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The skein relation for the (rj2,^)-link invariant

Anna-Barbara Berger and Ines Stassen

Abstract. Pulling back the weight system associated with the exceptional Lie algebra 02 by a
modification of the universal Vassihev-Kontsevich invariant yields a link invariant, extending it
to 3-nets, we derive a recursive algorithm for its evaluation
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Keywords. Skein relations, monoidal category, universal Vassihev—Kontsevich invariant,
representation theory of Lie algebras

0. Introduction

There is a well-known technique for the construction of Vassihev link invariants
define a weight system (1 e a linear form on the space of chord diagrams respecting
certain relations) on the basis of some Lie algebraic data and pull it back by
the universal Vassihev-Kontsevich invariant But unfortunately, the latter is not
known explicitly enough to allow direct evaluation of these link invariants

Efforts have been made to handle the universal Vassihev-Kontsevich invariant
by considering only "elementary" parts of links into which any link may be cut
This approach has been successful in so far as one may hope to find skein relations
for the link invariants coming from Lie algebras—a skein relation being an equation
implying a recursive algorithm for the computation of a link invariant, for example
the one that determines the famous Jones polynomial up to normalization

4-1 r>( \y \ J- —2 r>( •• / \ (+— 1

It has been shown that the link invariants obtained from the classical simple
Lie algebras sln, son, and spn satisfy certain versions of the skein relation of the
HOMFLY polynomial (sln, see [LM 1]) resp the Kauffman polynomial (son, spn,
see [LM 2]) But what about the exceptional simple Lie algebras7

The authors are partially supported by the Schweizerische Nationalfonds
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In this paper, we deal with the case of the exceptional Lie algebra g2 By means
of a generalization of the notion of links—since we have to introduce branchings, we
call them 3-nets—we manage to establish a skein relation for the (q%, V)-invanant,
V being the 7-dnnensional "standard" representation of g2 As a by-product, we
obtain an extension of the (32, V)-invariant to closed 3-nets Kuperberg's skein
relation for the quantum g2-mvariant (see [K]) turns out to be a special case of
ours, it is not too surprising that there is a connection between these skein relations
since the restrictions to knots of the two invariants coincide according to a result
of Piumkhm's in [P]

We expect that our method can be adapted to the case of the other exceptional
Lie algebras

To the reader not familiar with Lie theory, we recommend [H] and [FH] For an
introduction to Vassiliev invariants and weight systems, see [BN 1], a more general
definition of weight systems is given in [V], section 6

Overview over the categories and functors appearing in this paper

the category of
trivalent, paran-
thesized, framed
tangles, every 3-

net corresponds
to a morphism
of this category

S2 V)

the (g2,^/)-mvanant

the category ofuniversal Vassi-
hev-Kontsevich in- 3-diagrams (a
variant generalization

of chord diagrams)

(02)
(02, V)-weight sys- a modification of
tem a subcategory of

the category of
representations
of 02

1. 3-nets and 3-tangles

In this section, we will define 3-nets and 3-tangles They are generalizations of
links and tangles We will also construct the category Ttpf of trivalent framed
tangles, which will allow us to work in a category-theoretical setting

A 3-net will be something like a "link with branchings" To describe the situation

near a trivalent vertex (1 e near a branching point), we will need the following
notion
Let B be the open unit ball in R3, îe {x G R3, \x\ < 1}, together with the

distinguished subset T {(t,0,0)|0 < t < 1} U {(-i, ^?,0)t|0 < t < 1} U
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B

Definition 1.1. A framed 3-net is a subset N of R3 with a finite subset {t\,... ,£„}
C N such that:

(i) there exist disjoint open subsets U\,.. Un of R and diffeomorphisms ft :

Ul —> B (i 1 n) such that Ul is a neighbourhood oftt, f(tt) (0,0,0),
and fi(NnUt) =T,

(n) N := N\ (U^—^ /j~ ({x € -B; \x\ < ^}) j is an embedded smooth closed com¬

pact 1-dimensional manifold,
together with:

(in) a smooth vector field on N that is nowhere tangent to N (and in particullary
nowhere zero)

The points t\,. ,tn are called trivalent vertices of N; boundary points x of N
with x qL Ut (Vi) are called univalent vertices of N.

Observe that 3-nets without trivalent and univalent vertices are simply framed
links. When we represent a framed 3-net N by a diagram, the framing of N is

given by the blackboard framing1.
The 3-net in the following figure is a 3-net with 7 trivalent and 3 univalent vertices.

As all 3-nets in this paper will be framed 3-nets, we will usually omit the word
"framed".

Definition 1.2. Two 3-nets N\ and N% are equivalent if N\ can be deformed into
N-2 within the class of framed 3-nets by a smooth 1-parameter family of diffeomorphisms

o/R3.
A closed 3-net is a 3-net without univalent vertices.
A 3-net is planar if it is equivalent to a 3-net M with M C R2 X {0} and the

i.e. the vector field assigned to N consists of vectors pointing upward
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vector field assigned, to M consists of vectors of the form (0,0,1).

Remark 1.3. The overview in the introduction intimates that we will obtain an
invariant of closed 3-nets that is composed of Vassiliev invariants (see also section
6). Vassiliev invariants are usually defined for oriented links, but we remind the
reader that there is a définition for unoriented links (see e.g. [St]):
A link invariant2/ is a Vassiliev invariant of type m if for any link L, any diagram
D{L) of L and any subset C of the set of crossings of D{L) with cardinality greater
than m the following equation holds:

xc_c

where |X| is the cardinality of X, D{L)x is the link diagram obtained form D{L)
by changing all the crossings in X, and [D(L)x] is a link with diagram D{L)x
(such that the framing on the link is given by the blackboard framing of the
diagram).
Of course, this définition can be extended to 3-nets.

Definition 1.4. A (framed) 3-tangle is a framed 3-net N with N C [0,1] x R2
such that the points of N lying in the planes {0} X R2 and {1} X R2 are exactly
the univalent vertices of N and these lie on one of the lines {0} X R X {0} and

{1} X R X {0}. Additionally, we require that the normal plane of N in a univalent
vertex v is parallel to the plane {0} X R and the vector field assigned to N is
(0,0,1) mv.

Definition 1.5. Two 3-tangles T\ and T% are equivalent if one can he deformed
into the other within the class of 3-tangles by a smooth 1-parameter family of
diffeomorphisms o/R3.
A 3-tangle is planar if it is equivalent to a 3-tangle M with M C [0,1] X R X {0}
and the vector field assigned to M consists of vectors of the form (0,0,1).

Now we will define the category of trivalent, parenthesized, framed tangles
Ttpf. It is an (unoriented) generalization of the category of non-associative tangles
in [BN 2].

First, we will define non-associative words (which will be the objects of Ttpf).

Definition 1.6. A non-associative word is a word w in the alphabet {o, (} such
thatw is equal to the empty word, (o), or (wiwy) where w\,W2 are non-associative
words. For every word, we identify (w) with w.
The length l(w) of a non-associative word w is the number of symbols o in w.

i.e. a function assigning to each link an element of an abelian group (usually C) that is

constant on the equivalence classes of framed links
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Example 1.7. / ((o)(((o)((o)((o)(o))))(o))) 6

Definition 1.8. Let Ttpf be the monoidal C-category whose objects are non-as-
sociahve words (where the tensor product w\ <g> wy is (w\W2) and the unit object
is the empty word) and whose morphisms are freely generated by the following
morphisms:
(Gl) A morphism ~V_ vwx and a morphism _X~ vwx for each triple (v, w, x)

of non-empty non-associative coloured words: The sources of these

morphisms are ((vw)x) and (v(wx)) and their targets are (v(wx)) and ((vw)x)
respectively.
Graphically, we represent these morphisms as the following examples
indicate (the parenthesation of source and target is encoded in the distances
between the strands):

(G2) A morphism ^\ v w and a morphism /^ v w for each pair (v, w) of
nonempty non-associative words: The source of these morphisms is (v,w) and
their target is (w,v). We will depict them as follows:

/x ((o)((o)(o))),((o)(o)) ^

(G3) A morphism Ç_ and a morphism with source and (oo) and target (<x>)

and respectively; graphically:

GJf.) A morphism —\ and a morphism /— with source o and (oo) and target
(oo) and o respectively; graphically:
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The graphical representation of the tensor product of two morphisms is
obtained by putting the first above the second, the graphical representation of the

composition S^oSi is obtained by glueing the graphical representation of S^ to the

one of S\ from the right:

Si

5*2

<X> S*2 <->

o S\ *—> _ s,

is,
s2

s2

The graphical representations of the morphisms allow us to assign a 3-tangle
to each morphism M (namely a 3-tangle T with the graphical representation of
M as diagram, supplied with the blackboard framing).

Definition 1.9. The monoidal C-category Ttpf is the category whose objects
are the objects of Ttpf and whose morphisms are the equivalence classes of the

morphisms of Ttpf under the following equivalence relation: Two morphisms from
u to w are equivalent if they get assigned equivalent 3-tangles.

Remark 1.10. The equivalence relation in the above définition can be described
locally. For morphisms generated by (G1)-(G3) this is done in [BN 2]. If we take
the generators in (G4) as well, we have to add the following relations for any word
w:

Relation Graphical representation

(idw <g> >-

Remark 1.11. Observe that any 3-tangle, and in particular any closed 3-net, is

equivalent to a 3-tangle assigned to a morphism of Ttpf, and so the equivalence
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classes of 3-tangles correspond exactly to a basis of the morphisms of Ttpf. One

might achieve this by taking much simpler generators (e.g. only generators without
multiple strands), but then the local description of the equivalence relation given
in remark 1.10 would be more complicated.

2. The universal Vassiliev-Kontsevich invariant extended to 3-
tangles

Now we want to extend and adapt the universal Vassiliev-Kontsevich invariant to
the 3-tangles in Ttpf. Since this invariant operates by taking a diagram representing

the given tangle as support and adding some chords, we have to generalize the
notion of chord diagram and introduce trivalent vertices in the support, too.

Definition 2.1. A 3-diagram is a finite trivalent graph K (by which we understand
a graph with every vertex being either univalent or trivalent or else bivalent and
adjacent to a loop) equipped, with the following data:

• a colouring of the edges by or such that there is not a vertex adjacent
to two edges coloured by and one coloured by

• a colouring of the univalent vertices by o or • according to whether the edge

arriving there is coloured by or
• for every trivalent vertex x of K, a cyclic order of the edges arriving at x.

The union of the edges coloured by is referred to as the support of the diagram;
the edges coloured by are called chords.
The degree of a 3-diagram is the number of trivalent vertices adjacent to at least

one chord

Usually, we describe the 3-diagrams by graphical representations in the plane
encoding the information about the cyclic order near the trivalent vertices by
arranging the adjacent edges counterclockwise.

Definition 2.2. The category T>% is a monoidal C-category whose morphisms are
linear combinations of certain graphical representations of 3-diagrams. It is given
by the following data:
objects: Obj{TD%) := Un=o{°'*}"' -^e tensor product on Obj{TD%) is the juxtaposition.

generators: The morphism spaces are generated by:

o
Note that for a 3-diagram without univalent vertices adjacent to a chord, this is twice the

classical degree



Vol 75 (2000) The skein relation for the (02, V)-hnk invariant 141

the source (resp the target) being denoted, on the left-(resp nght-)hand side from
top to bottom41

The tensor product of two morphisms is obtained by putting the first above the

second, the composition by glueing together the corresponding entries of the target
of the first and the source of the second

relations: Of course, different graphical representations of isomorphic 3-diagrams
are to represent the same morphism, in addition, we impose the following
relations

(AS1)

(AS2)

(AS3)

(IHX1)

(IHX2)

(IHX3)

o o o p

Obviously, the morphisms involved in the relations described above can be

The apparent 4-valent vertices are no vertices at all - they are just crossings of two edges

(there is no need to say that one of them passes over the other)
The reader familiar with Bar-Natan's way of defining weight systems should pay attention

to the sign in our relation (AS3)
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composed of the generators of D3, the relation (IHX2) for example can be written
as follows

But for obvious reasons, we refrain from doing so

Remark 2.3. The relations (AS1), (AS2), and (IHX1) allow introducing trivalent
vertices adjacent to three chords m a consistent way, which are convenient e g for
the formulation of (IHX2) The relations (ASS), (IHX2), and (IHX3) are required
for the existence of the universal Vassiliev-Kontsevich invariant See proof of 2 8

for (ASS) and proof of theorem 1 (1) in [BN 1] for (IHX2) (the 4T-relation),
(IHX3) reflects a similar situation near a trivalent vertex

Definition 2.4. Let D3 be the completion of the (graded) category D3

For convenience of notation, we define a functor A from a specialized version
X>3 of the category V3 into V3

Definition 2.5. Let Dcj be the category whose objects and morphisms are those

of 2?3 together with some extra information in the morphisms, some connected

components of the support containing no trivalent vertices adjacent to three edges
coloured, by may be labelled by replacing the adjacent components of the source
and/or the target by *
The composition of morphisms is to respect the labelling
The relations of U^ are those ofT>3 with any possible labelling

If D is an arbitrary morphism in T>s, we denote by D]~ the morphism of Dcj

that is D with the component departing from the k-th entry of the source labelled

Definition 2.6. Let A be the monoidal functor T>^ —s- V3 doubling the labelled

components and taking the sum over all possible ways of lifting arriving chords to
the new components of the support, thus, A is given by

A(*) • • A(») • A(o) o
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All the other generators (without any labelling) are not affected by A.

As an immediate consequence of the relation (IHX3), we obtain:

Lemma 2.7. l| AÇQ) [>- >-fp}- -<] AÇQ) [I ÇdJ-<

/or any fitting 3-diagram D. D

Finally, we get to the definition of the universal Vassiliev-Kontsevich invariant:

Definition and Theorem 2.8. The following assignments define a monoidal
functor Zf : Ttpf —> T>s, the (unoriented) universal Vassiliev-Kontsevich
invariant:

Zf(u) := •", where u is a non-associative word of length n.

.¦= _
¦=

.¦= _

._ f..

O

c1/:

IA

—

i/;x

O

:= f-^Bm_

where e±* - := è)"

is the Knizhnik-Zamolodchikov associator (for definition see [LM 3])

e C \ {0}
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A := $0A($3)[^jjB

u,v,wFor generators with multiple strands, i.e. ^\ UiV,
""y(,._

UiV, ~V_ UiViW or _Y

for some non-associative words u, v, and w, the image under Zf is obtained by

splitting the corresponding components of Zf( ^\ <>,<>)? Zf( /<^ ôj<>)7 Zf( ^^ 0,0,0)7

or Zf( _/~ o,o,o) respectively by repeated use of IS., e.g.

I (v) — 1 times I (u) — 1 times

Remark 2.9. As $, A, B, C are formal power series in certain 3-diagrams with
degree 0-part 1, one may take their inverses and square roots by substituting x for
their higher degree parts and expand the corresponding function of x in a Taylor
series.

Remark 2.10. Since the number of trivalent vertices in a 3-tangle is invariant, f
may be chosen freely.

Proof of 2.8. In section 1 of [MO], Murakami and Ohtsuki define the universal
Vassiliev-Kontsevich invariant for oriented, 3-tangles and prove that it is indeed
an invariant. Their définition can be modified—without destroying the invariance
of the functor—as follows: Omit the signs accounting for the orientation of the
strands, and introduce the antisymmetry relation (AS3) instead of the corresponding

(implicit) symmetry relation in the category of oriented 3-diagrams. In order
to obtain as degree 1-part of Zj( /<^ := Zj( ')^ — Zj( /<^ the diagram in
which the double point is replaced by a chord (arriving at the support on either
side like this: we have adjusted the sign in the exponent of the image of
the crossings.

With this modified version, nothing can keep us from forgetting the orientations
both of the 3-tangles and of the 3-diagrams. D

3. The (rj2,^)-weight system extended to 3-diagrams

Let A be the subspace of the morphisms of P3 generated by diagrams with support
S*1 and without univalent vertices. It has been known for some time that given a Lie
algebra g, a representation V of g, and an ad-invariant symmetric non-degenerate
bilinear form on g, one can construct a linear form—called weight system—on A if
an orientation on the support is added (see e.g. [BN 1], section 2.4, or [V], section
6)6. In this section, we construct an unoriented and extended version of the weight

Our approach is closer to the one described in [V],
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system one gets from g2 with its 7-dimensional standard representation and the
bilinear form hn (where h is any non-zero complex number and k the Killing form
on 32) We do this by defining a functor ty from P3 to C(fl2), a modification of a

subcategory of the category of representations of 32

Denote by V the 7-dimensional irreducible representation and by L the adjoint
representation of 32 Let the highest weights of these representations be (1,0) and
(0,1) respectively

The following fact assures that V is selfdual (1 e V V*) and that there exist
02-linear embeddmgs tç and iy from C and V respectively into V <g V unique up
to scalars

Fact 3.1.

with Sym2V C 0 W, A2V V®L

where W is the irreducible representation of Q2 with highest weight (2,0)

For the construction of the functor 'J, we will also need the following g2-lmear
maps
• PC V <S>V ^ C and pv V <g> V —> V, the projections belonging to the

embeddmgs tç and iy (1 e pc °«c ^Ci Pv ° W idy)
• fhpx®Y X (g) Y —s- Y (g) X, the g2-lmear maP taking x (g) y to y (g) x (Vx G

X,y G Y forX,y G {^,L})
• cas C —s- L (g L with (/ik) o cas 14îdc Observe that cas maps I to the

Casimir belonging to hn

Now we define the category C(q2) that will be the target of the functor ^ Let
ftbea formal parameter

Definition 3.2. The category C(Q2) ls the monoidal C[[/i]]-category with objects

Obj(C(Q2)) {C[[/i]] <gc U \U is a tensor product over C with factors V and L}
and with the following morphism spaces

Morc(s2){C\h\ ®c U^Clhl ®c U2) C[ft] ®c HomB2(tfi,tf2)

The definition of ^ is contained m the following proposition whose proof will
be omitted, because it just consists m checking straightforwardly that ^ respects
all relations required

"Standard" in the sense that every irreducible representation of 02 occurs as a direct sum-
mand of some tensor power of V
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Proposition 3.3. For any Q2~hnea,r embeddmgs i(j and iy o/C and V respectively
into V (g V, there exists k € C for which we obtain a well defined C[[/i]]-/mear
monoidal functor ^ : V3 —s- C(q2) by setting

(1) ^>(o) :=C[[h}}(E)L *(•) :=C[[h]}(E)V
(11) ^( < := 1 (g fhpLigiL ^( ^>\ := 1 <g fhpvigiv

*(
(ill) *(

*(
(w) *(

*(
H *(

(vi) *(
*(

Ô)
¦

• ^^

'
:= 1

:= 1

-0

J
—

—

—

:= 1 (g fhpL®v *( ^^ :=

(g Hk, ^( := 1

(g 7pc *( (^ := ]

:= h<S)Lie bracket on Q2

:= /i<g dual of the Lie bracket on 5J2

:= 1 (g fcpv *( • <^ ]

'.= h (g representation

:= — h <S) representation.

1 (g fhpvi»L

(g cas

L <g «c

1 := 1 <g «v

Remark 3.4. The factor k in (w) depends on the embedding iy : V ^ V <%>V.

The value of k for a fixed embedding %y can be found by solving the equation

(1 (g (pc (g idy)) o (1 (g («dy <g «v)) 1 <g kpy representing the fact that
<J( ^ <J( )>— must hold.
The factor 7 in (m) has been chosen to assure ^( (~7 xf( — ); it is independent

of the embedding «c-
The formal parameter h has been introduced to assure the existence of ^{D) for

every morphism D of P3: The powers of h induce a grading on the morphism
spaces of C(g2), an(i with respect to this grading ^ is a grade preserving functor
that is well defined in every degree and hence on the whole of P3.

Remark 3.5. In the introduction to this section, we mentioned the construction
of a weight system ^ (out of Lie algebra information) given in [BN 1] and [V]. In
these papers, the support of the diagrams is oriented, and so the reader familiar
with them might ask if there is still a connection between ^ and ^. From the
following observations, one can deduce that ^ of an oriented diagram of degree m
is exactly the degree m part of ^ of the underlying unoriented one:

i<g#(S) *(^) /i»chords <g #( c^r *(Cr)

Q

Observe that h& induces an isomorphism from L to L*
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l<g)#(^) *(X^) /i»chords (g) #( ^) *(XD)

(where $(D) is obviously regarded as map and not as tensor).

4. The skein relation for the (fj2,^-invariant

What we have achieved so far, is the construction of an invariant for 3-tangles:
1/ v\ := $ o Zj. Unfortunately, we cannot evaluate it directly because the
expression known for the associator $ is not explicit enough to allow concrete
computations. But we will derive a skein relation, i.e. recursive rules by which we
can reduce the problem to finding the values for planar 3-tangles (with these, we
will deal in the next section).

The idea is to cut out a small neighbourhood of a crossing and insert something
else without changing the value of the invariant. The substitute for the crossing has

to be a linear combination of small, simple 3-tangles with four univalent vertices.
Obvious candidates for such are the inverse crossing, X and ; as their values
will prove to be linearly independent in the space of endomorphisms of V <g> V,
these are not sufficient, and therefore, we include X into our considerations.

As V<%>V decomposes into four different irreducible representations (namely C,
V, L and W; see fact 3.1), each g2-lmear map V<%>V —> V<%>V is determined by the
four corresponding eigenvalues. To establish our skein relation, we have to ascertain

the four eigenvalues of/(s2 v)( X I(B2,v)( X I(B2,v)C)K I(B2,v)( X

Eigenvalues of I(S2iv)()\ and I(S2iv)(X,
The eigenvalues of J(fl2 v)C/\) an(i I(B2 v)( X are the products of the

corresponding eigenvalues of ^(eT^ — and ^( X )•

Quite a bit of explicit calculation yields that the eigenvalues of ^( _^_ are ^ on

C, |^ on V, 0 on L and —-^g on W; accordingly, the eigenvalues of ^(eT^ —

are eT47T, e^'SK, 1, and e±â4h, respectively.
The eigenvalue of *( X is 1 on Sym2^ C 0 W and -1 on A2V V 0 L.

Eigenvalues of /(S2iy) X
As J(fl2 y)( X is the identity on V <g> V, its only eigenvalue is 1.

Eigenvalues of /(S2iy)(
Let c be the scalar by which ^( XX operates on V. Then we have:
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Hence LS2 v\( is 0 everywhere except on C, where it has the eigenvalue 7c

Remark 4.1. Observe that

I(g2 v) O * o Zf O c*( O 7c

As Pmnikhm has shown m [P] that for framed knots the Reshetikhm-Turaev quantum

invariants yield the same values as the invariants obtained by using the
corresponding weight systems, we can use a result of Rosso and Jones m [RJ] to
determine the value of c

n

where A+ is a possible choice for the set of positive roots of q%

A is the highest weight of V

is the bilinear form on the weight space of g 2 induced by
the bilinear form hn on q%

Simplifying this expression and setting q

7c q5 + q4 + q + 1 + q l +q 4 + q

we get

-4 „-5

Eigenvalues of I^2 V) H
Let a (resp b) be the eigenvalue of
have

*(

(resp

4=
y au

on 1^ Then we

Since ^( )-( is 0 everywhere except on V, the parameter f occurs nowhere but in
the eigenvalue of 1/ v)CH\) onV, which is -y= (and ^ 0), therefore, we do not

have to care about the factor —3=, but can simply shift the possibility of choice

from f to r ab

Remark 4.2. It is nonetheless possible to determine ab by using the following
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result of [LM 4] section 4: AB (C^1 <g> C-1)A(C1), and lemma 2.7:

><) *(

149

thus

ab -.c

Remark 4.3. The invariant 1/ v\ takes actually values in C|[/i]|, but as long as

we do not want to fix h and r, we can regard them as elements of C\h, ^, rfl and,

accordingly, C(fj2) as C\h, i,r]|-category.

To summarize (recall that q e^^^):

Eigenvalue

on

c
V

L

w

J(fl9,V)(X)

-q-3
-1
q

J(fl9,V)(X)

-q3

-1

/(S2,V)(

1

1

1

1

X) J(09,V)X

7c

0

0

0

0 J(fl9,V)(X)
0

r
0

0

The leftmost column can be expressed as a linear combination of the other
columns; i.e. substituting this linear combination of the 3-tangles /\ ^
and ''^\ for a crossing *)*\ in a 3-tangle does not change the value of J(fl2 y).

Theorem 4.4. For the invariant L v\, the following skein relation holds:

where a := q

ß ¦= 9-
7 := 7sX
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Since //02 v\ is a monoidal functor and invariant under ambient isotopy, we can
deduce another skem relation as follows

cdia2 v)(r8I) + ßiiS2 v)( X + 7/(S2 v)(W) + 5i{S2 v)(78l)
<y-hS2 v)( X + ßi(S2 v)( X + ii(S2 v)( X + ^(S2 v)( X

Combining these two versions of the skem relation, we obtain

Corollary 4.5. For the invariant I(ß2 v^, the following skem relation holds^

h*2 v)( X A/(S2 v)( X + M/(S2 v)( X + PI(S2 v)( X + */(B2 v)( X

where A f^±|1 a

P T^
a aS

I—a

It is clear that by means of this relation, every 3-tangle can be reduced to a
linear combination of planar 3-tangles

Remark 4.6. The invariant 1/ v\ ^ o Zj of closed oriented 3-nets itself is
" f" Vnot a Vassihev invariant, but "consists of" Vassihev invariants m the following

sense For each m G N, let I. v\ be the function with values m C|[^,r]] such

that /(S2 v) J2™=0 ^V)^2™ Then 7(^V) 1S an mvanant of type m

5. Values of the (fj2, ^-invariant on closed planar 3-nets

In this section, we show how the value of iVfl2 v\ on a closed planar 3-net can be
calculated recursively

The following lemma assures that it is sufficient to consider connected 3-nets

Lemma 5.1. If a closed 3-net N is equivalent to a 3-net consisting of two closed
3-nets Ni and N<2 with N\ C R~ x R2, ^2 C R+ x R27 then

1) I{ß2V)(N2) D

Setting r —(q2 +5 + 1 + 5 2+ç 3+ç 4) we obtain the skein relation given in [K]



Vol. 75 (2000) The skein relation for the (Q2, V)-link invariant 151

As, by definition, every planar 3-net is equivalent to a 3-net contained in R x
{0} with only upward pointing vectors assigned, it is enough to calculate //02 v\
for these. Therefore, we assume that all planar 3-nets in this section are of this
type.

Definition 5.2. Let N be a planar 3-net. A mesh of N is the closure of a
connected component of (R X {0})\TV. A n-mesh is a mesh with n trivalent
vertices in the boundary.

We will show how in any non-empty connected closed planar 3-net the number
of meshes can be reduced without changing the value of the invariant. As we know
that //02 v\ (empty 3-net) 1 (the empty 3-net is the unity in Ttpf and //02 v\ is a

monoidal functor), this will allow us to calculate the invariant of a closed planar
3-net recursively.

Proposition 5.3. Let N be a non-empty closed connected planar 3-net with m
meshes. Then there exist closed planar 3-nets N\,.. ,Nr (not necessarily
connected) with fewer than m meshes and coefficients Ai,... ,Ar G C such that

Proof The idea is to cut out a mesh and replace it by a linear combination of
pieces that lead to 3-nets with fewer meshes.

Thanks to the following lemma, the mesh we want to cut out can always be
chosen to be a simply connected n-mesh with n < 5.

Lemma 5.4. Let N be a planar non-empty closed connected 3-net. Then N has

at least one simply connected n-mesh with n < 5.

Proof of the lemma. If TV is an embedded S*1, N has a bounded 0-mesh, and so in
this case, the lemma holds.
Let ft denote "number of" and let N be a 3-net without 0-mesh.
Observation 1: jj vertices of TV — ff edges of TV + H meshes of TV 2 (Euler characteristic

of S*2).

Observation 2: If we assign to each mesh M the appropriate part of the contribu-
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tions of its vertices, its edges, and its region, i.e.

3 (ft vertices of M)

+ 3 (ft vertices of M for which all adjacent edges belong to M)

+ 3 (ft vertices of M that belong only to M)

-\ («edges of M)
— I} (ft edges of M that belong only to M)

I +1,

XM ¦

then Xm 2.

M mesh of N

Observation 3: For a simply connected n-mesh M of N, we have \m 1 — £n-
Observation 4: If the unbounded mesh M' of AT does not contain an edge belonging
to M' only, then \w < 1-

If N does not contain an edge that belongs to one mesh only, the lemma is a

consequence of observations 2, 3 and 410.

Now suppose that there are edges e\,... e^ such that e0 belongs to only one
mesh Mj. Note that forgetting such an edge e0 would split the 3-net N into two
connected components A^i and N02- As there are only finitely many edges e3,
there is an edge e% for which at least for one k G {1,2} Ntk satisfies the following
properties:
(i) Ntk does not contain an edge that belongs to only one mesh;

(ii) any mesh M of N that is also a mesh of A^ is bounded.
The sum Yl Xm over all meshes M of N mentioned in (ii) is greater than 0 (look
at Y^ Xm with M considered as mesh of Ntk, use observation 4, and subtract ^ for
the influence of et), and thus observation 3 guarantees that at least one of these
meshes has fewer than 6 vertices. D

To replace n-meshes for n < 5, we will use the following lemma:

Lemma 5.5. The following equations hold:

(°) J(s2,v)(O) =7c/(S2,v)( 7c,

(%) W)(o) =0,

%%) J(S2,V)( y>- th t:=±(-q3 - 7),

Note that any bounded mesh M that does not contain an edge belonging only to M is simply
connected.
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M 1(02 v)( XC)

^

Proof of the Lemma Equation (o) is proved in remark 4 1

Equation (t) is true because //S2 y) Q— is a g2-lmear map from C to V and
must therefore be 0

Equation (it), we get from J(fl2 v)( ^<>— *( <0X3^ ^*( —
To get equation {in), we use the skein relation given in theorem 4 4 (rotated by
90°)

Note that /(S2 v)( X> /(S2 v)( >- o /(S2 v)( / -</3/(s2 v)( >- (only
the eigenvalue of //02 v\ / onV matters)
Equation (w) and (w) can be obtained in a similar way For (v), it may help to
use that ^XZ^ ~ ^$X D

As //02 y\ is a monoidal functor, equations (o)-(u) will still hold if the 3-

nets depicted in the arguments of //02 v\ are parts of bigger 3-nets that are
identical outside the depicted region for all arguments in the same equation The
observation that for all equations, the 3-nets appearing on the right-hand side
have fewer meshes than the one on the left-hand side concludes the proof of the
proposition D

Now we are able to compute the value of the //S2 ^-invariant for every oriented
closed planar 3-net recursively Planar 3-tangles that are not closed can often be
reduced by the same technique, but because in this case, lemma 5 4 is no longer
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true, it may happen that we get stuck before reaching the empty 3-net (example:
-fr)-

6. Some examples

To do explicit calculations, the following lemmas may be helpful, the first
comparing 3-nets to their mirror images, the second suggesting some short cuts.

Lemma 6.1. As taking mirror images essentially comes to changing crossings,
the value of J(fl2 v^ on the mirror image of a 3-net N is obtained by substituting
q-1 for qinI{z2V){N). D

Lemma 6.2.

Example 6.3.

7c(q8

7c(qU - q13 + 2q12 - 2qU + q9 - 2q8 + Aq

q3 + 3<72 - 5q + 5
7 8

7cr
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