡" where " > 0 [4 15]

In order to obtain conformal information on the behaviour at in¯nity our
assumption 1 1 of ¯niteness of the Ln 2-norm of Ricci curvature must then be

strengthened a bit in order to stand in the middle of the two extremes In this
paper we shall study two important special cases each considered with natural
extra assumptions

In the ¯rst setting the manifold is an arbitrary domain already embedded in
a compact manifold and the metric is conformal to the \compact" metric As

expected a Huber-type result follows if one adds control from above on the volume

growth This is the contents of our ¯rst main result Theorem 2 1 As this case is
rather special it turns out that control on the full Ricci curvature is not necessary
and some results are already available when one has only ¯niteness of the Ln 2-
norm of the scalar curvature see Theorem 2 1 for details Our result may be

compared with a classical result by K Uhlenbeck: any Hermitian vector bundle
on the euclidean ball Bn ¡ f0g whose curvature is in Ln 2 extends W 1;n on the

whole ball [27]

In the second we release the assumption on topology no compact manifold
involved and treat the case of conformally °at manifolds which may be seen as

the closest analogues of surfaces in higher dimensions Our manifolds will satisfy
¯niteness of the Ln 2-norm of Ricci curvature 1 1 together with an adequate

Sobolev inequality:

¹n M; g µZ
M

u
2n

n¡2 ¶
1¡ 2

n
6 Z

M
jduj

2; 8u 2 C10 M ; 1 2

which is the extra hypothesis we choose for this case For technical reasons we

also have to add some mild assumption on scalar curvature:

Scalg 2 Ln
2

1¡± \Ln
2

1+± ; for some ± 2]0; 1[:

We notice that the Sobolev assumption is automatically satis¯ed in the case of
manifolds with positive Yamabe invariant together with ¯nite Ln 2-norm 1 1
of Ricci curvature Things run smooth in dimension 4 and we prove our second
main result Theorem 5 7 : under these assumptions the manifold is conformally
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equivalent to a compact orbifold with singularities in ¯nite number removed
As elementary examples show it is impossible to rule out the orbifold-type sin-
gularities in dimension n > 3 as they may give rise by sending conformally the

singularity to in¯nity to manifolds and metrics satisfying our conditions In other
dimensions we are forced to strengthen the condition and to assume quadratic
decay on Ricci curvature to get a result valid in any dimension and this is our
third main result Theorem 5 9

Our results should be compared with recent and independent results due to
S Y A Chang J Qing and P Yang [8] They obtained a similar compacti¯-
cation theorem for conformal complete metrics on domains in the round sphere

S4 However their assumptions are di®erent from ours Their results use only
¯niteness of the Gauss{Bonnet{Chern integral rather than L2-integrability of the

Ricci curvature but they need to impose uniformly positive scalar curvature which
would be in our context a rather unnatural restriction It should also be noticed
that our results apply to di®erent situations where no assumption on topology is
made

We conjecture that our result in the conformally °at case can be obtained with-
out the extra condition on scalar curvature In the same vein it would be inter-
esting to know whether the Sobolev inequality assumption is necessary Whereas

such an assumption is certainly needed see Remark 5 8 it is possible that only
a weaker form of it is enough to obtain a Huber-type conclusion It follows how-
ever from section 2 that each manifold showing Huber's behaviour at in¯nity does

satisfy the Sobolev inequality Hence it is not unreasonable to impose it in our
assumptions It would of course also be highly desirable to have an answer for non
conformally °at manifolds We intend to consider all these questions in a future

work
The structure of the paper is as follows

In section 2 we consider the simple case where the manifold is a domain in
a compact manifold and the complete metric is already conformal to a smooth
metric de¯ned on the compact manifold but no conformally °at assumption
The proofs rely on elementary potential theory together with analysis at in¯nity
due to the ¯rst author [8]

In section 3 we present our ¯rst technical result It shows that under the extra
assumption on the behaviour of the scalar curvature every complete manifold
satisfying assumption 1 1 on Ricci can be endowed with another conformally
related and quasi-isometric metric with vanishing scalar curvature around in¯nity
regardless of inner topology or geometry

Section 4 is in a sense a digression from our main goal but we found useful
to include it Here we show that any complete Riemannian manifold that already
satis¯es all our assumptions and the conclusion of Huber's theorem is necessarily
conformally quasi-isometric to an asymptotically locally euclidean ALE mani-
fold This remark provides some information on the geometry near the punctures

of the metrics studied in section 1: they are necessarily obtained by a stereographic
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conformal blow-up from the \compact" metric { in the terminology of [13 22] It
also aims at justifying our strategy in the next section which reduces Huber's
problem to ¯nding ALE structures in the conformal class of the original metric

Section 5 achieves the main goal of the paper Building on work of S Bando
A Kasue and H Nakajima [4] our second technical result proves that any complete

conformally °at manifold satisfying both 1 1 on Ricci and Sobolev and which is
scalar °at around in¯nity is asymptotically locally euclidean It remains to apply
our previous analysis: in dimension 4 the conformal metric found in section 3 is
shown to retain condition 1 1 on its Ricci curvature Hence it is asymptotically
locally euclidean In other dimensions it is unclear whether this occurs and we

need to impose quadratic decay of the Ricci curvature In both cases we end with
a conformally °at asymptotically locally euclidean manifold and the conclusion is
ensured by previous work of the second author [17] Moreover the proof shows

that everything in this section works equally well if our manifold is assumed to be

conformally °at in a neighbourhood of in¯nity only

2 Domains in a compact manifold

We consider here the geometry of domains contained in a compact manifold The

purpose of this section is to show that any domain  endowed with a complete

metric which is conformally compact in the sense that another conformally related
metric extends smoothly over the boundary having moreover asymptotically zero
curvature in an integral sense and controlled volume growth satis¯es the conclu-
sions of Huber's theorem: it is a compact manifold minus a ¯nite set of points

More precisely we prove the following:

Theorem 2 1 Let  be a domain of M; g0 a compact Riemannian manifold of
dimension n > 2 Assume  is endowed with a complete Riemannian metric g
which is conformal to g0 Suppose moreover that

{ either the Ricci tensor of g is in Ln
2 ; g and volg B x0; r o rn logn¡1 r

for some point x0 in ;
{ or the positive part Scal+ of the scalar curvature of g is in L n

2 ; g and for
some point x0 in  volg B x0; r O rn

Then there is a ¯nite set fp1; : : : ; pkg ½ M such that

 M ¡ fp1; : : : ; pkg:

The proof of the Theorem is divided into two steps: in the ¯rst one we show
that the Hausdor® dimension of M¡ is zero; in the second we show that M¡
has a ¯nite number of connected components The ¯rst step relies on the following:

Proposition 2 2 Let  be a domain in M; g0 a compact Riemannian manifold
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of dimension n Assume that  is endowed with a complete Riemannian metric
g which is conformal to g0 Assume that there is a point x0 2  such that the

geodesic ball for the metric g with center x0 satis¯es

volgB x0; r o rn logn¡1 r ; for r 1;

then the n-capacity of M¡ is zero and the Hausdor® dimension of M¡ @
is zero

The proof of this proposition is reminiscent of the proof of Proposition 2 5 in
Schoen and Yau's paper [24]

Proof of Proposition 2 2 We are going to prove that there is a sequence of bounded
Lipschitz functions with compact support in  denoted fk k

such that

i lim
k 1 Z jdfkj

n 0;

ii lim
k 1

fk 1; uniformly on the compact sets of 
where the Ln-norm of the gradient is taken either with respect to the metric g0
of M or with respect to the metric g as this integral is conformally invariant
We note moreover that the Ln M; g0 -limit of this sequence is the characteristic
function of  We choose a function fk x uk r where r is the distance function
for the metric g to some ¯xed point x0 and uk is de¯ned as follows

8
<

:

uk r 1 if r 6 pk;
uk r 0 if r > k;
uk r log k r log pk if pk 6 r 6 k:

As a result we have

Z jdfk jng x d volg x Z

k

pk

1

log pk n

1

rn dV r ;

where V r is the function V r volB x0; r ; now integration by parts leads to

Z jdfkjng x d volg x
V k

kn log pk n ¡
V pk

pk n log pk n
+ n Z

k

pk

V r
log pk n

dr
rn+1 :

At the end we arrive to

Z jdfk jng x d volg x o 1 if k ¡ 1:

This proves that the n-capacity of M ¡ is zero so that the Hausdor® dimension
of @ M ¡  is zero ¤
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The second step relies on the following Proposition

Proposition 2 3 Let  be a domain in M; g0 a compact Riemannian manifold
of dimension n Assume that  is endowed with a complete Riemannian manifold
g is conformal to g0 Assume that the positive part of scalar curvature of ; g
satis¯es that

Z
Scaln

2
+

x d volg x < 1
then for a ¹ > 0 ; g satis¯es the Sobolev inequality:

¹µZ
u

2n
n¡2 ¶

1¡2 n
6 Z jduj

2; 8u 2 C10  : 2 1

Proof According to [8 Proposition 2 5] we know that it is enough to show that
the Sobolev inequality holds outside some compact set of  i e that we have

outside a compact K the Sobolev inequality

C µZ¡K
u

2n
n¡2 ¶

1¡2 n
6 Z¡K

jduj
2; 8u 2 C10 ¡K :

But our assumption on the scalar curvature of g implies it is enough to show that
outside a compact K of  we have for any u in C10 ¡K

C µZ¡K
u

2n
n¡2 d volg¶

1¡2 n
6 Z¡K

µjduj
2 + n¡ 2

4 n¡ 1
Scalgu2

¶ d volg ; 2 2

As the matter of fact choose another compact set K0 containing K such that

µZ¡K0

Scaln 2
+ ¶

2 n

6 n¡ 1

8 n¡ 2
;

then with 2 2 and the help of HÄolder inequality we have the Sobolev inequality
on  ¡ K0 for the constant ¹ C 2 Now we have to prove that the Yamabe

constant of  ¡ K; g is positive Here the Yamabe invariant of  ¡ K; g is
de¯ned by

Y ¡K; g inf
u2C10 ¡K ½Z¡K jduj

2 + n¡ 2

4 n¡ 1
Scalgu2; kukL2n n¡2 1¾ :

The Yamabe invariant is a conformal invariant hence it is enough to ¯nd a compact
set in  such that Y ¡K; g0 > 0 Let L be the conformal Laplacian of g0:

L ¢g0 + n¡ 2

4 n¡ 1
Scalg0 :

For any open set O of M of small volume the ¯rst eigenvalue of the Laplace

operator of g0 on O for the Dirichlet boundary condition is bounded from below
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by C volg0 O ¡2 n where C is a geometrical constant of M; g0 Thus if we choose

a compact K such that the volume of  ¡ K is small enough the operator L is
coercive on W 1;2

0 ¡K that is to say there is a constant ¸ > 0 such that

¸kuk
2
L2 6 Z¡K

u Lu d volg0 ; 8u 2 C10 ¡K :

This implies that the topology of the Hilbert space W 1;2
0 ¡ K is given by the

quadratic form

u 7 Z¡K
u Lu d volg0 Z¡K

µjduj
2 + n¡ 2

4 n¡ 1
Scalg0u2d volg0¶ :

Since ¡K is relatively compact in M the Sobolev space W 1;2
0 ¡K is embedded

in L2n n¡2  ¡ K and this embedding implies that the Yamabe constant of
¡K; g0 is positive ¤

Remark 2 4 It should be noticed that the last two propositions imply that if a
domain of a compact Riemannian manifold is endowed with a conformal metric
with non-positive scalar curvature then the Sobolev inequality 2 1 holds; in partic-
ular the volume of geodesic balls satis¯es a uniform euclidean-type lower bound
This has the consequence that for example the Riemannian product R £ Tn¡1

cannot be conformally embedded in the °at torus Tn

Proof of Theorem 2 1 With either set of assumptions of the Theorem Proposition
2 2 then tells us that the Hausdor® dimension of @ M ¡  is zero Now
our assumption on the scalar curvature implies that we can apply the second
Proposition: ; g satis¯es the Sobolev inequality

¹µZ
u

2n
n¡2 ¶

1¡2 n
6 Z jduj

2; 8u 2 C10  :

i We now turn to the case where Scal+ is in L n
2 Here [7 Proposition 2 4]

shows that the Sobolev inequality implies a uniform lower bound on the volume

of geodesic balls of ; g

volg B x; r > ³
¹

2n+2´
n 2

rn ; 8x 2 ; r > 0: 2 3

This lower bound and the assumption on volume growth imply that ; g has a

¯nite number of ends As a matter of fact let x0 be a ¯xed point in  and let
R > 0 In each unbounded connected component C of  ¡ B x0; R we can ¯nd
a point xC at distance 2R from x0 The geodesic ball of radius R around xC is
in C and in the ball B x0; 3R Moreover all these balls are disjoint Thus the

sum of the volumes of these geodesic balls is bounded from below by
¡

¹
2n+2

¢

n 2
Rn

times the number of unbounded connected components whereas this sum is also
bounded from above by the volume of B x0; 3R hence is bounded by C0 x0 Rn
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These two inequalities show that the number of unbounded connected components

of  ¡ B x0; R is no more than C0 x0
¡

¹
2n+2

¢
¡n 2 Since this bound is uniform

with respect to R ; g has a ¯nite number of ends

ii In case Ricg is in Ln
2 one does not need any volume control to ensure ¯niteness

of the number of ends since one may apply [8]: the number of ends is bounded by
the dimension of the ¯rst reduced L2-cohomology group which is ¯nite under our
curvature assumption

Considering now both cases together again we get that @ has a ¯nite number
of connected components Dimension theory [19] tells us that a connected set
which is not a point has topological dimension greater than 1 Since Hausdor®

dimension is always greater than topological dimension @ is a ¯nite set ¤
For future reference we note that a basic consequence of our arguments is:

Lemma 2 5 Let  be a domain of a compact Riemannian manifold M; g0 of
dimension n > 2 Assume  is endowed with a complete Riemannian metric g
which is conformal to g0 moreover assume that the volume of geodesic balls of
M; g is bounded from below uniformly:

9C > 0; 8x 2 M; 8r ¸ 1; volgB x; r > Crn:

and that for a point x0 in M; g we have

volgB x0; r 6 C 0rn; 8r > 1;

then there is a ¯nite set fp1; : : : ; pkg ½ M such that

 M ¡ fp1; : : : ; pkg:

Theorem 2 1 has an interesting application in the case of the sphere:

Corollary 2 6 Let  be a domain of the sphere Sn; g0 of dimension n > 2
endowed with a complete Riemannian metric g conformal to g0 and satisfying

either

Z jRicg j
n
2 x d volg x < 1 and volgB x0; r o rn logn¡1 r ;

or

Z
Scal+ n

2 x dvolg x < 1 and volgB x0; r O rn :

Then there is a ¯nite set fp1; : : : ; pkg ½ Sn such that  Sn ¡ fp1; : : : ; pkg

Note that a much stronger result will be obtained in dimension 4 at the end of
the paper Corollary 5 13
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3 Scalar curvature uniformization of non-compact manifolds with
asymptotically zero Ricci curvature

Our second interest is in uniformization by which we mean ¯nding on such a
manifold a best possible metric The goal of the paper imposes us to restrict
ourselves to conformal deformations only Inspired by the well known Yamabe

problem we seek a metric with vanishing scalar curvature at in¯nity and which
retains the asymptotic properties of the original metric This is the only place

where our extra assumption on scalar curvature is needed

Theorem 3 1 If Mn; g is a complete Riemannian manifold which satis¯es the

Sobolev inequality

¹n M; g µZ
M

u
2n

n¡2 ¶
1¡2 n

6 Z
M jduj

2; 8u 2 C10 M

and whose scalar curvature satis¯es for a ± 2]0; 1[

Scalg 2 Ln
2

1¡± \ Ln
2

1+±

then there is a bounded smooth function ½ : M R such that the complete metric
e2½g has vanishing scalar curvature outside some compact set

Proof In fact we will ¯nd a function u which is de¯ned outside some compact
set K ½ M and solves the equation

¢u + cnScalgu ¡cnScalg outside K 3 1

where cn n ¡ 2 4 n ¡ 1 ; moreover juj 6 1 2 on M ¡ K Letting v be the

positive smooth function v 1 + u outside some bounded neighbourhood of K
the new metric v

4
n¡2 g will have vanishing scalar curvature outside the compact set

{ recall the scalar curvature of the metric v
4

n¡2 g is given by the formula

cnScal
v

4
n¡2 g

v¡ n+2
n¡2 ¢v + cn Scalgv :

The proof will be done in two steps In the ¯rst step we show that equation
3 1 has a solution u 2 L n

2
1¡±

± : In the second we study the asymptotic behaviour
of the solution

According to the work of Varopoulos [29] the Sobolev inequality has the fol-
lowing consequence: let  be an open not necessarily bounded subset of M and
note ¢ the Laplacian operator with Dirichlet boundary condition More exactly
¢ is the Friedrichs extension associated to the quadratic form u 7 kduk

2
L2 

de¯ned on the closure of C10  in H1 M or alternatively ¢ is the minimal
extension of ¢ : C10  ¡ C10  Then the heat operator e¡t¢ associated to
¢ has the following mapping properties: for p > 1 it maps Lp  in L1  and

ke¡t¢kLp L1 6 C n; p ¹¡n 2pt¡n 2p: 3 2
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Moreover the operator

¢¡® 2

 Z
1

0
e¡t¢ t® 2¡1 dt

¡ ® 2

has the following properties: if p 2]1; n ®[ then it maps Lp  in L
np

n¡p®  and

k¢¡® 2

 kLp L
np

n¡p® 6 C n; p; ® ¹¡® 2: 3 3

These properties 3 3 rely upon the bound 3 2 and a maximal theorem of E
Stein We now want to solve the equation

¢u + cnScalgu ¡cnScalg ; outside K:

For this we shall solve the equation

u ¢¡1 2
M¡Kf

f + Af ¡cn ¢¡1 2
M¡KScalg

where A is the operator

Af ¢¡1 2
M¡K ³Scalg¢¡1 2

M¡Kf´ :

The mapping properties 3 3 of the operator ¢¡1 2
M¡K and the HÄolder inequality

imply that for 1 < p < n the operator A is a bounded operator on Lp M ¡K
and

kAkLp Lp 6 C n; p ¹¡1
kScalgkLn

2 M¡K :

Moreover the hypothesis on the scalar curvature yields that ¢¡1 2
M¡KScalg lives in

Ln 1¡±
1+±

k¢¡1 2
M¡KScalgkLn 1¡±

1+± M¡K
6 C n; ± ¹¡1 2

kScalgkLn
2

1¡± M¡K : 3 4

If the compact K is such that ³R
M¡K Scaln 2

g x dx´
2
n is small enough we have

kAkLn 1¡±
1+± Ln 1¡±

1+±
6 1 2;

and the operator Id + A is invertible on Ln 1¡±
1+± M ¡K Hence we may ¯nd f in

Ln 1¡±
1+± M ¡K such that

f + Af ¡cn¢¡1 2
M¡KScalg:

The function u ¢¡1 2
M¡Kf solves the equation 3 1 and we have

kukLn
2

1¡±
±

6 C n; ± ¹¡1
kScalgkLn

2
1¡± M¡K :

In the second step of the proof we are able to show that provided K is large

enough then the function u is bounded by 1 2 on M¡K For this we could employ
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the Moser iteration scheme but we will alternatively use the mapping properties

3 3 of the previous operators

First we show that the equation

f + Af ¡cn¢¡1 2
M¡KScalg

can be solved on Ln 1¡±
1+± \ Ln 1+±

1¡± First note that because of our assumptions on
the scalar curvature and of 3 3 we have also

k¢¡1 2
M¡KScalgkLn 1+±

1¡± M¡K · C n; ± ¹¡1 2
kScalgkLn

2
1+± M¡K :

We have to show that the operator Id+A is invertible on Ln 1¡±
1+± \Ln 1+±

1¡± if M ¡K
is small enough This stems out from a Gagliardo{Nirenberg inequality: we claim
that if h 2 Ln

2
1¡±

± M ¡ K and if ¢1 2
M¡Kh 2 Ln 1+±

1¡± then there is a constant
C n; ±;¹ such that

khkL1 6 C n; ±;¹ ·khkL n
2

1¡±
± M¡K

+ k¢
1 2
M¡KhkLn 1+±

1¡± M¡K ¸ : 3 5

The Gagliardo{Nirenberg inequality is shown by mimicking the argument of [12]:
we know from the subordination identity that

e¡yp¢M¡K y
2p¼ Z

1
0

e¡y2 4te¡t¢M¡K t¡3 2dt;

so that the Poisson operator e¡yp¢M¡K maps Lp in L1 and

ke¡yp¢M¡K
kLp L1 6 C n; p ¹¡n 2py¡n p; 8y > 0:

Now if h is such a function we have

h e¡p¢M¡K h¡ Z

1

0
e¡yp¢M¡K¢1 2

M¡Kh dy ;

so that we may bound khkL1 M¡K from above by

C n; ± ·¹¡2± 1¡±
khkLn

2
1¡±

± M¡K
+ ¹ 1¡± 1+±

k¢
1 2
M¡KhkLn 1+±

1¡± M¡K ¸
which is precisely the desired inequality

Now we already know that if f lives in Ln 1¡±
1+± \ Ln 1+±

1¡± then

kAfkLn 1¡±
1+±

6 C n; ± ¹¡1
kScalgkLn 2 M¡K kfkLn 1¡±

1+±
:

Moreover 3 3 implies

kAfkLn 1+±
1¡± M¡K

6 C n; ±

°°°

Scalg¢¡1 2
M¡Kf

°°°

Ln
2

1+± M¡K
:

Now we have

kScalg¢¡1 2
M¡KfkLn

2
1+± M¡K 6 kScalgkLn

2
1+± M¡K k¢¡1 2

M¡KfkL1 M¡K
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and the Gagliardo{Nirenberg inequality 3 5 provides

k¢¡1 2
M¡KfkL1 M¡K 6 C n; ±;¹ ·k¢¡1 2

M¡KfkLn
2

1¡±
± M¡K

+ kfkLn 1+±
1¡± M¡K ¸ :

But again by 3 3 we have

k¢¡1 2
M¡KfkLn

2
1¡±

±
6 C n; ± ¹¡1 2

kfkLn 1¡±
1+± M¡K

:

So that we end with the bound

kAfkLn 1+±
1¡±

6C n; ±;¹ kScalgkLn
2

1+± M¡K ·kfkLn 1¡±
1+± M¡K

+kfkLn
2

1¡±
± M¡K ¸ :

Hence if K is such that kScalgkLn
2

1+± M¡K
and kScalgkLn

2
1¡± M¡K

are small
enough then the operator A is bounded on Ln 1¡±

1+± M ¡K \Ln 1+±
1¡± M ¡K with

an operator norm bounded by 1 2

We may then ¯nd f 2 Ln 1¡±
1+± \ Ln 1+±

1¡± which solves the equation

f + Af ¡cn¢M¡KScalg ; outside K:

Now the function u ¢¡1 2
M¡Kf solves the equation 3 1 and lives in Ln

2
1¡±

±

Moreover ¢1 2
M¡Ku f 2 Ln 1+±

1¡± We then have the bounds

kukLn
2

1¡±
±

6 C n; ±;¹ kScalgkLn
2

1¡± M¡K ;

kfkLn 1+±
1¡±

6 C n; ±;¹ kScalgkLn
2

1+± M¡K :

Using the Gagliardo{Nirenberg inequality 3 5 we obtain

kukL1 M¡K 6 C n; ±;¹ hkScalgkL n
2

1+± M¡K + kScalgkLn
2

1¡± M¡K i :

We may then choose the compact K adequately to have the desired bound juj 6
1 2 over M ¡K ¤

Remark 3 2 The Moser iteration scheme [14] would show that the function ½ in
the statement of Theorem 3 1 has limit zero at in¯nity

Remark 3 3 If the two integrals for the scalar curvature are small with respect
to the Sobolev constant we may get a metric with vanishing scalar curvature

everywhere

Remark 3 4 It is possible to replace the hypothesis on the Sobolev inequality
by a more conformally invariant one: we can assume for instance that the Yam-
abe invariant of a neighbourhood of in¯nity is positive As already noticed this
together with boundedness of the Ln 2-norm of the scalar curvature implies the

Sobolev inequality
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4 On the geometry of compact manifolds with a ¯nite
number of points removed

As already explained in the introduction the goal of this short section is to give

a proof of the following statement: if M; g is a complete manifold controlled
volume growth and ¯nite Ln 2-norm of Ricci curvature 1 1 the scalar curvature

assumption of Theorem 3 1 together with the conclusions of Huber's theorem then
it is conformally quasi-isometric to an asymptotically locally euclidean manifold

In fact we shall prove the following slightly stronger result which also gives

some information on the case treated in section 2

Theorem 4 1 Let M; g0 be a compact Riemanniann manifold and let  be a
domain in M endowed with a complete Riemannian metric g which is conformal
to g0 Assume moreover that the Ricci and scalar curvature of ; g satisfy

Ricg 2 Ln
2 ; Scalg 2 Ln

2
1¡± \ Ln

2
1+±

for some ± in ]0; 1[ and that volg B x0; r 6 Crn for some x0 in M Then there
is a bounded smooth function f on  such that ; e2fg has a ¯nite number of
ends each of them asymptotically euclidean

We recall that an end E of a complete Riemannian manifold Mn; g is said to
be asymptotically euclidean of order ¿ > 0 if E is di®eomorphic to the comple-
ment of a euclidean ball in the euclidean space Rn and if in theses coordinates

the metric g satis¯es

gij z ±ij + O jzj¡¿ ; @kgij z O jzj¡¿¡1 ;

j@kgij z ¡ @kgij w j jz ¡wj
® 6 O minfjzj; jwjg¡¿¡1¡® :

for some ® 2]0; 1[ An end of a Riemannian manifold is called asymptotically
locally euclidean or ALE in short if a ¯nite Riemannian cover of this end is
asymptotically euclidean

Proof According to Theorem 2 1 we know that there is a ¯nite set fp1; : : : ; pkg ½
M such that  M ¡ fp1; : : : ; pkg Theorem 3 1 provides a smooth bounded
function f on  such that the new metric e2fg has vanishing scalar curvature in
some neighbourhood of fp1; : : : ; pkg We may then take r > 0 small enough in
order that

i the g0-geodesic balls B pi; r are smooth convex and disjoint;
ii the scalar curvature of e2fg is zero in B pi; r ¡ fpig

Fix some i 2 f1; : : : ; kg We also have existence of a bounded smooth function h
on B pi; r such that the metric e2hg0 has vanishing scalar curvature Since g is
conformal to g0 there is a smooth positive function v on  with g v

4
n¡2 g0 Now

we have e2f g w
4

n¡2 e2hg0 with w e
n¡2

8 fve¡n¡2
8 h The function w is positive

and satis¯es

¢w 0 on B pi; r ¡ fpig
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where ¢ is the Laplacian associated with the metric e2hg0 De¯ne ¹w to be the

solution of the Dirichlet problem

½
¢ ¹w 0 on B pi; r
¹w w on @B pi; r

The function w ¡ ¹w is a harmonic function on B pi; r ¡ fpig and according to
the maximum principle it is a positive function Thus w¡ ¹w is a multiple of the

Green function associated to ¢ on B pi; r for the Dirichlet boundary condition
with pole at pi If we come back to v we obtain that there is a constant ¸ > 0
such that e

n¡2
8 fv¡¸Gi is a smooth function in B pi; r where Gi is the conformal

Green function of B pi; r ; g0 with Dirichlet boundary condition and pole at pi
Computations done by J Lee and T Parker [22 Lemma 6 4] show that the new
metric e2fg is asymptotically euclidean ¤

Keeping the terminology of [22] we shall say that  is obtained from M; g0
by a stereographic conformal blow up

5 Structure at in¯nity of conformally °at manifolds

This section is the central part of the paper We begin in the ¯rst subsection
by proving that scalar °at conformally °at complete manifolds satisfying both
condition 1 1 on Ricci curvature and the Sobolev inequality

¹n M; g µZ
M

u
2n

n¡2 ¶
1¡2 n

6 Z
M jduj

2; 8u 2 C10 M

are asymptotically locally euclidean This and the uniformization arguments of
the previous sections are immediatly used in the following subsection thus proving
our main result Theorem 5 7 in dimension 4 The last subsection deals with the

case of other dimensions

Geometry at in¯nity of scalar °at conformally °at manifolds Our second
main technical result is the following:

Theorem 5 1 Let Mn; g be a Riemannian manifold which satis¯es the Sobolev

inequality

¹n M; g µZ
M

u
2n

n¡2 ¶
1¡2 n

6 Z
M

jduj
2; 8u 2 C10 M ;

whose Ricci tensor satis¯es

Z
M jRicgj

n
2 x d volg x < 1:

If M; g is scalar °at and conformally °at in a neighbourhood of in¯nity then it
has a ¯nite number of ends each of them asymptotically locally euclidean
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Proof The idea is to show that the tracefree Ricci tensor Ric0 decays at in¯nity
faster than expected Fix a point p in M If we are able to prove that

jRic0j x 6 C
d p; x 2+´ 8x 2 M ¡Bp 1 ; 5 1

for some ´ > 0 then we can apply the characterization of asymptotically locally
euclidean manifolds due to A Kasue S Bando and H Nakajima [4]: the manifold
is indeed asymptotically locally euclidean if curvature has the decay 5 1 above

and if the volume of Bp r grows at least as rn The ¯rst assumption is then
obviously satis¯ed as the metric is scalar °at and conformally °at whereas the

second is a well-known consequence of the Sobolev inequality [7 Proposition 2 4]
We now have to exhibit the estimate 5 1 Our starting point is the basic

WeitzenbÄock formula for Ricci curvature [5 Formula 4 1 ]

¡
dD±D + ±DdD

¢
Ric0 D¤DRic0 + c Ric ± Ric0; 5 2

where c is a constant whose value is irrelevant for our concerns and may then vary
from line to line We may apply this to our conformally °at scalar °at metric
outside a compact set The Ricci tensor is then a closed and co-closed 1-form with
values into 1-forms and we get

¢Ric0 D¤DRic0 c Ric0 ± Ric0: 5 3

We can immediately infer from this a ¯rst subelliptic estimate for the norm jRic0j:

1

2¢jRic0j
2

jRic0j¢jRic0j¡ jdjRic0jj
2

hRic0;¢Ric0i¡ jDRic0j
2:

Hence by Kato inequality

jRic0j¢jRic0j hRic0;¢Ric0i¡ jDRic0j
2 + jdjRic0jj

2 6 c jRic0j
2;

and ¯nally

¢jRic0j 6 c jRic0j
2; 5 4

in the weak sense outside a compact set
The next ingredient is the re¯ned Kato-like inequality proven in [6]; for Ric0

is in the kernel of the elliptic ¯rst order operator dD + ±D acting on trace-free

symmetric tensors we have

jdjRic0jj 6 r n
n + 2 jDRic0j 5 5

wherever Ric0 does not vanish see [6] for the precise computation Letting ¯
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n¡2
n we may now compute:

¢
¡j

Ric0j¯¢
¯ ¡j

Ric0j¯¡1 ¢jRic0j¡ ¯ ¡ 1 jRic0j¯¡2
jdjRic0jj

2

¢
¯jRic0j¯¡2

¡hRic0;¢Ric0i¡ jDRic0j
2 + jdjRic0jj

2

¢

¡ ¯ ¯ ¡ 1 jRic0j¯¡2
jdjRic0jj

2

¯jRic0j¯¡2

¡hRic0;¢Ric0i¡ jDRic0j
2 + 2 ¡ ¯ jdjRic0jj

2

¢
:

Taking now into account the precise value of ¯ we end up with

¢³jRic0j
n¡2

n ´ 6 n¡ 2

n jRic0j¡
n+2
n jhRic0;¢Ric0ij 6 CjRic0j

2 n¡1
n 5 6

in the weak sense outside a compact set
Denoting u jRic0j and v jRic0j

1 ° where ° n
n¡2

our general assumptions

imply that u is in Ln 2 and that
¢u 6 cu2; and ¢v 6 c u v outside a compact set 5 7

The conclusion will now follow from the next two lemmas

In what follows we denote by Mr the complement of the ball of radius r and
centre p in M

Lemma 5 2 Assume that M satis¯es the Sobolev inequality Let u positive be in
Ln 2 such that ¢u 6 cu2 in the weak sense Then there exists r0 such that for all
r > r0 u belongs to L1 Mr and

sup
M2r

u 6 Cr¡2
µZ

Mr
un

2 ¶
2
n

: 5 8

for r large enough

Lemma 5 3 Assume that M satis¯es the Sobolev inequality and has sub-euclidean
volume growth Let u positive be in Ln 2 v positive in L°n 2 with ° n n¡ 2
Assume ¢v 6 cuv in the weak sense then

µZ
M2r

v° n
2 ¶

1
°

6 µZ
Mr¡M2r

v° n
2 ¶

1
°

5 9

for r large enough

Proof of Theorem 5 1 assuming the lemmas We begin by applying Lemma 5 2
Since u jRic0j belongs to Ln 2

sup
M2r

u 6 Cr¡2
µZ

Mr
u n

2 ¶
2
n

o r¡2 : 5 10

The second step is to apply Lemma 5 3 and we need volume growth control from
above Now remember Scal and W vanish whereas u above is the norm of the
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tracefree Ricci tensor Hence Kg o r¡2 and diameter is controlled from above

and volume growth is controlled from below from the Sobolev inequality on
each annulus M2kr¡Mk¡1r We can then infer from Anderson{Cheeger harmonic
radius' theory [2 3 16 23] that the rescaled annuli Mkri ¡ Mk¡1ri ; r¡2

i g are

covered by a ¯nite and uniformly bounded number of balls of uniformly bounded
size where the metric coe±cients are C1;®-close to the euclidean metric Hence

one gets volume growth control from above We can now estimate further the

tracefree part of Ricci by applying Lemma 5 3 to v u1 ° We get

µZ
M2r

v° n
2 ¶

1
°

6 µZ
Mr¡M2r

v° n
2 ¶

1
°

hence

Z
M2r

un
2 6 Z

Mr
un

2 ¡ Z
M2r

un
2 :

The conclusion now stems out from injecting the result of the following elementary
Lemma into estimate 5 10 above

Lemma 5 4 If F is a positive non-increasing function satisfying for r > 1

F 2r 6 C F r ¡ F 2r and lim
r 1

F r 0

then there exists ´ > 0 such that F r 6 Cr¡´ for large r

We now detail the proofs of the ¯rst two Lemmas leaving the third one to the

reader

Proof of Lemma 5 2 We shall use the standard Moser iteration scheme It sim-
pli¯es matters to take r 1 so that we will prove that if w is a positive function
in Ln 2 satis¯es ¢w 6 cw2 in the weak sense then there is ²0 > 0 such that if

µZ
M1

w n
2 ¶

2
n

< "0

then

sup
M2

w 6 C µZ
M1

w n
2 ¶

2
n

:

Rescaling by g r¡2g where r > r0 and r0 is chosen such that jjujjLn 2 Mr0 < "0
establishes the link with the desired property

Let 1 < r¡ < r+ << r0 < 1 and let ' be a smooth cut-o® function with
support in Mr¡ ¡ M2r0 having value 1 in Mr+ ¡ Mr0 and such that jd'j 6
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1 r+ ¡ r¡ Let moreover ® > 1 We now compute:

4®

® + 1 2 Z '2
jd³w

®+1
2

´ j
2

Z '2
hd w® ; dwi

Z '2w®¢w ¡ 2 Z 'w®
hd'; dwi

6 c Z '2w®+2 + 2 Z 'w®
jd'j jdwj;

where the last line has been obtained with the inequation 5 8 By Young's
inequality

2w
®+1

2 jd'j¡ 1

4'w
®¡1

2 jdwj
2 > 0;

i e

4w®+1
jd'j2 +

1

4 ® + 1 2'2
jd³w

®+1
2

´ j
2 > 'w®

jd'j jdwj;

applied to the last term we get
4 ® ¡ 1

8

® + 1 2 Z '2
jd³w

®+1
2

´ j
2 6 c Z '2w®+2 + 8 Z w®+1

jd'j2
which is easily turned into

Z jd³'w
®+1

2

´ j
2 6 c® µZ '2w®+2 + Z w®+1

jd'j2¶ :

We may now conclude from the Sobolev inequality that recall ° n
n¡2

µZ '2°w° ®+1
¶

1
°

6 c® µZ '2w®+2 + Z w®+1
jd'j2¶ : 5 11

Step 1 Suppose now ® + 1 n
2 The formula 5 11 above yields

µZ '2°w° n
2 ¶

1
°

6 c n µZ '2w n
2
+1 + Z w n

2 jd'j2¶
6 c n ÃµZ '2°w n

2
°¶

1
°
µZ

supp' w n
2 ¶

2
n

+ Z w n
2 jd'j2 :

Hence if jjwjjLn
2 M1

is small enough we can absorb this term in the left hand side

and conclude that

µZ '2°w° n
2 ¶

1
°

6 c n Z jd'j
2w n

2

so that jjwjj° n
2

6 Cjjwjjn
2

by letting r0 tend to in¯nity and C is a constant strongly
depending on the geometry of M
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Step 2 Consider now the general case ®+1 > n
2 Fix q in ]n; °n[ we may estimate

Z '2w®+2 6 µZ
supp'w

q
2 ¶

2
q

µZ ' 2q
q¡2 w

®+1
2

2q
q¡2 ¶

q¡2
q

:

Standard HÄolder-like interpolation inequalities enable us to control the ¯rst paren-
thesis on the right-hand side by the Ln

2 and L° n
2 norms of w The second paren-

thesis is estimated as follows:

µZ ' 2q
q¡2 w

®+1
2

2q
q¡2 ¶

q¡2
q

6 "µZ ' 2n
n¡2 w

®+1
2

2n
n¡2 ¶

n¡2
n

+ "¡º
Z '2w®+1

with º¡1 q
n ¡ 1 and 0 < " < 1 to be chosen later The basic inequality 5 11

then becomes

µZ ³'w
®+1

2

´
2°

¶
1
°

6 c®³"jj'w
®+1

2 jj22° + "¡º
jj'w

®+1
2 jj22´+ c® Z w®+1

jd'j2:

For a given ® we may now choose " 1
2 c® ¡1 and absorb the ¯rst term on the

right-hand side in the left-hand side and obtain the second basic estimate:

jj'w
®+1

2 jj22° 6 c® 1 + ®º
jj '+ jd'j w

®+1
2 jj22: 5 12

Let now p ® + 1 and

N p; r µZ
Mr

wp
¶

1
p

:

By letting r0 go to in¯nity we may reinterpret formula 5 12 as

N °p; r+ 6 µ
cp 1 + pº

r+ ¡ r¡ ¶
2
p

N p; r¡ :

This is easily iterated letting p0
n
2 pm °mp0 rm;¡ 1 + 2¡ m+2 and

rm;+ 2 ¡ 2¡ m+2 thus leading to:

N °mp0; rm;+ 6 c° c
P

m
i 1 i°¡i N °m¡1p0; rm;¡ :

Letting m tend to in¯nity yields the expected result ¤
We now pass on to Lemma 5 3 whose proof looks quite similar

Proof of Lemma 5 3 Arguing as in the previous Lemma using the inequation
and the Sobolev inequality we arrive with some computations to another basic
estimate involving the two functions u and v and an extra cut-o® function ' with
support in Mr having value 1 on M2r and such that jd'j 6 1 r:

µZ ¡'v n
4

¢

2n
n¡2

¶
n¡2
n

6 c µZ u'2v n
2 + Z v n

2 jd'j2¶ : 5 13
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We may then apply the HÄolder inequality to the ¯rst term in the right-hand side

and absorb it in the left-hand side if r is chosen large enough We are left with

µZ '2v° n
2 ¶

1
°

6 c Z v n
2 jd'j2;

and with HÄolder again

µZ '2v° n
2 ¶

1
°

6 c µZ
suppd' v° n

2 ¶
1
°

µZ jd'jn¶
2
n

:

We may now use our assumption on d' together with the bound on volume growth
and conclude that

jjv
°
jjLn

2 M2r 6 C ³jjv° jjLn
2 Mr¡M2r ´ ;

which ends the proof ¤

Remark 5 5 The asymptotic structure is here C1;®-asymptotically °at It may
then be not regular enough for our purposes Since we intend to apply methods

of [17] we a priori need C3;®-asymptotic °atness However the elliptic trick of
[17 Lemme 4 4] may be used to obtain more regularity in weighted HÄolder spaces

through a further conformal rescaling

Geometry at in¯nity of 4-dimensional conformally °at manifolds We

prove here our main result: any complete conformally °at 4-dimensional manifold
M; g satisfying

Ricg 2 L2; Scalg 2 L 4
3 \ L2 1+± ; with ± > 0

is conformally equivalent to a compact manifold with a ¯nite number of points re-
moved As the proof shows it is enough to consider manifolds that are conformally
°at around in¯nity only We begin by stating:

Lemma 5 6 Let M; g be a complete Riemannian manifold of dimension 4 which

is conformally °at in a neighbourhood of in¯nity Assume it satis¯es the Sobolev

inequality

¹ M; g µZ
M

u4
¶

1 2

6 Z
M jduj

2; 8u 2 C10 M

and that the Ricci and scalar curvatures of M; g satisfy

Ricg 2 L2; Scalg 2 L 4
3 \ L2 1+± for some ± 2]0; 1[;

then there is a bounded smooth function f on M such that M; e2fg has a ¯nite
number of ends each of them asymptotically locally euclidean

Proof According to Theorem 3 1 there is a positive function v 1+u such that
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i there is a positive constant C with C¡1 6 v 6 C;
ii the new metric v2g has vanishing scalar curvature outside some compact

set;
iii the function u is in L4 \L1 and it satis¯es the equation

¢u +
1

6
Scalgu '

where ' ¡1
6

Scalg outside some compact set
In order to apply Theorem 5 1 we need integrability of the Ricci curvature of

v2g to the power n 2 2 The formula for the change of Ricci curvature under a
conformal change of metric ¹g v2g is

Ric¹g Ricg ¡ n¡ 2 v¡1Ddv + 2 n¡ 2 v¡2dv  dv +
¡
v¡1¢v ¡ n¡ 3 v¡2

jdvj
2

¢
:

Hence we need to show that
i du 2 L4 and
ii Ddu 2 L2

We ¯rst notice that du is in L2: from the proof of Theorem 3 1 and keeping the

notations thereof we have found u as a solution of the equation

u ¢¡1 2
M¡Kf

f + Af ¡cn ¢¡1 2
M¡KScalg

where A is the operator

f 7¡ Af ¢¡1 2
M¡K ³Scalg ¢¡1 2

M¡Kf´ :

Moreover our assumption on the scalar curvature implied that f lived in
L2 M ¡ K Let H1

0 M ¡ K be the completion of the space C10 M ¡ K en-
dowed with the norm h 7 kdhkL2 then the operator ¢¡1 2

M¡K realizes an isometry
between L2 M ¡K and H1

0 M ¡K Hence u ¢¡1 2
M¡Kf is in the Sobolev space

H1
0 M ¡K ; hence du lives in L2

Now we let ® du and the Bochner identity implies that the 1-form ® solves

the equation

¢® + Ric ® +
1

6
Scalg® ¡

1

6
u d Scalg + d':

where ¢ D¤D is the rough Laplacian From an integration by parts formula
we get

Z
M

jD Ã® j
2

Z
M jdÃj

2®2 + Z
M

h¢®; ®iÃ2

Z
M jdÃj

2®2 ¡ Z
M

h Ricg +
1

6
Scalg ®; ®iÃ2

¡
1

6 Z
M

Ã2 u hd Scalg; ®i + Z
M

Ã2
hd'; ®i:
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Let R > 0 and let ÃR be a cuto® function with value 1 in B x0; R and 0 outside

B x0; 2R We choose Ã ÃR ¡ ÃR0 R > R0 such that ' ¡1
6

Scalg outside

B x0; R0 and we integrate by parts in order to get rid of the term in d Scalg :

Z
M jD Ã® j

2
Z

M
jdÃj

2®2 ¡ Z
M

Ã2
h Ricg +

1

6
Scalg ®; ®i

¡
1

6 Z
M

Ã2
hd Scalg; ®i 1 + u

Z
M

jdÃj
2®2 ¡ Z

M
Ã2

h Ricg +
1

6
Scalg ®; ®i

+ µ
1

6¶
2

Z
M

Ã2 Scal2
g

1 + u 2 +
1

6 Z
M

Ã2 Scalgj®j
2

+
1

3 Z
M

Ã Scalg 1 + u hdÃ; ®i:
With the Cauchy{Schwarz inequality we get

Z
M

jD Ã® j
2 6 2 Z

M jdÃj
2®2 + Z

M
Ã2

jRic¡j j®j
2 +

1

18 Z
M

Ã2Scal2
g

1 + u 2:

Now we use the Sobolev inequality and a HÄolder inequality
Letting B B x0; 2R0 we have:

³
¹
2 ¡ kRic¡kL2 M¡B ´µZ

M
Ãj®j

4
¶

1 2

+
1

2 Z
M jD Ã® j

2

6 2 Z
M

jdÃj
2®2 +

1

18 Z
M

Scal2
g

1 + u 2Ã2:

We can then choose R0 such that

kRic¡kL2 M¡B x0;2R0 6 ¹ 4:

Since ® 2 L2 and Scalg 2 L2 by assumption letting R go to in¯nity yields ® 2 L4

and D® 2 L2 ¤
Applying the compacti¯cation theorem for conformally °at asymptotically eu-

clidean manifolds proved by the second author [17 Corollaire B 1] immediately
yields:

Theorem 5 7 Let M; g be a complete Riemannian manifold of dimension 4
which is conformally °at in a neighbourhood of in¯nity Assume it satis¯es the

Sobolev inequality

¹ M; g µZ
M

u4
¶

1 2

6 Z
M

jduj
2; 8u 2 C10 M

and the Ricci and scalar curvatures of M; g satisfy
Ricg 2 L2; Scalg 2 L 4

3 \ L2 1+± for some ± 2]0; 1[
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then M; g is conformally equivalent to a compact orbifold with a ¯nite number
of singular points removed

Remark 5 8 Stefan Unnebrink has constructed asymptotically °at in curvature

sense metrics on R4 with curvature bounded by r¡2¡" with " > 0 and slow
volume growth namely volgB x0; r 6 C r3 [28] Hence it seems necessary to
have an assumption similar to the Sobolev inequality which ensures euclidean
volume growth as is the case on any ALE manifold It would be nice to know
which assumptions imply the Sobolev inequality in the conformally °at case apart
from the already quoted positive Yamabe invariant case

Other dimensions Careful examination of the proof above shows that it relies

on the special fact that Ln
2 L2 has a Hilbert space structure in dimension 4

It then breaks down for n 6 4 Unfortunately we have been unable to ¯nd
an alternative argument that would cover the general case We shall however
prove here that analogous results can be obtained in dimensions n 6 4 with a
strengthened assumption on Ricci curvature

Theorem 5 9 Let M; g be a complete Riemannian manifold of dimension n
which is conformally °at in a neighbourhood of in¯nity Assume it satis¯es the

Sobolev inequality

¹n M; g µZ
M

u
2n

n¡2 ¶
1¡ 2

n
6 Z

M
jduj

2; 8u 2 C10 M ;

and the Ricci and scalar curvatures of M; g satisfy

r2
jRicg j 6 C; Ricg 2 Ln

2 ; and Scalg 2 Ln
2

1¡± for some ± 2]0; 1[ 5 14

where r is the distance function to a ¯xed point Then M; g is conformally
equivalent to a compact orbifold with a ¯nite number of singular points removed

Proof As above the main problem is to show that du is in Ln and Ddu in Ln 2

The idea is here to use classical local elliptic estimates for relatively compact
domains in M : for each 0

½½ ½½ M there is a constant C ; 0 > 0 such
that

kukW 2; n
2

6 C ; 0

¡k¢u + cnScalgukLn
2

+ kukLn
2 ¢

:

If one intends to stick to ¯niteness of Ln 2-norm of Ricci curvature 1 1 without
any extra assumption one encounters the following obstacle: there is a priori no
way to estimate uniformly w r t the domains and 0 the constants C ; 0

and it seems then impossible to globalize such estimates on the whole manifold
Assuming the extra condition stated in formula 5 14 is the key to overcoming

the problem Let As be the geodesic annulus A s 2; 2s from a ¯xed basepoint x0
Then the annuli As with metric gs s¡2g have uniformly bounded Ricci curvature
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are conformally °at and satisfy the Sobolev inequality From Cheeger's Lemma
[10 11] see also [23 10 4 5] their injectivity radii are uniformly bounded from
below Hence they have uniform lower bound on the harmonic radius [2 3 16]:
rH gs > r0 > 0 On each ball of radius r0 2 there exist harmonic coordinates

and the metric coe±cients are there controlled in the C1;®-topology
This has two useful consequences: ¯rst of all it gives volume growth control

as above and moreover one may apply the local elliptic estimate above extracted
from [14 Theorem 9 11] in euclidean norms to B r0 2 0 B r0 4 and
the equation

¢gsu + cnScalgs u cn's

where 's ¡Scalgs
around in¯nity Thus

kukW 2; n
2 B r0 4 6 C0 ³k¢gsu + cnScalgsukL n

2 B r0 2 + kukLn
2 B r0 2 ´ :

From the euclidean Sobolev inequality one gets

kDdukLn
2 B r0 4 + kdukLn B r0 4 6 C1 ³k'skL n

2 B r0 2 + kukLn
2 B r0 2 ´

and the bounds on the metric coe±cients in the coordinates yield that the same in-
equality is valid with gs-dependent norms rather than coordinate-dependent ones

Coming back to g using the volume bound from above obtained at the beginning
of this proof and the bound from below proved in formula 2 3 which yield a uni-
form upper bound on the number of harmonic balls needed to cover each annulus

and the conformal covariance of each norm involved we end up with

kDdukLn
2 M + kdukLn M 6 C2 ³k'kLn

2 M + kr¡2ukLn
2 M ´ : 5 15

Section 3 tells us that u lives in Ln
2

1¡±
± and the last term can then be estimated

by HÄolder's inequality and the volume growth This ends the proof ¤

Remark 5 10 If one wants to keep only integral conditions one can obtain the

same conclusions in higher dimensions n > 4 under some extra assumptions

on the derivative of the curvature tensor Namely let Mn; g be a complete
Riemannian manifold which is conformally °at in a neighbourhood of in¯nity with
n > 5 Assume now that it satis¯es the Sobolev inequality

¹ M; g µZ
M

u
2n

n¡2 ¶
1¡2 n

6 Z
M jduj

2; 8u 2 C10 M

and that the Ricci curvature of M; g satis¯es

Ric 2 Ln 2; DRic 2 Ln 3 \L
2n

n¡2

and that the scalar curvature satis¯es for a ± 2]0; 1[

Scalg 2 L
2n

n+2 \L2 1+± ; Dd Scalg 2 Ln 4 \ L2;
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and subeuclidean volume growth
volg B x0; r 6 C x0 rn

8r > 1;

then there is a bounded smooth function f on M such that M; e2fg has a ¯nite
number of ends and each of them is asymptotically locally euclidean Hence

Huber's theorem holds under these assumptions

Proof of the remark The proof of this last result follows basically the same path
as the previous proofs but is considerably more technical It begins as the proof of
Theorem 5 7 and the same argument leads to: du 2 L

2n
n¡2 \L2 and Ddu 2 L2 This

is not enough when n 6 4 and it remains to show that du 2 Ln and Ddu 2 Ln 2

Moser iteration enters the picture here applied to adequate inequations veri¯ed by
® du and D® in the notation of the proofs above One then uses the following

Moser-type analytical lemma:

Lemma 5 11 Let M; g be a complete Riemannian manifold which satis¯es the

Sobolev inequality

¹ M; g µZ
M

u
2n

n¡2 ¶
1¡2 n

6 Z
M

jduj
2; 8u 2 C10 M ;

and moreover we suppose that the volume growth of geodesic balls is sub-euclidean
Let A 2 L¿ satisfying the inequation

¢A 6 V A + f
with V 2 Ln 2 and f 2 Lp If p 6 ¿ 6 np

n¡2p then A is in L
np

n¡2p :

The lemma leads to the following direct corollary:

Corollary 5 12 Let M; g be a complete Riemannian manifold Under the same

assumptions if A 2 L¿ satis¯es the inequation

¢A 6 V A + f
with V 2 Ln 2 and f 2 Lp¡ \ Lp+ then if p¡ 6 ¿ 6 np+

n¡2p+
we get that

A 2 L
p+n

n¡2p+ :

We postpone the proofs of these two results for a moment and notice that once

one has singled out an adequate inequation on ® or D® the corollary applied to
both ¯nishes the proof of the remark

As for the ¯rst step inequation for ® we have seen that the di®erential form
® satis¯es the equation

¢® + Ric® + cnScalg® ¡cnud Scalg + d':

The Kato inequality implies that A j®j satis¯es the inequation:

¢A 6 V A + f
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with V Ric¡ + cnjScalg j and f jd'j + cnkukL1 jd Scalg j with our hypothesis
we have V 2 Ln 2 and f 2 Ln 3 \ L2n n¡2 and A 2 L2n n¡2 so that we can
employ the corollary and we obtain A 2 Ln

To pass on the case of D® we can di®erentiate again the inequality above and
obtain
¢D® + [D;¢]® + Ricg + cnScalg D®

¡ DRic ® ¡ cnd Scalg  ® + Dd'+ cn®  d Scalg ¡ cnuDd Scalg
According to M Le Couturier and G Robert [21 Lemma 3 3 1]

[D;¢]® X
1

2DXRic® + R DX®; : + DRic X ®:

Since the manifold is conformally °at the curvature tensor R is bounded in terms

of jRicg j so that the Kato inequality again yields that B jD®j satis¯es the

inequation ¢B 6 WB + h where W bnjRicg j + cnjScalg j and

h CnjDRicg jj®j + j®jjd Scalg j + cnkukL1 jDd Scalg j + jDd'j:
Now our assumptions are: h 2 L2\Ln 4 and B 2 L2 so that the Corollary above

implies that Ddu 2 Ln 2 ¤
Proof of Lemma 5 11 This is shown in the following way starting with the basic
inequality Lemma B 3 of [30] : if ½ > 1 and Ã 2 C10 M then

Z
M jd ÃA ½

2 j
2 6 C ½ Z

M jdÃj
2A½ + Ã2A½¡1¢A:

We use our hypothesis on A the Sobolev inequality and HÄolder inequality in order
to obtain:

¡¹¡ C ½ kV kLn 2 suppÃ
¢
kÃ2A½

kL
nn¡2 6 C ½ kfkLp µZ

M
Ã

2p
p¡1 A ½¡1 p

p1 ¶
1¡1 p

+ C ½ µZ
M

jdÃj
2¸¶

1 ¸
µZ

M
A ½¡1 p

p¡1 ¶
1¡1 p ½

½¡1

;

where ¸ is de¯ned by ¸¡1 + 1¡ 1 p ³
½

½¡1´ 1 Assume now that A lives in L¿0

where p 6 ¿0 6 np n ¡ 2p Let ½ be de¯ned by ¿0 ½ ¡ 1 p p ¡ 1 and let
¿1

n
n¡2 ³1 + p¡1

p ¿0´ so that ¸ ¿0p ¿0 ¡ p Then choose R0 such that

C ½ kV kLn 2 M¡B x0;R0 6 ¹ 2

Using the sub-euclidean growth of the geodesic balls and applying the last in-
equality to a function Ã ÃR such that supp ÃR ½ B x0; 2R ¡ B x0; R0

ÃR 1 on B x0; R ¡ B x0; R0 + 1 0 6 ÃR 6 1 on M and jdÃRj 6 2 R on
B x0; 2R ¡ B x0; R we obtain

¹
2 kAkL¿1 B x0;R ¡B x0;R0+1 6 C ½ kAk

½¡1
L¿0 kfkLp +

h
C + C 0Rn ¿0¡p

¿0p ¡2

i kAk
½

L¿0 :
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Now since ¿0 6 pn n ¡ 2p we have n ¿0¡p
¿0p 6 2 Letting R tend to 1 we get

that A 2 L¿1 By iterating this procedure we ¯nally obtain that A 2 Lr for all
r 2 [¿;np n¡ 2p [

It remains to go up to the upper bound np n ¡ 2p and this is done in the

following way: we apply again our ¯rst inequation with ½ de¯ned by
np

n¡ 2p
½

n
n¡ 2

½ ¡ 1
p

p¡ 1
;

and we choose R0 Ã similarly as above It yields

¹
2 kÃ

2
½ Ak

½

Lpn n¡2p 6 C ½ kfkLpkÃ
2
½ Ak

½¡1
Lpn n¡2p + C ½ Z

M jdÃj
2A½:

On the other hand we have

Z
M jdÃj

2A½ 6 Z
B x0;R0+1 ¡B x0;R0

jdÃj
2A½ +

4

R2 Z
B x0;2R ¡B x0;R

A½:

Since ½ < pn n ¡ 2p we can choose a ¯ in [¿; np n ¡ 2p [ such that ½ 6 ¯
From the HÄolder inequality and the volume growth of geodesic balls we get

Z
B x0;2R ¡B x0;R jdÃj

2A½ 6 CRn 1¡½ ¯ ¡2
kAk

½

L¯ :

As ¯ < np n¡ 2p we have n 1¡ ½ ¯ < 2 and ¯nally A 2 Lnp n¡2p when R
goes to in¯nity ¤

The case of the sphere The results of the current section can also be applied
to the case of a domain in the 4-dimensional sphere and we get a strengthening
of Corollary 2 6 for this precise dimension As already noticed in section 2 the

Sobolev inequality is automatically obtained in this case hence the following re-
sult analogous results may be obtained for any other conformally °at compact
manifold with positive Yamabe invariant :

Corollary 5 13 Let  be a domain of the sphere S4; g0 endowed with a complete
metric g conformal to g0 Assume moreover

Ricg 2 L2 ; g and Scalg 2 L
4
3 ; g \ L2 1+± ; g for some ± 2]0; 1[:

Then there is a ¯nite set fp1; : : : ; pkg such that  S4 ¡ fp1; : : : ; pkg

This may be compared with S Y A Chang J Qing and P Yang's proof [8] that
any domain in the 4-sphere with a complete metric conformal to the round one

with Ricci curvature bounded from below bounded \Q-curvature" the integral of
the local curvature expression that gives the Gauss{Bonnet{Chern integrand and
uniformly positive scalar curvature is the sphere minus a ¯nite number of points
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