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Cohen—Macaulay coordinate rings of blowup schemes

S Dale Cutkosky and Jürgen Herzog*

Abstract. Suppose that Y is a projective fc-scheme with Cohen—Macaulay coordinate ring S
Let I C S be a homogeneous ideal of S I can be blown up to produce a projective fc-scheme X
which birationally dominates Y Let lc be the degree c part of I Then fc[Ic] is a coordinate ring
of a projective embedding of X for all c sufficiently large This paper considers the question of
when there exists a constant / such that fc[(Ie)c] is Cohen—Macaulay for c > ef A very general
result is proved, giving a simple criterion for a linear bound of this type As a consequence, local
complete intersections have this property, as well as many other ideals
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Introduction

Suppose that 7 is a projective fc-scheme with Cohen-Macaulay coordinate ring
S Let / C S be a homogeneous ideal of S Then I can be blown up to produce
a projective fc-scheme X which birationally dominates Y Let Ic be the degree c

part of / Then k[Ic] is a coordinate ring of a projective embedding of X for all c

sufficiently large In general, k[Ic] is not Cohen-Macaulay even when X is Cohen-
Macaulay (a simple example is given in Section 1) Recently, [3], [5], [6], [13] have

given criteria for k[Ic] to be Cohen-Macaulay in many important situations
Powers Ie of / blow up to the same scheme X, and the rings fc[(/e)c] for

c ^> e > 0 are coordinate rings of projective embeddmgs of X
In Theorem 4 6 [3] an explicit necessary and sufficient linear bound in c and

e is given for fc[(/e)c] to be Cohen-Macaulay, when S is a polynomial ring of
dimension n and / is a complete intersection in S Suppose that the complete
intersection ideal / is minimally generated by forms of degree d\, ,dr Assume
that c > ed+ 1, d max{ci,|j 1, ,r} Then fc[(/e)c] is a Cohen-Macaulay
ring if and only if c > JT=1 ^o + (e ~ IM ~ n

This leads to the question of when there exists a constant / such that fc[(/e)c]

* First author partially supported by NSF
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is Cohen-Macaulay for c > ef. In other words, when is there a linear bound on c
and e ensuring that A;[(/e)c] is Cohen-Macaulay?

For instance, it is natural to expect that ideals / that are local complete
intersections (that is, ISp is a complete intersection if p is not the irrelevant ideal of
S) will have this property. The Kodaira Vanishing Theorem suggests that there
should be a linear bound ensuring that A;[(/e)c] is Cohen-Macaulay, at least when
a regular ideal is blown up in a nonsingular projective variety of characteristic
zero.

In this paper, we prove a very general result (Theorem 4.1) giving a simple
criterion for a linear bound of this type. As a consequence, we show (Corollary
4.2) that local complete intersections have this property, as well as many other
ideals (Corollaries 4.3 and 4.4).

1. Coordinate rings of a blowup

Throughout this paper we will have the following assumptions. Let A; be a field, S
a noetherian graded fc-algebra which is generated in degree 1 with graded maximal
ideal M. Then S has a presentation S k[xQ,x\,... ,xn]/K, where each xt is

homogeneous of degree 1. Let ß dim(S'), n l8-l1/cSbea homogeneous
ideal, and let Ï be the sheaf associated to / in Y Proj (5). Let X Proj (0 /")
be the blowup of /, with natural map it: X —> Y. Ic will denote the c-graded part
of/.

Lemma 1.1. Suppose that I is generated, in degree < d. Then
(1) (/c) • Ox /(c) • Ox for c>d.
(2) Ic is a very ample subspace of F(X, /(c) • Ox) for c > d-\- 1.

Proof. Let / be generated by G\,..., Gm where the Gt are homogeneous of degree
dt < d. Let

R, -ffclfO f». /Ki

Un Spec {Rij). {Ul3 : 0 < i < n, 1 < j < m} is an affine cover of X. T(Un,/(c) •

Ox) G3xc-diRl3.
_

Since Ic C T{X,I{c) ¦ Ox) and G3x^ 3 G Ic for 1 < j < m whenever c > d,

we have (1).
To establish (2) we will use the criteria of Proposition II.7.2 [7]. Suppose

that c > d+ 1. By (1), Ic gives a morphism of X. Ic is generated over k by
{GjX^x'l ¦ ¦ ¦ xlT? : d3 + /0 + h H \-ln c}. Suppose that s G3x^x1^ ¦ ¦ ¦ xl~ is

one of these generators. Then some lt > 0, and Xs C Ul3.

s-G3xQxl
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so that Xs Spec (A) where

We have

l° -r't + 1 T'*-l „In „0 Xt xi xn xt

¦xlrl
(~f J-0 „In \ (~< „JO „In I \ C Tl° Tln IijjXg • • • xn y <^tjXq ¦ ¦ ¦ xn j y <^tjXq ¦ ¦ ¦ xn j

_ t*tx,

generate A as a A;-algebra. D

Let £ / • Ox, M 7T*Cy (1), so that (/e)c • Ox £e <8> Mc for e > 0 and
c > de, and X Proj (k[(Ie)c]) for c > de + 1. In Lemma 1.2 we state the usual
exact sequences relating local cohomology and global cohomology (cf. A4.1 [4]).

Lemma 1.2. Suppose that I is generated in degree < d, e > 0 and c > de + 1.

Let A k[(Ie)c], with graded maximal ideal m. There are exact sequences

0 -> H^(A) -> A -> 0 T(X, £se <g) A4SC) -> i?i(A) -^ 0

and isomorphisms

seZ

fori > 1.

Let /* denote the intersection of the primary components which are not M-
primary of an irredundant primary decomposition of /.

Lemma 1.3. There exists a positive integer f such that (Ia)b (Ia)b for a^ aJ ^

with b > fa.

Proof. This is immediate from the Main Theorem of Swanson [14] (cf. also
Theorem 1.5 [10]), which states that there exists an integer / such that Ia has an
irredundant primary decomposition Ia q\ n • • • C\qs with (y7^)0^ C qt for all i.D



608 S. D. Cutkosky and J. Herzog CMH

Lemma 1.4. Suppose that no associated prime of S contains I, depthM(S) > 2

and 7r*(/e • Ox) Ie for ail e > 0. Then there exists a positive integer f such
that, with the notation of Lemma 1.2, H^n{Ä) 0 and H^(A) 0 whenever e > 0

and c > ef.

Proof. Suppose / is generated in degree < d. By Lemma 1.3 there exists an integer

/' such that (7*)s (/*)£ for s > ft. Set / max(/',d+ 1).

By consideration of the natural inclusion A C S[It], we have H^(A) 0 since
0. H°(Y,OY(s)) Hli(S)s 0 for all s < 0 since depthM(S>) > 2.

From the inclusions

F(X,£se <g>Msc) ^ T{X,MSC) r(y,(7r*Ox) <8)Oy(sc)) Y{Y,Oy{sc))

where the first equality is by the projection formula (cf. Exercise II.5.1 [7]), we get
r(X, Cse <g> Msc) 0 for s < 0.

Let A be the (c,e) diagonal of Z2 ([3]). For c > ed, we have k[(Ie)c] S[It]A,
as in Lemma 1.2 of [3].

s>0 s>0

(r(Spec(S)-M,/))A

Now Lemma 1.2 implies H^(A) =0. D

The condition of the existence of a Cohen-Macaulay coordinate ring is somewhat

delicate, as shown by the following simple example of a Cohen-Macaulay
scheme obtained by blowing up an ideal sheaf on a scheme with a Cohen-Macaulay
coordinate ring, which does not have a Cohen-Macaulay coordinate ring. Let T
be a nonsingular "irregular" projective surface (iJ1(T, öy) =/= 0). Let n: T —s- U
be a birational projection onto a hypersurface in P3. tt is the blowup of an ideal

sheaf on U. The coordinate ring of U is Cohen-Macaulay, and certainly T is

Cohen-Macaulay, but no coordinate ring of T can be Cohen-Macaulay since T is

irregular.
However, we can give a simple proof of the existence of a linear bound ensuring

that A;[(/e)c] is Cohen-Macaulay when k has characteristic zero, S is Cohen-
Macaulay, Y is nonsingular, / is equidimensional and Proj (S/I) is nonsingular.
The proof has three ingredients:

(1) The Kodaira Vanishing Theorem.
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(2) In this situation (everything nonsingular) W"kJDx 0 for i > 0 and
7T*e>x Cy (cf. Proposition 10.2 [11]).

(3) Lemma 1.4.

If J\f is an ample invertible sheaf on a smooth projective variety Z of characteristic

zero and dimension t, with dualizing sheaf ivz, then Kodaira Vanishing states
that Hl(Z,J\f (g) luz) 0 for i > 0. The Serre-dual form of Kodaira Vanishing is

Hl(Z,M~l) =0 for i<t.
Proposition 1.5. Suppose that k has characteristic zero, S is Cohen-Macaulay,
Y is nonsingular, I is equidimensional and Proj (S/I) is nonsingular. Then there
exists a positive integer f such that

W(X,Cse<g>Msc) 0

for all s G Z if 0 < i < n, c > ef, e > 0.

Proof. Suppose that / has height r, and is generated in degree < d. By Lemma 1.1,
Ca <g> Mb is very ample if b > ad. We immediately get Hl(X, Cse <g> Msc) 0 if
c > ed, s < 0 and i < n, since £e <g> A^c is then ample.

Hl(X,Ox) 0 for 0 < i, by the Leray spectral sequence, since IÜ"kJDx 0

for i > 0, 7r*e>x Oy and ffJ(Y, £V) 0 for 0 < j (since S is Cohen-Macaulay).
Let u!y be a dualizing sheaf on Y. uiy (g) is ample on Y for some # > 0.

u>x C^~r <8> wy is a dualizing sheaf on X.

£e(g)Mc Ce+r'-x (g)Mc(E) toy1 ® ux-

£e+r-1(g)Mc<E)LüY1 is ample if c > g+ (e +r- l)d, and then W(X, £se(g)Msc) 0

for s > 0 and i > 0. D

Theorem 1.6. Suppose that k has characteristic zero, S is Cohen-Macaulay, Y
is nonsingular, I is equidimensional and Proj (S/I) is nonsingular. Then there
exists a positive integer f such that k[(Ie)c] is Cohen-Macaulay whenever e > 0

and c > ef.

Proof. The assumptions of Lemma 1.4 are satisfied by Proposition 10.2 [11] (or
Example 2.3) and Proposition III.8.5 [7]. By Lemmas 1.2, 1.4 and Proposition 1.5

there exists a positive integer / such that A;[(/e)c] has depth n+ 1 at m whenever
e > 0 and c>ef. D

Unfortunately, Kodaira Vanishing fails in positive characteristic or if anything
is not (almost) nonsingular. However, we obtain a very general result which is

sufficient for this global part of the argument in Section 3. The second ingredient
is local. We give a very simple argument to generalize this part in Section 2.
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2. Local conditions

Lemma 2.1. Suppose that R is a local ring, essentially of finite type over a

field k and J a R is an ideal. Let W Spec (A), V Proj (0n>o Jn), E
Proj (0n>o Jn/Jn+1), C J -Ov. Suppose thai

T{E,OE{m)) Jm/Jm+1 for m>0

and

Hl(E,OE(m))=0 for i>0 and m > 0.

Then T(V, Cm) Jm if m > 0 and W(V, Cm) 0 for q > 0 and m > 0.

Proof Note that £ OV{1) on V.
We have exact sequences:

0 -> Ov(m + 1) -> Ov(m) -^ Ofî(m) -^ 0

for all integers m. Thus we have surjections

IP(y,Ov(m + 1)) -^ Hl{V,Ov{m))

for i > 0 and m > 0. Since 0y(m) is ample, we have Hl(V,Ov(m)) 0 for all
m ^> 0, and i > 0, so we have all of the desired vanishing. We also have exact
sequences:

0 -> T(V,Ov(m + 1)) -> r(y,Ov(m)) -^ Jm/Jm+1 ^0 (1)

for m > 0. Since iî is a localization of a finitely generated A;-algebra, F(V, Oy(m))
Jm for m > 0 (cf. Exercise II.5.9 of [7]). Thus it follows from (1) that
r(V, Ov(m)) Jm for all m > 0. D

Lemma 2.2. Let notation be as in Lemma 2.1. Suppose thai V is Cohen-
Macaulay. Let ivy be a dualizing sheaf on V and lve be a dualizing sheaf on E.
Suppose thai W\E,luE(m)) 0 for i > 0 and m > 2. Then m(V,ujv <g> Cm) 0

for q > 0 and m > 1.

Proof. The ideal sheaf of E is I-Ov OV{1). By "adjunction" (cf. Proposition 2.4

[1] or Theorem III 7.11 [7]) we have

Lue — My <8> Oe{ — 1).

Since ivy is Cohen-Macaulay, we deduce from the exact sequence

0 -> OV{1) -+ Ov -+ OE -* 0
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exact sequences:

0 —> ijjyi^m + 1) —> Lüv(rn) —> ujE(m +1) —> 0

for all integers m.
Thus we have surjections

for i > 0 and m > 1. Since Oy(m) is ample, we have Hl(V,ivv(m)) 0 for all
m ^> 0 and i > 0, so we have all of the desired vanishing. D

Example 2.3. Suppose that R is a Cohen-Macaulay local ring, essentially of
finite type over a field k and J C R is an ideal generated by a regular sequence.
Then the conclusions of Lemmas 2.1 and 2.2 hold.

Proof. Let f\,..., fr be a minimal set of generators of /. V is Cohen-Macaulay,
E Proj (0n>o J"/J"+!) P^l, Wfi (^/.W) ®fc OE{-r). Now the

assumptions of Lemmas 2.1 and 2.2 follow from the cohomology of projective
space and the isomorphisms

Hl(X,OE(m)) R/J®k Hl(Prk-\O(m)),

Hl{E, {aw/Jaw) ®fc OE{m)) 9É (lüw/Jlüw) ®fc ^(P^1, O{m))

by the Künneth formula (cf. p. 77 of [12]). D

Let
T 0 Jn/Jn+1

n>0

be the associated graded ring of J, and let N be the ideal of positive degree
elements of T. Suppose that T is Cohen-Macaulay. Then there is a canonical
module Wt of T such that the sheaf associated to Wt is a dualizing sheaf lue on
E. The vanishing hypotheses of Lemmas 2.1 and 2.2 hold whenever

H%N{T)C 0

for i > 0 and c > 0 and
HlN{WT)c Q

for i > 2 and c > 2.

An ideal J in a ring R is called strongly Cohen-Macaulay if the Koszul homol-

ogy modules of / with respect to a generating set are Cohen-Macaulay. Let /x( J)
denote the minimal number of generators of an ideal J.

Example 2.4. Suppose that R is a Gorenstein local ring, essentially of finite
type over a field k and J C R is a strongly Cohen-Macaulay ideal, with n{Jp) <
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height (P) for ail primes P containing J. Then the conclusions of Lemma 2.1 and
2.2 hold.

Proof. Suppose J is of height g generated by n elements. Let S R[X\,..., Xn] be

a polynomial ring over R. Let H(J) denote the Koszul homology H(f\, ...,/„, R)
where f\, ...,/„ are generators of J. WR/j Ext3(R/J, R) Hn-g{J) is the last
non-vanishing Ht(J). The approximation complex A4 is

0 -> Hn-g{J) <g> 5(-n + g) -> > i?i(J) <g> 5(-l) -^ H0(J) (g) S ^ 0.

In [8], it is shown that H°(M) ®Jn/Jn+1. By Theorems 2.5 and 2.6 [8] A4 is

acyclic and (&Jn/Jn+1, eJn are Cohen-Macaulay.
Let S R/J[X\,... ,Xn], with canonical module

W-s WR/J «g) S(-n) Hn-g(J) <g> S'(-n).

i?Ar(T) is dual to Ext|-*(T, Wg) (cf. Theorem 3.6.19 [2]). We have Ext|(T, V%)
0 for i 7^ n — g since T is a Cohen-Macaulay module of dimension dim(ß), and
dim(S') — dim(T) n — g. By (c) of Theorem 2.6 [8] we can realize Wt as the
cokernel of

ffl(J) (g. S(-ff - 1)

so that WT =T(-g).
From this we see that Wt is supported in degree g, so that H9N{T)0 0 for

j > -g and H9N{WT)3 0 for j > 0.

By a Theorem of Huneke (Theorem 1.14 [9]), all ideals in the linkage class of a

complete intersection in a Gorenstein local ring are strongly Cohen-Macaulay. For
instance, codimension 2 perfect and Gorenstein codimension 3 ideals are strongly
Cohen-Macaulay.

Remark 2.5. The conclusions of Example 2.4 are true when R is not Gorenstein
but only Cohen-Macaulay.

In this case A4* is acyclic with zeroth homology Wt, and we can use A4 and
A4* to compute the desired vanishing.

3. Global conditions

We return to the notation and hypotheses of Section 1.

Proposition 3.1. Suppose that

fl%*(/a -Ox) =0 for l<a<n+l, j > 0.
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Then there exists a positive integer f such that

H3(X, Ca <g> Mb) 0 for j > 0, a > 0 and b > fa.

Proof. After possibly tensoring with an extension field of A;, we may suppose that
k is an infinite field. Suppose that / is generated in degree < d. Set d' d+1.
Let D\,..., D— be general members of T(X, C <g> A4d Let

L% D\ n • • • n A
be the (scheme theoretic) intersection. Lt has dimension n — i. Set Lq X.

We have short exact sequences

0 -> {Ca <g) Mb) <g> Ou -+ (£a+1 <g) A46+d') <g) OLi

«8) M6+d) g O 0

for all integers a and b and 0 < i < n — 1.

R>Ti*{Ca <g>Mb) R>Ti*{ia ¦Ox)<Z>OY{b) =0

for j > 0 and 1 < a < n + 1. From the Leray spectral sequence

H'l(Y,R]Tr4£a (g)Mb)) => W+3{X, Ca <g) Mb)

we have

H:)(X,Ca(E)Mb) =iF(l>*(/a ¦Ox)®OY(b)).

There thus exists an integer / > d! such that

H:>(X,Ca(g)Mb) =0 for j >0, 1 < a <n+l and 6> / (3)

since 7r*(/a • Ox) is coherent and CV(1) is ample on Y.
By (3) and induction applied to the long exact cohomology sequences associated

to (2) we have

H3(X,£a®Mb®OLJ 0 for j > 0, i + 1 <a<n+l and b > f + id'. (4)

The following inductive statement (5) ^=> (6) can be established by induction
using the exact sequences (2), (4) and the equality

(a, b) (a - i - 1)(1, d1) + (i + 1,6 - (a - i - l)df).

Note that if a > i + 1 and b > f + (a - l)d! then b - (a - i - l)d! >f + id'.
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Suppose that

iF(X,£a (g)Mb ®OL%+1) =0 for j >0, i + 2 < a and b > f + (a - l)d!. (5)

Then

H3(X,£a®Mb®OLJ 0 for j > 0, i + 1 < a and 6 > / + (a - l)d!. (6)

L75- has dimension 0, so that (6) is immediate for i n. Thus the proposition
follows from descending induction on i using the above statement (5) => (6). D

Proposition 3.2. Suppose that X is a Cohen-Macaulay scheme and

fi%*(wx(g)/:()=0 for 1 <t <n + l, j >0.

Then there exists a positive integer f such that

H3(X, £-a <g) M~b) =0 for j <n, a > 0 and b > fa.

Proof. After possibly tensoring with an extension field of A;, we may suppose that
k is an infinité field. Suppose that / is generated in degree < d. Set d! d+1.
Let D\,..., D— be general members of T(X, C <%> M.d Let

Lt D\ n • • • n Dt

be the (scheme theoretic) intersection. Lt has dimension n — i. Set Lq X.
We have short exact sequences

0 -> {C-a-1 <g) M-b-d') <g> Oh% -* (£-a <g) M~b) ®OU
{C-a g M-b) ® O 0

for all integers a and b and 0 < i < n — 1.

By Serre-duality,

Hi(X,£-a ®M-b) Hri-3(X,ivx ®Ca ® Mb).
R0TTt(iüX <E)£a<E) Mb) R0TTt(iüX <8> Ca) <g) OF(6) 0

for j > 0 and 1 < a < n + 1. From the Leray spectral sequence, we hav

W'-^X^x <E)£a<E) Mb) iîw-J(y,7r*(wx <g) £a) <g) Oy(6)).

Hence there exists an integer / > d! such that

-a ®M~b) =0 for j <n, 1 < a<n+l and 6> / (8)
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since Trt(iüx <8> Ca) is coherent and CV(1) is ample on Y
By (8) and induction applied to the long exact cohomology sequences associated

to (7) we have

H° (X, £~a <g> M~b <g> OLJ =0 for j <n-i, 1 < a<n+l-i and b> / (9)

The following inductive statement (10) => (11) can be established by induction
using the exact sequences (7), (9) and the equality

Note that if a > 1 and b > f + (a - l)d! then b - (a - l)d! > f
Suppose that

®OLz+1) =0 for j <n-i-l, 1 < a and 6 >/+(a-l)d' (10)

Then

b(E)OLJ =0 for j <n-i, 1 < a and b> / + (a - l)d! (11)

(11) is immediate for i n Thus the proposition follows from descending
induction on i using the above statement (10) ^=> (11) D

4. Linear bounds for Cohen—Macaulay coordinate rings

Let A; be a field, S a noethenan graded A;-algebra which is generated in degree 1,

with graded maximal ideal M Let / C S be a homogeneous ideal, and let / be
the sheaf associated to / in Y Proj (S) Let X Proj (0 /") be the blowup of
I, with natural map tt X —> Y, and Ox(l) I Ox Let ß be the dimension of
S,n ß — 1 be the dimension of Y

Theorem 4.1. Suppose that I is an ideal of height > 0, S is Cohen-Macaulay
and X is a Cohen-Macaulay scheme Let

+1)E Proj(0 Ïn/ïn
n>0

with dualizing sheaf lue Suppose that

¦K*OE{m) îm/îm+1 for m > 0,

Rln*OE(m) =0 for i > 0 and m > 0 and

i?V*w.E(m) 0 for % > 0 and m > 2
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Then there exists a positive integer f such that k[(Ie)c] is Cohen—Macaulay whenever

e > 0 and c > ef.

Proof. R%TvtOx 0 for i > 0 and ir*Ox Oy by Lemma 2.1 (and Proposition
III.8.5 [7]). S is Cohen-Macaulay so that WM(S) 0 for i < ß and Hl(Y,OY)
0 for 0 < i < n. Now by the Leray spectral sequence, H%(Y^R3TvifOx) =>

Ht+\X, Ox), we get Hl(X, Ox) 0 for 0 < i < n.
By Lemma 2.1 and Proposition 3.1 we have an / such that H3{X, Ca<S>ßAb) 0

for j > 0, a > 0, b > fa. By Lemma 2.2 and Proposition 3.2 there exists / such
that H^X, C~a (g) M~b) 0 for j < n, a > 0, b > fa.

Now the Theorem follows from Lemmas 1.4 and 1.2. D

Corollary 4.2. Suppose that S is Cohen-Macaulay, I is an ideal of height > 0 and

I is locally a complete intersection in Y Proj (S). Then there exists a positive
integer f such that k[(Ie)c] is Cohen-Macaulay whenever e > 0 and c > ef.

Proof. This is immediate from Example 2.3. D

The following Corollary is now immediate from the comments following Example

2.3. By a canonical module Wt we mean a canonical module whose associated
sheaf is a dualizing sheaf of Proj (T). IV~p-, denoted the degree 0 elements of the

localization Ip.

Corollary 4.3. Suppose that
(1) S is Cohen-Macaulay.
(2) I is an ideal of height > 0.

(3) ®„>0I"P) and T{P) ®n>0(In/In+1){P) are Cohen-Macaulay for all

PGProj(S').
(4) H^(T(P))C 0 for i > 0 and c > 0 and H^(WT^P))C 0 for i > 2 and

c > 2 for all P € Proj (S), where WTiP\ is the canonical module ofT(P),
P is the maximal ideal of Sip\.

Then there exists a positive integer f such that A;[(/e)c] is Cohen-Macaulay whenever

e > 0 and c > ef.

Corollary 4.4. Suppose that S is Cohen-Macaulay, I is an ideal of height > 0

and /(p) is strongly Cohen-Macaulay with /z(J(p)) < height(P) for all primes
P G Y containing I. Then there exists a positive integer f such that k[(Ie)c] is

Cohen-Macaulay whenever e > 0 and c> ef.

Proof. The assumptions of Theorem 4.1 are satisfied by Example 2.4 and
Remark 2.5. D
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