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Local structure of the moduli space of vector bundles over curves

Yves Laszlo*

0. Introduction

Let X be a smooth, projective and connected curve (over an algebraically closed

field of characteristic zéro) of genus g(X) > 2. Let x be a (closed) point of X and

SUx(r, d) the moduli space of semi-stable vector bundles on X of rank r > 2 and

déterminant (9(dx). As usual, the géométrie points of SUx(r, d) correspond to
polystable bundles, namely direct sums E ®E, where E, is stable of slope

d\r (and ®, det(E,) (9{dx)\

DEFINITION. The number of stable summands in the preceding sum is called
the length of the polystable bundle E.

The singular locus of SUx(r, d) consists exactly of the non stable points (except

if r=g(X) =2 and d even). In this case, SUx(r,rf) =P3 [N-Rl]). In particular,
except in the exceptional case above, SUx(r, d) is smooth if and only if r and d are

relatively prime. General facts about the action of reductive groups ensure that

SUx(r, d) is Cohen-Macaulay [E-H], normal and that the singularities are rational
[B]. The principal aim of this paper is to give additional information about the

singularities, essentially the description of the completion of the local ring at a

singular point of SUx(r, d) and to compute the multiplicity and the tangent cônes

at those singular points E which are not too bad, i.e. /(E) 2 (or equivalently
Aut(E) Gm x Gw). Further, we give a complète description in the rank 2 case

(corollaries III.2 and III.3 and theorem IV.4).
As recalled with some détails (following a request of the référée), Narasimhan

and Ramanan [N-R2] hâve a long time ago discovered the link between the rank 2

vector bundles on a canonical curve X of genus 3 and the geometry of the Kummer
variety k(X) of JX. The crucial point is that SUX(2) is in this case canonically
isomorphic to the so called Coble quartic. We get the local form of this

* The author was partially supported by the European Science Project "Geometry of Algebraic
Varieties", Contract no. SCI-0398-C(A).
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374 YVES LASZLO

quartic and prove that the jc(X) is schematically defined by 8 cubics, the partials
derivatives of the Coble quartic (theorem IV.6), although the corresponding
homogeneous idéal is not generated by thèse cubics.

One could also give partial information at least if Aut(E) is a torus, or by
using results of [P], if Aut(E) G\r(k) (the latter case meaning that E is a twist
of the trivial bundle). But it seems to be difficult (and somewhat messy) to
calculate for instance the multiplicity. In the last part of the paper, we compute
the multiplicity of a generalized thêta divisor of SUX(2, (9) at a point [L® Lv],
where L2 7e (9. In fact, this computation could be done with only minor changes
for a point E of any rank with det(E) G and Aut(E) GmxGm.

Let us also mention that similar results could be obtained exactly in the same

way for certain surfaces. But, ail the future applications that we hâve in mind as

well as the applications that we hâve in our hand are for curves. Therefore, we
hâve restricted ourselves to the case of curves.

Notations and conventions

AU the schemes are of finite type over an algebraically closed field k of
characteristic p i=- 2. Except in the first section, it will be assumed of characteris-
tic zéro. By point we mean closed point. The scheme P(V) is the projective space

Proj(SymVv) of Unes of V and V will also dénote the pointed affine space
Spec(Sym Vv) Spec k[V\ (notice that k[V\ is the coordinate ring of V).

The notations X (resp. jc) will dénote a smooth projective connected

curve over k of genus g > 2 (resp. a closed point x of X). If J? is a line bundle
on a scheme, the linear system PH°(i?) is denoted by |j£?| and the dual projective

space by \S£|v. Fix also two integers r > 2 and d. Finally, E will always
dénote a rank r polystable bundle on X of déterminant dx and SUx(r, d) is

the moduli space of rank r semi-stable vector bundles of déterminant (9{dx) on
X.

I. Around the Coble quartic

In this section, we first recall for the non-expert reader some facts about the

geometry of the Kummer variety (essentially due to Mumford, Kempf and
Khaled). We explain then the link between the Coble quartic and the Kummer
of the jacobian JX of a canonical genus 3 curve X on one hand, and, in the
other hand the identification of the Coble quartic and SUX(2,0). Finally, we
state our resuit about the Coble quartic.
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Generalities on linear System on abelian varieties

Let A be an abelian variety and L an ample line bundle on it. It is well-
known that U1 is very ample if n > 3. A more subtle resuit due to Kempf (see

[Khi]) says that the products

H°(A, Ln) ® H°(A, L"1) -+H°(A, Ln+m)

are surjective if n > 2 and m > 3. In particular, the complète linear System

A->|LW|V is projectively normal. Let ln be the corresponding homogeneous idéal

ln Kerf 0 Sym* H°(A, L") -» 0 H°(A, L«*)
\k > o k^o

Kempf and Khaled (cf. [Khi]) hâve also shown that ln is generated by quadrics
and cubics if n > 3 and by quadrics if n > 4.

The situation is very différent for n 2. In this case, the linear System |L2| is

in gênerai only base point free.

From now on, A is a principally polarized irreducible abelian variety

Let 0 be a symmetric divisor representing the polarization. Then the line
bundle ££ 0(20) does not dépend on the particular choice of such a 0. Then,
the canonical morphism

induces an embedding of A/± 1 in |if|v. The image k(A) of ka is the Kummer

variety of A. The line bundle ££ is canonically {±l}-linearized (as the pull-back
of k%(9(1) and one has

H°(fc(A), (9(n)) H°(A, 2*) +

where H°(A,ifw)+ is the invariant part of H°(A, S£n) under -1.

Remark. If k C, the link with the classical geometry of thêta functions can
be explained as follows. The Chern class cx(S£) eH2(A, Z) give a symplectic non
degenerate Z-bilinear form on H! (A, Z) which dépends only on the polarization
\Se\ The abelian variety A is the quotient of T0(A) by the lattice F h! (A, Z).
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Choose a symplectic basis (y,,..., y2g) of F. Then (y,,..., yg) is a basis of
T0(A) which therefore will be identifiée! to C8. The matrix t of coordinates of
(yg+u > - >72g) *n C* is called the period matrix and one has by construction
A C*/(Z*@tZ*). With this description of A, the space H°(A, &n) becomes the

space of order 2n thêta functions (with respect of t). The sections of
H°(k:(A), @{ri)) are the even thêta functions of order 2n.

Notice the formula dimHo0c(A), (9{n)) =2g~l(ng+ 1) (see [C], page 56 in the

case k C and formula +) below in gênerai).
The theorem of Mumford-Koizumi [Ko] says that the Kummer variety is

projectively normal if and only if A has no vanishing theta-nulls. Geometrically,
this condition means that among the 22g symmetric thêta divisors G representing
the principal polarization, there is no <9 vanishing at the origin with even multi-
plicity. In the case where A is the jacobian of a smooth curve X, this condition
simply means that there is no effective even theta-characteristic on X.

Suppose now that A has no one vanishing theta-null

The number h(n9 g) of independent degree n hypersurfaces containing k(A) is

In particular k(A) is never contained in a quadric. If g 2, one has A(3, g) =0
and A(4, g) 1: the Kummer surface is a quartic surface with 22*=16 nodes.

Suppose now g > 3; then A(3, g) > 0 and *c(A) is always contained in cubics. Let
IA (resp. c/A) be the homogeneous idéal (resp. the sheaf of idéal) of k(A); by
définition, one has

IA Ker( © Sym* H°(A, S£) -» © H°(A, &k)+
\k è 0 k > 0 /

and the dimension of the degree <5 component lA[d] =dimH°(K:A, ®(ô)) of IA is

h(g9 S). One has the

THEOREM 1 ([Kh 2]). With the notations above, IA is generated by quartics
in degree ^4.

In particular, the idéal JA is itself generated by quartics.
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Remark. When g 3 or A is generic, this theorem was known from Wirtinger
[Wi].

If g 3: the Kummer variety is embedded in P7 |«£?|v. In this case,
dim IA[3] 8 and dim IA[4] 70 > 64 dim IA[3]. dim H°(P7, (9( 1)) which shows

that IA[4] is not generated by cubics.

(2) One can ask the following natural questions:
(2.1) Is the Kummer k(A) variety set-theoretically defined by the cubics of

(2.2) Is the Kummer k(A) variety schematically defined by the cubics of IA[3]?
In other words, is the canonical map IA[3] ®(9{— 3) ->*/A surjective?

The dimension 3 case: the Coble quartic

Let us first recall gênerai facts from [M] about the Mumford group G(J*f), the

group of pairs (a, a) where a is an isomorphism of tj(if) on 3? (xa is the
translation by a). The morphism (a, a) \-+ a surjects onto A2 and one has a

canonical exact séquence

with k* central. Let V be a G{&)-module. We say that V is of level n if
0 < dim(V) < oc and k* acts on V by t h* tn. If V is irreducible, there exist an

unique integer n such that V is of level n. The basic fact about the représentation
theory of G(J£) is the following classical observation:

LEMMA 3. Let w be an odd number. There exists only one (up to isomorphism)
irreducible G(J£?) -module Vw of level w. Moreover, ifV is any G(J£)-module of level

w, then V is a sum of copies of V(w).

Let us explicit the représentation V(w). Let G(2) be the group which is set

theoretically the product k* x Ff x Ff with the group law

(A, £, s) • (fi, n, fj) -1)<^, s + if, ê + rj).

Because the characteristic is ^2, the group G(if) is (non canonically) isomorphic
to G(2): an isomorphism is called a level 2 thêta structure on A.
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Remark. If k C, the polarization can be seen as a symplectic non degener-
ate form on H! (A, Z) (for instance, it is the Chern class of a symmetric divisor
0 as above). The choice of a symplectic basis 3 of H!(A, Z) defines the period
matrix t of A and identifies A and Cgl(Z8 + tZ8). Moreover & defines canoni-

cally a thêta structure on if.

Front now on, A is endowed with a level 2 structure

Then V(w) can be viewed as Map(Ff,A:) with the action given by the

formula

0, c, ê) •/(!>) - l)<ê*+n»f(v + «), ve Ff, /e Map(Ff, k).

Of course, H°(A, if) is a level 1 module of dimension 2g dim Map(Ff, k).
Therefore, there exists a G(if) isomorphism V(l) AH°(A, if) well defined up to
a non zéro scalar. The action on ±1 is given by the inverse formula (p. 331 of
[M]): this is just the multiplication by — 1 on Ff. More generally, using a level
2n thêta structure, H°(A, ifn)+ can be identified with the even functions on
(Z/2nZ)g and we get the formula

dim H°(A, S£nY 2*" V+ 1). (+)

For v eFf, let Zv e V(w) be the characteristic function of {v}. We hâve then

Remark. If )k C and A Cgl(Zg®TZg) as above, H°(A, if) is canonically
identified with the space of level 2 thêta function with respect of % and Zv

corresponds to the thêta function with characteristic (y, 0)

We now focus our attention to the 3-dimensional case. Because A is assumed to
be irreducible with no vanishing theta-nulls, A is the jacobian JX of canonical

curve X of genus 3.
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Then IJX[3] îs a level 3 G( if)-module of dimension 8 and therefore îsomor-
phic to V(3) Let CyeIJX[3] be the cubic corresponding to Zv The cubic Co îs

invariant under the subgroup I {1} x {0} xl?| of G(2) =G(J^) Notice that a
monomial ZUZVZW îs invariant under I if and only if w u -h v We thmk to F|
as P2(F2) uO It foliows that Co is of the form

where Zd =ïl0¥:vedZv The group I acts on Cv by (1,0, s) (-? (-\)<ev> and therefore

Zv Cv is also invariant under I and can be wntten usmg the coefficients otv

and ad of Co Let C be the quartic

Y 7

By direct computation, one observes 3C/3Z0
By construction, C is invariant under {1} x Ff x {0} which gives 3C/3Zy =4Cy

for ail c g Ff In particular, there exists a quartic containmg k(JX) m îts singular
locus Notice that C being invariant under I as Zv Cv is, the quartic div(C) of
|if|v is invariant under the whole G(j£?) Let us prove the

LEMMA 4 The Coble quartic is the unique G(if) -invariant quartic in |j£?|v

containmg fc(JX) in his singular locus

Remark This is probably the meanmg of the assertion (6) page 106 of [C]
Proof of the lemma let F be an équation of a G(i?) -invariant quartic There
exists a character x of G(j£?) such that (with the notations above)

F((A,£,8) Zy)=*(a,£,£)) F(ZJ (1)

Let peFg2 such that j(l, 0, ê) =(-1)'/- Differentiating (1) with respect of Zv

gives that there exists a scalar Xv such that

ÔFIdZv KdCldZv+p (2)

Because /?^2, the endomorphism given by Zy-»Zy+/, is semi-simple and the

System (2) becomes
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dF dC oM (3)

where M is a semi-simple matrix. After eventually replacing F and C by projectively
équivalent hypersurfaces, one can assume that M is diagonal. In this case, (3) gives
that F and some multiple of C differs by a /^-power of some form G. By degree
considération (using p ^ 2), one obtains G 0.

To go further, one has to construct geometrically the Coble quartic: this has

been done in [N-R2].

Rank 2-vector bundles and the Coble quartic

Let X be a canonical curve of genus 3 (recall that p char(fc) ^ 2). Let A be the

jacobian JX. Let 0 be the (canonical) thêta divisor on Pic^'^X). If
[E] e SUX(2, 0), the locus

0E {LePic^-1(X)|H°(X,E®L)#O}

is a divisor in PH^Pic*"1^), 0(20)) and the G(0(2(9))-equivariant morphism (px

[SUX(2, 0) -> PH0(Pic*~ *(X), (9(20))

is an embedding onto a quartic C(X) by [N&R]. The Riemann's bilinear
relations furnish a canonical identification |if|v PH0(Pidr~1(X), (9(20)) and the

corresponding G( S£) -equivariant morphism cpx : SUX 2,0) c» |$£|v restricts on
Sing(SUx(2,0)) A/ ± 1 to the Kummer morphism jcjx.

Exercise. Suppose that k is of characteristic 0. Using the Verlinde formula,
prove directly that cpx is an embedding. Notice that this formula was unknown
when Narasimhan and Ramanan stated and proved their theorem

Notice that <px[Sing(SUx(2,0))] k(JX). In particular C(X) is a quartic singu-
lar exactly along k(JX). The G(J?) -invariance and the lemma above shows then
that C(X) is the Coble quartic. In fact, at least if k is of characteristic zéro, a

stronger statement due to Beauville than the lemma 4 is true.

PROPOSITION 5 (Beauville). Assume that p char(A:) is zéro. The Coble

quartic is the unique quartic in |i?|v containing k(JX) in Us singular locus.



Local structure of the moduli space of vector bundles over curves 381

Sketch ofproof. let F be a quartic singular along /c(JX). Notice that C is not
a cône. The condition to be a cône being algebraic, the generic member of the

pencil (C + tF)tek is not a cône. In particular, one can assume that F is not a

cône. The partial derivatives of C are then a basis of the cubics containing the

Kummer. This fact together with the fact that F is not a cône proves that F and
C hâve the same jacobian idéal. A resuit of [Do] ensures that F and C are
related by an invertible linear transformation T. Because C is singular exactly
along tc(JX), the linear morphism T leaves k(X) invariant. An easy adaptation of
the Torelli theorem proves that T is induced by an élément of Aut(X) which
leaves obviously div(C) <px(SUx(2, 0)) invariant. D

The beautiful corollary of the equality Sing(C(X)) fc(JX) is the

THEOREM 6 [N-R2]. The Kummer variety of the jacobian of a genus 3

canonical curve is set theoretically defined by cubics.

This gives a positive answer to the question (2.1).
More surprisingly (recall that IJX[3] does not generate IJX[4]), the main resuit

of the présent paper is

THEOREM IV.6. Assume that p char(fc) is zéro. The scheme defined by the

eight partial derivatives of the Coble quartic is reduced.

The proposition and the fact that thèse eight cubics defines set-theoretically
the Kummer variety of tc(JX) proves the

COROLLARY. Assume that p char(fc) is zéro. Let X be a canonical genus
3 curve over. The sheaf of ideals «/JX of the Kummer variety /c(JX) is generated by
cubics.

Thèse facts will be proved in section IV and give a positive answer to the

question (2.2).

II. Local structure of SUx(r, d) and classical invariant theory

From now, k is of characteristic zéro. If (X^j^n (resp. (/i,)i^N) are indeter-
minates (resp. non négative integers), let me dénote by X, n and XQ the N-tuple
X (X,), the multi-index n=(nl) and the product XB IlfLxx"1 respectively. For
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V a finite dimensional vector space with dual Vv, the ring k[V\ (resp. &[[V]]) is the

polynomial ring Sym Vv (resp. its completion at the origin).
It is well known (see [S] for instance) that the key ingrédient to analyse the local

structure of SUx(r, d) is the étale slice theorem of Luna. Let us recall this analysis.
Take n big enough such that E(nx) is globally generated and has no H1 for every

semi-stable rank r vector bundle E of degree d (every n such that m +d> r(2g — 1)

has this property). Let x x(E(nx)) be the corresponding Euler-characteristic. In
Grothendieck's scheme Quoi which parametrizes quotients

let «â be the open set whose closed points correspond to such quotients with the

following properties:

(i) E is semi-stable of rank r and degree d.

(ii) H!(X, E(nx)) 0 and the natural map H°(X, (9®x) ->H°(X, E(nx)) is onto.

Let ê be the universal quotient bundle on â. The scheme J is smooth and the

semi-simple group G PGLX acts on it. The moduli space SUx(r, d) is the GIT
quotient of J/G.

For (E,) be a set of a vector bundles over X, the kernel of the trace map

KerOExt^E,, E,) ^X H'(X, 0))

will be denoted by (©Ext^E,, Et))0.

Let q [0( —nx)®x -» E] a point of M and gr the corresponding graded object.
By the very définition of semi-stability, there exists a G-stable open affine neigh-
borhood Q and the fibre of Q -* QjG at [E] contains a unique closed orbit G(#).
This orbit is either characterized as being of minimal dimension, or as having an

isotropy group G^ Aut(E) of maximal dimension: one checks that this exactly
means that E is polystable. The corresponding orbit is closed. The closedness of the

orbit and the smoothness of Q corresponding to E allows us to use the Luna étale

slice theorem (more precisely the remarque page 97 of [Lu]) which gives precisely
the:

THEOREM 1 (Luna). Let E be a polystable of rank r and déterminant O(dx).
There exists an étale neighborhood <?/(Ext£(E, E)/Aut(E), 0) (resp. (SUx(r, d), E))
which are isomorphic.
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Remarks 2. (a) The group Aut(E) acts by functoriality on both arguments of
ExtJ(E, E). Notice that the scalars acts trivially and therefore

ExtJ(E, E)/Aut(E) Exti(E, E)/GE

where

det
GE Ker{Aut(E) >Gm}.

(b) We'll say for short that SUx(r, d) is étale locally isomorphic to Extô(E, E)/
GE at E.

(c) By définition, one has

Ext'(E,E)/GE Spec(AE)

where AE is the ring of polynomial maps on Exto(E, E) invariant under GE.

Unless otherwise stated, ail bundles will be polystable

COROLLARY. The local ring 0Sux(>v/),[E] dépends only on the numerical invariants

of X and E.

Suppose once for ail that E is non stable (/(E) > 1). One has of course the

inequalities

l<dimGE<r2-l (1)

with equality on the left hand side (resp. right hand side) of (1) if GE Gm (Case
1) (resp. GE Slr (Case 2)). Let's examine thèse 2 cases.

EL Case 1: GE GW

In this case, E is a direct sum E Et ® E2 where Ef is stable of slope d/r, rank

rt # 0 and Ex ^ E2. Each élément (al, a2) e GE(A:) acts by multiplication by a, • a~l
on each factor Ext^E,, E,) of

Ext^E, E) ®Extl(EI? Ej).
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Let

and X*,, A: 1,..., dtJ a basis of Extà(El5 E,)v.
The ring

AEc*tExt!(E, E)] liXïj, 1 < Uj <nA<k<<,]

is the ring generated by (Ext^E,, E^ ©Ext1(E2, E2))o and the products

Let & be the affine cône of the Segre variety

PCExt^E,,^)) xP(Ext1(E2,E1))c:P(Ext1(E1,E2) ®* Ext1(E2,

PROPOSITION 1. There is an isomorphism

Spec(AE) -^(Ext^E,, E,) ©Ext^E,, E2))0 x &.

Note that Spec(AE) is a cône.

COROLLARY 2. With the previous notations, SUx(r, d) is étale locally isomor-
phic to (Ext!(E,, Ex) ©Ext^Ej, E2))0 x&> atE

Using furthermore that the multiplicity at the origin of the affine cône of a

projective variety is just its degree, one gets the

COROLLARY 3. The Zariski tangent space is

(Ext'CE,, E,) ©Ext^E,, E2))0©(Ext1(E1, E2) ®

Moreover the multiplicity of SUx(r, d) at [E] is

mult[E1(SUx(r, d))

(recall that du2 - rx ¦ r2(g - 1)).
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Remark 4. Note that 1)2 1= 1 if and only if g =2 and rx r2 1.

Using that the singular locus of Sing SUx(r, d) is closed in SUx(r, d), one obtains

easily in this way another proof of the fact that Sing SUx(r, d) is the non stable

locus, except if g r — 2 and d 0.

IV. Case 2: GE Slr

In this case, E L®r where L®r 0. Using a translation by L"1 which induces

an automorphism of SUx(r, 0), one may assume L 0. The ring AE is the ring of
polynomial maps on M0(r)g invariant under Slr. This group Slr acts diagonally by
conjugation on each factor M0(r), which is the space of traceless matrices of size r.
For gênerai r, Procesi [P] and Rasmyslev [Ras] hâve obtained the foliowing
description of the first 2 syzigies of AE:

- Generators: for every séquence i (iu..., iN(l)) of integers of [ 1,..., g]9 let
be the invariant polynomial map

-> k

,Xg) h- Tr(XM,...,X,N)*

Then the tL with N(7) < 28 — 1 form a System of generators.

- Relations between ail the t[s: Let Px be the characteristic polynomial of the

gênerai matrix X. The homogeneous polynomial X i-> Tr(X • PX(X)) gives by
polarization (namely by taking the total differential of order g -h 1) a

multilinear map F(Hl5..., Hg+1) where the H/s runs in the set of ail
possible monomials in the Xf.

Although this description is quite explicit, it looks difficult to obtain a complète

finite set of relations between the (finite) set of generators constructed
above.

As far as I know, the only case where such a finite description is available is for
r=2(*).

(*) According to some experts of invariant theory, it is more or less hopeless to obtain such a finite
description of AE in the gênerai case.
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Assume moreover that r 2

In this case, AE can be described by using classical results of the géométrie
invariant theory of SO3(&). Following [LeB], 1.4, let me briefly explain this
description.

For X e Mo(2), let w(X) (w^X), w2(X), m3(X)) ek3 be defined by the equahty

X

By theorem 4.1 of [LeB] the isomorphism

fM0(2)

lX
k3

u(X)

induces an identification of AE with the polynomial maps of (k3)®8 invariant under
the canonical diagonal action of SO3(k).

Let ThJ be the invariant function corresponding to {ux,..., un) i-> (ut • m,) (scalar
product), namely ThJ(Xu X^) ^TV^X,).

Let TljJc be the invariant function corresponding to (ux,.. un) \-> u, a Uj a uk

(the wedge product lives in A3k3C=k), namely T^X^ X^) =Tr(X,X,X*).
With some abuse of notation, one can now use the results of H. Weyl [W], theorem

(2.9 A) and (2.17 B) and it's sequel on page 77 which says the following:

- Generators for the invariants maps under O3(A:): the set

- Relations between the generators: the 4-minors of the g x g-symmetric
matrix

T,

and the relations TtJ TJt. One recognizes the coordinate ring of the (affine)
cône C of symmetric matrices of rank < 3. This scheme is well understood: it
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is intégral and normal [easy], Cohen-Macaulay [H-R], it multiplicity at the

origin (or the degree of the projectivization PC) is known [H-T]...

- Generators for the SO3(/:)-invariants maps are: the Tl>y's and the TlyÂ:'s.

- Relations: the previous 4-minors and:

T T _ T T 4_TT —TT (2\1«0.«41M.'2.'3 AM.'4X«0»*2.«3 ^ A*2.*41«0.Il.«3 L «3»«4 «0»« 1»'2 V^/

and the relations given by the symmetry of TltJ and the skew symmetry of
T,tJtk in the indices.

Let C be the tangent cône of Spec(AE) at the origin. It is the subscheme of

whose idéal is generated by

1«l.'2.«3 LJ\J2J3 V~^

and

^'O'U » 1 •*2»13 'l'M ïO'z2'l3 "" *2»'4 'O.'l.'S "~
»3»'4 '0»'l»»2 ^ ^

and relations given by the skew symmetry of Thjk in the indices. The idéal described

above is the idéal of initial forms of the ideals given by (1) and (2).
Let k(C) be the function field of C and K its algebraic closure. Note that,

according to (3), the idéal Ic/c of C in C is nilpotent. This implies by [F] example
4.3.4, the formula

mult0 C length<Pc>c • multo(C). (5)

The next formula is clear

Ic/c ®<pe fc(C) l + dimK lcic ®eà K- (6)

One therefore has to compute the dimension over K of the sub-vector space VT
of the dual space of W ®K • T,Jk of équations given by (4) and the skew

symmetry condition for the T,^. This vector space is isomorphic to Ic/c ®^e K.
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LEMMA 2. The dimension ofVT dépends only on the conjugation class ofT.

Proof. The symmetric matrix

T [TJeM,(K)

acts on the dual vector space V of K*. Let (Oi</<s be the canonical basis and
basis. The map

identifies W and a3Vv. With this identification, the relations (4) become

-T«;)-Jé?IO vi?,, vet2vel3

and dim VT is the corank of

fVv®A4V -? A3V

This map dépends only on the conjugation class of T.

One can therefore assume that T is diagonal of eigenvalues A, with Xt — 0 for
3 < i < g and Xt ^ 0 if i < 3.

Let us prove this simple lemma

LEMMA 3. The dimension of VT is [g(g - \){g - 2)/6] - [(g - 3)(g - 4)

(g-5)l6]ifg>3and0ifg<2.
Proof. If g <2, the vector space a3V is zéro and so is VT. Suppose g > 3.

Consider an équation

tfy'A^ll*1!*1* ~~ lU'4 'O»^»^ ' »2»l4"**0»M»ï3 ~"
«3»«4 »0»*l.*2 ^ '

defining VT. If /4^{1,2, 3} or i4£{^, i\9 i2, ^'3} then the équation (4) is trivial.
Let me suppose that z4e{l,2, 3} and for instance that i4 /0- If *4^ {11,12,13},
the équation is just a conséquence of the skew symmetry of T/ltl2>l3. To get a



Local structure of the moduli space of vector bundles over curves 389

new relation, one has therefore further to suppose further that i4 £ {*i, i2,13} and the

équation becomes

Of course, the other cases are obtained by symmetry. One has proved the following:
the équations (4) are non trivial if and only if

{'0, h, '2, '3} {Uh k} u {/4} and iA £ {/,;, k).

In this case the relation (4) becomes

or equivalently

T^=0 if {ij,fc}n{

In particular this corank is

The degree drg of the locus (*) of g x g-symmetric matrices of corank >r is

computed in [H-T], proposition 12.b:

V ce

Using the formulas (5) and (6) and the lemma 3, one obtains the

(*) In [H-T], this locus is endowed with the reduced scheme structure. But it is known in full
generality that the natural scheme structure given by the vanishing of the (g — r + l)-minors is

Cohen-Macaulay [J] and generically reduced [easy] and therefore reduced. In our case (r =g — 3), this
reduceness is obvious, because C is a ring of invariants.
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THEOREM 4. The multiplicity of[(9®(9] in SUX(2, 0) is

2> ^ ~ 3)(g - 4)(g - 5)\

ifg>3 and 1 if g =2.

Remarks 5.

1. The preceding discussion gives a précise description of the tangent cône C of
SUX(2, 0). In particular, the Zariski tangent space at the trivial bundle is

] SUX(2, 0) Sym2 V 0 a 3V.

2. One recovers the smoothness of SUX(2, 0) if g 2.

In the case of a non hyperelliptic genus 3 curve, the generalized G divisor
embeds SUX(2, 0) as the Coble quartic SUX(2, 0) in PH°(J2, 2 • <9J2) (see [N-R2]
and [D-O] pages 184-185).

THEOREM 6. The scheme defined by the eight partial derivatives of the Coble

quartic C(X) is reduced.

This theorem is the conséquence of the

THEOREM 6 bis. (i) The (étale) local équation of the Coble quartic at the trivial
bundle is

in the affine space A7 with coordinates T, TtJ with ThJ =T/I.
(ii) The (étale) local équation of the Coble quartic at E Ej © E2 with Ej ^ E2 is

a rank 4 quadric in A7.

(iii) The idéal generated by the 8 cubic équations which are the partials derivatives

of the Coble quartic is prime.

Proof The first 2 points are clear from proposition II.2 and (1), (2). Let me

prove (iii). Let K the scheme defined by the partial derivatives of an équation of
C(X). The Kummer variety K(X) is the reduced scheme of K. It is therefore

enough to prove that the completion of K at each non stable point E of
K(X) cK is reduced. Because of the invariance of the Coble quartic under the
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Thêta group of 2 • 0J2, one has 2 cases to examine: either E is trivial, or
E El ©E2 with E! # E2. In the first case, by (i), the équations in k[[T, T,J] of
the completion of K at [@(&@] are T and the 2 x 2-minors of [T^],^iy^3. It is

precisely the (completion at the origin) of the cône over the Veronese surface in
P5 (with homogeneous coordinates TtJ) and K is therefore reduced. The second

case is even simpler, K being (the completion of) a 3-plane in A7 (the tangent of

V. The case SUX(3,0) for of a genus 2 curve

Suppose in this section that X has genus 2 and let ^ SUX(3, 0) be the
moduli space of rank 3 semi-stable vector bundles on X with trivial déterminant.
Consider a non stable point E of M.

The case GE Gm has been treated in section II: in this case, the completion
of M at E is the completion at the origin of a rank 4 quadric in A9.

Suppose now that GE Gm x Gm which means

E Ej 0 E2 0 E3 with E, / E, for i ïj and deg(EJ 0.

Let XhJ be a basis of Ext1(E/,E/)v for i ïj. Let jrfE k[XtJGE be the ring of
invariants of fc[X, y] under GE with the action defined by the following rule

for (a,, or2, a3) eGE(k) (k*)3jk*. The following equality is easy

AE ^[(©Ext^E,, El))0]®s/E.

A polynomial SpMX- is in stfE if and only if

£>*/,<= IX for i l, 2,3 (1)
j j

if pn # 0. Therefore, séE is generated by the monomials

X3 such that n satisfies (1).
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LEMMA 1. The ring j/e is generated by

X3>2X21X13, X12X23X31 and Xl)7Xyi, i<j.
Proof. put ôtJ nltJ — nJt and let n be a multi-index satisfying (1). The relations

(1) become

£1,2 + <5i,3 0, ôh2 ô2,3 > <5i,3 H- ^2,3 0.

If 5 + <?! 2 > 0, we write n (/i2ï1 -h ^ +, «2fl, «! 3, nlï3 + ô+, «32 + ô+, az32) and use

the monomial Xi 2X23X3 j corresponding to n0 (1,0, 0, 1, 1,0) to write n m +
^+ «o- This allows us to write

X» (X1>2X2,3X3>1)'+ II (Xv • X,,)"^

with mv > 0. In the same way, when ô~ —ôl2 > 0, one has an equality

X» (x3)2x2)1x1)3)^- n (x,,, • x,,,r-

with mtJ > 0. D

For iel {l,2,3}, put

xi X/)A:, xt + 3 X^>7, Ci xtxt+3

with I {1,7, /:} and 7 < k. Let (4 X3 2X2^Xj 3 and Ç5 X12X2 3X3 x. There is an

equality

PROPOSITION 2. TAe natural morphism

(k[Xt] -+ se*

/-\xf ^ c.

/uej a« isomorphism
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Proof. Let p be the (prime) idéal generated by X4X5 -X,X2X3. Let

be an élément of Ker(/). Then, one finds by simple expansion

/(P)=Z«an^o) E^ E «.
m <f>(n) m

with

<t>(n) (nx + n5, n2 + n4, n3 + «5, nx + «4, «2 -H n5, n3 -h «5)

which implies

I «, 0. (2)

(Hère XQ IllXf' and xm Ulx^1 n=(nt)l^l^5 and m (ml)i^I^6 are multi-
indices).

The kernel of <j> is generated by (1,1, 1, -1, -1): if <t>(m') <t>(m), there exists

aeZ+ such that

±<x(l, 1, 1,0,0)+ m' ±a(0,0,0, 1,

In particular, one has the congruence

(X4 X5)a • X* (X4 • X5)a • X* mod p. (3)

According to (2) and (3), we get the existence of a positive integer a such that

(X4X5)aP 0modp.

Since the idéal p is prime and (X4 • X5) $ p and therefore P g p. D

COROLLARY 3. Let E a point of M satisfying GE Gm x Gm. Then M is

étale locally isomorphic at E to

t^E,, E,))o x Spec(A:[X,]/(X4X5 -X,X2X3)).

Its tangent cône is a rank 2 quadric in the Zariski tangent space T^ M — A9.



394 YVES LASZLO

In particular, there exists a family E of semi-stable bundles of trivial déterminant

over a germ of curve such that:

(i) The group GEri of the generic bundle E^ is Gm ®k k(rj).
(ii) The group of GEj the spécial bundle E, is Gm x Gm.

(iii) The multiplicity of M at [EJ and [Es] are the same.

This shows that 2 points of M can hâve the same multiplicity without having the

same group of automorphisms.
When the E has 3 summands for which at least 2 are isomorphic, or équivalent

if GE is not a torus, the calculations are very intricate (but seem to be possible). In
fact, one can in spite of this obtain the following

PROPOSITION 4. The tangent cône at each non stable point E such that GE is

not a torus is a quadric in A9 of rank <2.

Proof. let E be a semi-stable vector bundle of rank 3 and déterminant (9 and <9ji

the canonical thêta divisor on Pic*(X). Using the corollary 1.7.4 of [Ray], the

determinantal locus 0E in Pic*(X)

0E {L e Pic'(X) such that H°(X, E ® L) # 0}

is a divisor in PH°(J\ 0(3<9ji)). The Picard group of M is cyclic with
ample generator 0(0) [D-N]. By [B-N-R], the inverse image of 0(1) by the

morphism

PH^J1,

is (9(0) and n* is a (canonical) isomorphism

Using this isomorphism, n becomes the morphism given by the complète linear

System |@| (in particular, \0\ has no base point in this case!). There are various

ways to prove this simple lemma, but the following one can be generalized for the

higher rank case.
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LEMMA 5. The morphism n is finite of degree 2 over P8.

Proof of the lemma. Using the isomorphism n*(9(l) ^(9{<9), we get that n is

finite of degree cl(0)H onto P8. One therefore has to compute the degree of n.

Although there exists a gênerai beautiful formula due to Witten to evaluate the

volume

cx{0) dim SUX(H))

(dimSUx(r,0))!'

we give a simplest (and elementary) method to get this volume for Ji. One has

to prove that the leading term of the Hilbert polynomial n h-? P(«) #(X, 0n) is

2/8!. The canonical divisor of M is 0~6 [D-N]. Serre duality implies therefore
the symmetry

P(«)=P(-6-«). (4)

The Grauert-Reimenschneider vanishing theorem (recall that M has rational sin-

gularities) gives the equality

P(«) dim H°(^, Sn) for n > - 5.

One therefore obtains the values

P(n) =0 for n -5,..., -1, P(0) 1 and P(l) =9. (5)

By (4) and (5), one obtains

P(X) À(X + 5)(X + 2)(X + 3)2(X + 2)(X + 1)(X - a)(X + 6 + a).

The equalities P(0) 1 and P(l) 9 imply

a -3 + ^-47 and A= —. D
8!

One has proved that the morphism n is finite of degree 2 onto |©|v =P8.
Since Jt is Cohen-Macaulay and P8 smooth, this double covering is flat ([EGA
IV] 15.4.2) and is given locally by an équation
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where x are local coordinates on P8. This implies that the multiplicity of each point
of M is <2.

Take a point EeJ such that GE is not a torus: it is a non smooth point of M,
therefore the tangent cône is a quartic (the initial term of/is not linear). But, such

a point is a specialization of a point E^ such that GEfj Gm x Gm : by the (obvious)
semi-continuity of the rank of the quartic cône of E, the inequality rank < 2 follows
from the corollary 3.

Remark 6 (Dolgacev). The morphism n is ramified along a sextic S(X) in
PH°(J!» 0(30ji)). Consider the embedding

The variety J1 is contained in 9 quadrics. Using the action of the Mumford group
as in I, it can be shown that there exists a unique cubic #(X) of |3<9ji|v which is

both invariant under the Mumford group and singular along J1.

QUESTION (Dolgacev). Are the sextic S(X) and the cubic <£(X) dual to each

otheri

VI. Multiplicity of the thêta divisor (rank 2 case)

Recall that there exists a (Cartier) divisor 0 on SU(2, cox) which is character-
ized by the following universal property [D-N]: let S be a fc-scheme and E a family
of semi-stable vector bundles over Xs XxkS of déterminant o^. Let
n: S-»SUX(2, cox) be the classifying map corresponding to E. Then, one has the

equality

7r*(0)=div(detR/?JleE)v.

By construction, the géométrie points of 0 are the classes [E] g SU(2, cox) such that

Remark. The vanishing of H°(X, E) dépends on the S-equivalence class [E] of E.

Let E be a semi-stable vector bundle of déterminant (%. Recall ([La], theorem

III.3) that for E stable
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mult[E] 0 dim H°(X, E)

and that the tangent cône is defined in Extô(E, E) by the idéal of the déterminant
of linear forms defined by the cup-product

H°(X, E) ® Ext£(E, E) -*H'(X, E).

Thèse facts can be generalized formally (using the universal property of 0) as

follows. Let [E] g Su(2, (Ox) a non stable point of 0 of graded object E Ex ©E2
and let

h \ dim H°(X, E) dim H°(X, E,) dim H°(X, E2)

(note that E1®E2 œx which implies by Serre duality and Riemann-Roch the

equality

dim H°(X, E2) dim H'(X, E2) dim H°(X, E, 1)

With the notations of I, let V Spec A;[[ExtJ(E, E)]] be a (formai) étale slice of Ê at
E and

étale

n: V-> V/Aut(E) > SU(2, œx)

the canonical morphism. Then, the induced map

7i*(<9)/Aut(E)-<9

is étale. The tangent cône of n*(0) is given by the déterminant

</EeSym2AExtJ(E, E)v

defined (up to a non zéro scalar) by the cup-product

H°(X, E) ® Exti(E, E) -^(X, E)

In particular, a point e e Exto(E, E) is in the tangent cône of n*(0) at [E] if and

only if the cup-product
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is not onto.

PROPOSITION 1. Assume that ^X^E2. Then, the multiplicity ofG at [E] is

mult[E] S \ dim H°(X, E) • mult[EJ SUX(2,0).

Proof, With the notation of the second section, the completion of SU(2, cox) at
[E] is the completion at the origin of

E,, Ej) 0Ext1(E2, E2))0 x S?

where Sf is the cône over the Segre variety

PCExt^E,, E2» x P(Ext!(E2, E,)) <= PCExt^E,, E2)) ®k Ext^E,, E,)).

Fix coordinates

X (X*,) on Ext^E,, Ej) for i ±j and (Y) Yf on Ext^E,, E,).

The équation F of n*(&) is of the form

where G^ + i vanishes at the origin with order >2h -f 1. The polynomials dE and
G2A + Î are GE invariant and therefore (see section 2) can be written in terms of Y
and zk>i Xi>2 - X2j. Let me décompose dE as

where the degree of Q, (resp. P^.J is i (resp. 2h — i) and Po 1. Using the degrees,

one ftnds the following properties:

- If i is odd, then QI(X)P2A_I(Y) 0.

- If P2A-21 ^ 0> then Q2| is invariant and therefore

Q2,(X)=R,(z)
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with R, is a polynomial in z of degree i which is defined up to the idéal of the

Segre cône Sf.

It follows that the équation of n*(&) can therefore be written as

R*fe)+S(z,Y) (2)

where S vanishes at the origin with order >h + 1 at the origin.

LEMMA 2. The polynomial Q2/,(X) is non zéro.

Proof of the lemma. According to the previous discussion, one just has to

prove the existence of e eExt^Ej, E2) 0Ext1(E2, E,) cExti(E,E) such that the

cup product ue: H°(X, E) -?H^X, E) is onto. By symmetry, one only has to

prove the existence of ex eExt^Ej, E2) such that the cup product
uex: H°(X, E,) -?H^X, E2) is onto. This is classical (see [La], lemma II.8): let F
be the variety

r {(k-s,k-e)e PH°(X, E,) x P Ext!(Ei, E2) such that ^ue 0}

and p (resp. q) the first (resp. second) projection. Let 0#.seHo(X, E^ and
D divO) its zéro divisor. The canonical surjection us: 3tfom(Eu E2) -» E2( —D)
gives a surjection

uj:ExtI(E1,E2)-*H1(X,E2). (3)

By (3) the dimension of p~l(k s) is

dimp ~\k • s) dim P Ext^E,, E2) - P dim H°(X, EJ - 1

Therefore dim T dim P Ext1(El, E2) - 1 and q(J) ^ T. D

The polynomial R,, can be thought of as an élément of

H°(P Ext'CE,, E2) x P Ext1(E2, E,), ®{K h))

which by the lemma 2 is non zéro. According to (2), the completion of the

tangent cône is therefore the hypersurface of (Ext^E^ E,) ©Ext1(E2, E2))0 x Zf
given by Rh. The proposition follows. D
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