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Graphs of actions on R-trees

Gilbert Levitt

Abstract Let G be a fimtely generated group actmg on an R-tree T First assume that the action îs free,
and minimal (there îs no proper invariant subtree), or more generally that it satisfies a certain finiteness
condition Then ît may be descnbed as a graph of transitive actions the action may be recovered from
a fimte graph, together with additional data, m particular, every vertex v carnes an action (Gv, Tv) whose
orbits are dense For the action (G, T), ît follows for instance that the closure of any orbit îs a discrète

union of closed subtrees ît cannot meet a segment in a Cantor set

Now let / be the length function for an arbitrary action of G For e &gt; 0 small enough, the subgroup
G(s) c G generated by éléments g with /(g) ^ e îs mdependent of e, and GfG(e) îs free Several

interprétations are given for the rank of G/G(s)

Introduction and statement of results

Let G be a finitely generated group acting on an R-tree T. Assume that the
action is minimal (there is no proper invariant subtree), and simplicial. Then the

quotient space T/G is a finite graph. By Bass-Serre theory [Se], one may recover
the action (G, T) from this graph, together with some additional data: groups
attached to vertices and edges of T/G, and monomorphisms between them.

Now consider an arbitrary minimal action of G. The first problem one encoun-
ters when trying to generahze Bass-Serre theory is that in gênerai T/G is not a

graph, indeed it may even fail to be Hausdorff. To get a Hausdorff space, we note
that T/G carries a natural pseudometric, and we define T/G as the associated metric

space.
Let n : T-+T/G be the projection. Let B c T be the set of branch points (recall

that x is a branch point if r\{x} has more than two components). If G acts freely,
work by Jiang [Ji] and Rips (see [GLP]) implies that the action of G on B has only
finitely many orbits. In particular, n(B) is a finite set (if B is dense in T, it follows
that every orbit of (G, T) is dense).

In gênerai, we say that an action is a J-action if n{B) is finite. For instance, very
small or géométrie actions of free groups are /-actions [GL].

THEOREM 1. Let G be a finitely generated group acting minimally on an U-tree
T. If the action isfree, or more generally ifit is a J-action, then T/G is a finite graph.
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Edges of T/G correspond to orbits of the action of G on no{T\B). The key fact
is that this action has finitely many orbits (geometrically, this means that T/G
contains no &quot;Hawaiian earring&quot;). For an arbitrary action, we shall see that T/G has

the homotopy type of a finite graph.
In order to recover a /-action (G9 T) from T/G, we need additional information.

Given v en(B) (a vertex of the graph), the preimage n~~l{v) is a disjoint union of
closed subtrees which are ail congruent under the action of G. Let Tv be one of
them, and Gv czG its stabilizer. The action of Gv on Tv has dense orbits, we say that
it is transitive. [In dynamical Systems, an action is called transitive if some orbit is

dense, minimal if every orbit is dense. For an action by isometries, the two are

équivalent. We use the word transitive, since minimal has a différent meaning in the

theory.]
The knowledge of thèse transitive actions (Gv9 Tv) is the main pièce of information

that is needed to reconstruct the original action. Détails will be given in section
1.3. As a corollary, we show that, for a /-action, the closure of any orbit Gx is a
discrète union of closed subtrees. More precisely:

THEOREM 2. Let G be a finitely generated group acting on an R-tree. Assume

the action is free {or is a J-action). Given x e T, there exists &lt;5 &gt; 0 such that Gx nJ
is connected for every segment J of length less than ô.

Now we apply thèse results to an arbitrary action of G, using the followine fact
[Le, Theorem 2]: there is a (canonical) normal subgroup HocG such that T/Ho is

an R-tree and the action of G/Ho on T/Ho is free. Note however that this action
need not be minimal, even if G acts minimally.

Given a length function { on G, let m{f) be the rank of the free abelian group
M(/) {t g Hom (G, Z) | 3a &gt; 0 such that |t| &lt; a/}. For e &gt; 0, let G(e) be the

subgroup of G generated by £~l{[0, s]).

THEOREM 3. Let G be a finitely generated group acting on an R-tree T, with
length function S.

(1) There exists e0 &gt; 0 such that G(e) is independent of e for s &lt;e0. Dénote it by

(2) The quotient^G/G0 is free of rank m{£).

(3) The space T/G has the homotopy type of a wedge of m{£) circles. It has a
universal covering: the R-tree T/Go.

COROLLARY. If the action is free, there is a décomposition G en G/Go *
Hx * • • • * Hp9 where each Ht a G acts transitively on its minimal invariant subtree

{compare [MS, Corollary 3.5]).
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COROLLARY. The following conditions are équivalent:
(1) TjG is an R-tree.

(2) T/G is simply connected.

(3) If £ &gt; a\x\, with a &gt; 0 and x : G -&gt; Z a homomorphism, then x 0.

(4) G is generated by /&quot;*([(), s]) for every e &gt; 0.

(5) Given geG and £&gt;0, there exist gx and g2 such that g gxg2 and

max (t(gx\ /(g2)) &lt; fy(g) + e.

The implication 1 =&gt; 5 follows from an argument of [Le]. For free actions, we
hâve:

THEOREM 4. Let G be a finitely generated group acting freely and minimally
on an R-tree T. The graph T/G is homeomorphic to a segment (or a point) if and

only if given geG and £&gt;0, there exist gx and g2 such that g=gxg2
max {f(xx\ t(g2)) &lt;yig) + e.

This theorem cannot be generalized to non-free actions (see III.2).

I. Minimal /-actions

In this section we study minimal actions with n(B) finite. As mentioned above,
this includes minimal free actions: if G acts freely, it is a free product of free abelian

groups and surface groups by Rips&apos; theorem (see [GLP]); for free minimal actions
of such groups, Jiang has proved that B/G is finite [Ji].

We rule out the trivial case T R.

Ll. The space of orbits carries a pseudodistance: denoting by d the distance on

r, set d(Gx, Gy) =infggeG d(gx9gfy). Let T/G be the associated metric space,
obtained by identifying points at distance 0 from each other. Note that, for any
u € T/G, the set Fu~n~l(u) is closed, G -invariant, and the action of G on Fu is

transitive (recall that % : T-+T/G is the natural projection).
Minimality of the action implies that T/G is compact. In fact, it has finite length

in the following sensé. Fix x in Ty and choose a finite generating System {gt} for G.

Then the images of the segments [x, gtx] cover T/G.
Note that n(B) n(B) is finite. Define fiât pièces of T as components of T\B.

Using minimality, we see that flat pièces are isometric to open segments (a, b), with
a, b in B (but not necessarily in B).

If no élément of G interchanges a and è, the restriction of n to (a, b) is injective.
The image of [a, b] in T/G is then a segment between n(a) and n(b) if n(a) ^ n(b),
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or a circle containing n(a) if n(a) n{b). If some élément of G interchanges a and

b, let m be the midpoint of [a, b]. Then n sends [a, m] and [m, b] injectively onto a

segment joining n(a) n(b) and n(m).
Theorem 1 now follows from the following fact:

LEMMA. The action of G on no(T\B) has finitely many orbits.

Proof. First consider flat pièces (a, b) such that n(a) # n(b). Since n(B) is finite,
their length is bounded awa&gt; from 0. They fall into finitely many orbits because

T/G has finite length (see above).

It is thus enough to fix re n(B), and to show that flat pièces with
n(a) =n(b) v form finitely many orbits. Let (an bt) be a finite family of such

pièces, with midpoints mt. Since the orbit of ml is discrète, it defines a homomor-
phism ct from G to Z/2Z: choose any x ^Gmt and define c,(g) as the number of
times the segment [x, gx] meets Gm{ (counted mod 2).

Let ô &gt; 0 be smaller than the length of (an bt) for ail *&apos;. Since G acts transitively
on Ft =p~\v), there exists gteG such that dig^^b,) &lt;ô. If the pièces (anb,)
belong to distinct orbits, we hâve ct(gj) =&lt;5/y and the c/s are linearly independent
in Hom (G, Z/2Z). The required finiteness follows.

In the case of a free action, the set of vertices of the graph F TjG is n(B),
while edges are orbits of the action of G on no(T\B). If n is the minimal number
of generators of G, the number of vertices is lesser than or equal to 2n — 2 by [Ji].
Assertion 3 of Theorem 3 will lead to the upper bound 3n — 3 for the number of
edges.

1.2. Using the lemma, we choose e0 &gt; 0 such that every flat pièce has length
&gt;e0. Given v e n(B), the set Fv is a union of closed subtrees which are at least e0

apart from each other. Since G acts transitively on Fv, ail components of Fv are

congruent and the stabilizer Gv of a component Tv &lt;=.FV acts transitively on Tv.

We can now prove Theorem 2 for a minimal /-action. If x $ B, its orbit is

discrète and the resuit is clear. If x e B9 let v n(x). The closure of Gx is Fv, and

we can take ô £0- Theorem 2 for non-minimal actions will be proved in II.2.

1.3. Our next goal is to define graphs of actions (compare [CL], [Sk2]). Let T
be the R-tree one gets from T by collapsing every component of B to a point. It
may be given a simplicial structure, for which G acts simplicially and without
inversions. There are two types of vertices: components of S, and midpoints of flat
pièces (a, b) such that some g e G interchanges a and^. Edges are flat pièces, or
halves of flat pièces. Obviously T/G is isometric to T/G.
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By Bass-Serre theory [Se], the action of G on T corresponds to a graph of
groups: groups Gv (resp. Ge) are attachée to vertices (resp. edges) of F T&apos;/G, and

every oriented edge ë gives a monomorphism ië : Ge^&gt;Gv. If the action of G on T
is free, then the set of vertices of TjG is n(B), and ail edge groups are trivial.

To recover T from 7&quot;, we need to know the R-trees Tv, and the way flat pièces

are attached to them. This leads to the following définition.

DEFINITION. A graph of actions &amp; consists of:

(1) a metric graph F with vertex groups Gv, edge groups Ge, and monomor-
phisms ië.

(2) for every vertex v, an action of Gv on an R-tree Tv.

(3) for every oriented edge ë, a point of Tv fixed under the action of ië{Ge).

We define nx ($) as the fundamental group of the underlying graph of groups.
We say that &lt;&amp; \s finite if F is finite, that ^ is a graph of transitive actions (resp. of
free actions) if every action (Gv9 Tv) is transitive (resp. free). Note that in a graph
of free actions every edge group is trivial.

A graph of actions ^ leads to an action of nx(^) on an R-tree T(&amp;). We hâve

proved:

THEOREM 5. Every minimal J-action (resp. every minimal free action) may
be représentée! as a finite graph of transitive actions (resp. of transitive free
actions).

1.4. We now prove Theorem 3 for minimal /-actions. Consider the action of G

on the simplicial tree T&apos;. Say that g eG is elliptic if it acts with a fixed point.

LEMMA. For s &lt;e0, the group G(s) c G is the subgroup generated by the elliptic
éléments of the action (G, T).

Proof. Assume g is elliptic. Recall that vertices of T are components of B or
midpoints of flat pièces. If g fixes a component Tv of S, it is a product of éléments

gt with &lt;f(g,) &lt; e since the stabilizer Gv acts transitively on Tv. If g fixes a midpoint,
then S(g) 0.

Conversely, assume é(g) &lt;&amp;$. If g acts with a fixed point on T, it also has a

fixed point on T. If g has no fixed point, its translation axis cannot meet any flat
pièce. It is contained in some component of 5, so that g acts with a fixed point on

r. d

Let Go be G(s) for e &lt; %. Since the action of G on T is simplicial and Go is the

subgroup generated by the elliptic éléments, the quotient G/Go is isomorphic to
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nx{T&apos;jG) and T&apos;/Go is the universal covering of T&apos;jG. We hâve already mentioned
that T/G is isometric to T/G. Also note that T&apos;/Go is isometric to f/G0. ^To complète the proof of Theorem 3, it remains to check that G/Go ~ nx{TjG)
has rank m{£). Any homomorphism t : G -*¦ Z belonging to Mi/) vanishes on Go, so

that the rank of G/Go is greater than or equal to m(/).
To prove the opposite inequality, consider the length functions £&apos; : G -&gt;R and

/0 : G/G0-&gt;R associated to the actions (G, T) and (G/Go, T&apos;/Go) respectively. We
note that r &lt;L t and /0(gG0)=inf?o6G/&apos;(gg0), so that mif) &gt; m(t&apos;) &gt; m(/0).
Since the action of G/Go on T&apos;/Go is free and simplicial, the rank of G/Go equals
m(/0), and the resuit follows.

Note the following conséquence: if (G, T) is a minimal J-action with m(£) &gt; 0,
then branch points are not dense in T.

1.5. Finally, we prove the first corollary of Theorem 3. We may assume that the

action is minimal. We know from 1.3 that G is the fundamental group of a graph
of groups T/G whose edge groups are trivial, so that G is a free product whose
factors are nx(T&apos;/G) ~G/G0 and the vertex groups. A vertex group Gv acts

transitively on Tv, hence also on its minimal invariant subtree.

II. Arbitrary actions

In this section we consider an arbitrary action of a fînitely generated group G on
an R-tree T.

II.l. Let Tm a T be the set of points fixed by every g g G if there are any, the

minimal G-invariant subtree otherwise. Since Tm/G is compact (see 1.1), we hâve

T^IG_= TJG. Given x e T, there is a unique p(x) e Tm such that d(x,p(x))
d(x9 Ym).

For /e[0, 1], define p(x, t) by following the segment [x,p(x)] with constant
speed. We get a G-equivariant strong déformation retraction from Tto Tm9 so that
T/G has the same homotopy type as Tm/G.

If the action is free, we know by 1.4 that Tm/G0 is a (simplicial) tree. It follows
that T/Go is also an R-tree (using for instance Theorem 1 of [Le]). Since the

projection T\JG0-&gt;Tm/G is a covering map, the projection T/Go-+T/G is one
also. We hâve thus proved Theorem 3 for non-minimal free actions.

II.2. Now we prove Theorem 2. By I.^it holds for the action of G on Tm, so

that ô exists if x e Tm. Now consider x$Tm. If the action is free, the orbit of x is
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discrète since d(x, gx) &gt; 2d(x, Tm) for g#id. If the action is a /-action, the

segment [x, /&gt;(x)]^contains only finitely many brandi points (since it projects
injectively into T/G)9 and Gx is discrète in this case also.

II.3. To deal with completely arbitrary actions, we need the following two
facts from [Le]:

THEOREM 6. Let G be a countable group acting on an R-tree with length
function t&apos;.

(1) There exists a normal subgroup Hocz G such that T/Ho is an R-tree and the

natural action of G/Ho on T/Ho is free.
(2) Suppose T/G is an R-tree. Given e &gt; 0 and g eG, there exist gx, g2 such that

g gxg2 and max (^(gi), ^(#2)) &lt; \^in) +e- In particular, G is generated by

every e&gt;0.

We write G G/H0 and T tJh0. Let p :G-+G be the quotient map. The

length function *Tof the action (G, T) is given by l(gH0) inîheHQl{gh). By 1.4,

there exists e0 &gt;^û such that the subgroup of G generated by /^([O, e]) is a fixed

group GQ for e e(0, e0). Let G0 p~l(G0).

LEMMA. In the above situation:
(1) m(/)=m(/).
(2) G(s) Go for 0 &lt; e &lt; e0.

Proof. Since Ho is generated by its éléments of length &lt; s for every e &gt; 0, any
homomorphism t : G -? Z in M(/) vanishes on Ho and thus factors through a

homomorphism f : G -* Z belonging to M{1). This defines an isomorphism between

M(/) and M(f).
Clearly p(g) e Go if £(g) &lt;£o, so that G(e) a Go. Conversely, assume p(g) e Go.

Write p(g) =gr- • gp with l(gt) &lt; e, and choose glep~\gl) with t(gt) &lt; s. Then

g hgx- - • gp with heH0. Since //0 is contained in G(s) by assertion 2 of Theorem
6, we get g e G(e). O

We hâve proved assertion 1 of Theorem 3. Assertion 2 is clear since G/Go ^
GJGq is free of rank m(/) m(f). To prove assertion 3, note that T/G is equal to

TjG. By II. 1, it has the homotopy type of a wedge^of m(f) circles. Its universal

covering is the R-tree T/Go which is equal to T/Go. The second corollary of
Theorem 3 is proved by using assertion 2 of Theorem 6.

Note that Go is the largest subgroup H czG such that T/H is an R-tree.
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III. Proof of Theorem 4

III. 1. Let G be a countable group acting on an R-tree Twith length fonction £.

Let c e [0, 1]. We say that £ satisfies condition (*c) if, given g e G and e &gt; 0, there
exist gx, g2 e G such that g gxg2 and:

jmax (£(gl), £(g2)) &lt; (1 - c)£{g) + s

The following facts are proved in [Le] (Theorem 1 and Remark III. 1):

THEOREM 7 ^(1) If £ satisfies (*c) for some c &gt; 0, then T/G is an R-tree.

(2) // TjG is an R-tree and c e [0, 1/3], then £ satisfies (*c).
(3) If TjG is homeomorphic to a subinterval ofR and c e [0, 1/2], then £ satisfies

(*c)-

We now prove the following resuit, which strengthens Theorem 4:

THEOREM 8. Consider a minimal free action of afinitely gênerated group G. If
£ satisfies (*c)for some c &gt; 1/3, then T/G is homeomorphic to a (possibly degenerate)

segment (so that £ satisfies (*c) if c e [0, 1/2]).

III.2. Before proving this theorem, we consider the following example. Let F
be the simplicial tree having 3 vertices aua2,a3 of valence 1, and 1 vertex v of
valence 3. Make it into a graph of groups by setting GUi Z/2Z (edge groups and

Gv are trivial), and consider the associated action of G Z/2Z * Z/2Z * Z/2Z.
Vary the metrie on F by choosing the 3 numbers dt =d(v,at) independently.

This gives topologically conjugate actions of G whose length functions hâve the

following form: if w is a cyclically reduced word in the generators gi,g2,g3, then

£(w) 2 E^ mtdn where mt is the number of occurrences of g, in w (with an

exception: £(w) 0 if Z mt &lt; 1).

If dx=d2 d3, taking g=gig2g3 shows that £ satisfies (*c) if and only if
c &lt; 1/3. If d3 2dx 2d2, one can show that £ satisfies (*c) for c ^ 1/2. This means
that Theorem 4 does not extend to non-free actions.

III.3. To prove Theorem 8, assume that / satisfies (*c) with c &gt; 1/3. By 1.1 and

assertion 1 of Theorem 7, we know that T/G is a finite tree whose set of vertices is
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n(B). By 1.2, the preimage n~l(v) of a vertex v consists of congruent subtrees, and
the stabilizer Gv of such a subtree Tv acts transitively on Tv.

Say that a vertex v of T/G is trivial if the vertex group Gv is trivial. Minimality
of (G, T) implies that a vertex of valence 1 cannot be trivial, while freeness implies
that Tt is not a point if v is non trivial.

Assume T/G is not homeomorphic to a segment. Then we can find a vertex v

of valence &gt;3 and three nontrivial vertices al9a29a3 such that the open segments
(va,) are disjoint. Set dl=d(v,al), and choose ôt&gt;0 such that À=2dl+ôl is

independent of / 1, 2, 3. Finally, choose e &gt; 0 small with respect to the J/s and

c - 1/3.

In this proof, we shall say that two points (or two numbers) are close if their
distance does not exceed a fixed multiple of s (which we do not bother to specify
each time). Similarly, we write p &gt; q if p — q is greater than a fixed négative
multiple of e.

Définition of T/G implies the following lifting property: given two points a9 b at
distance d in T/G, and a point a en~\a)9 there exists Ben~\b) such that d(â, B)

is close to d.

Fix ven~l(v). Choose c?x en&quot;l(ax) with d(v9 cfx) close to dx. Let Tx be the

component of n~l(al) that contains c?x, and Gx the stabilizer of T{. Choose hx e Gx

such that d(cFx hx c?x is close to ôx (this is where we use freeness of the action, cf.

III.2). Define v*x hxv, and note that d(v, Fx is close to À. Perform this opération
twice more, passing from tT, to v&quot;2 h2v^x via some a2 en~l(a2), and from v&quot;2 to
^3 h3 v*2 via some a^ en~l(a3).

Let g hxh2h3 be the élément of G that takes v to v^, and Ag its translation
axis. Since n([v9 ax ]) and n([h3 a&quot;3, v^3 ]) are almost disjoint, the translation length
/(g) is close to d(v, v*3 % 3A. Also note that, if h(v) and /r(£) are both close to Ag

(with /*, h&apos; e G)9 then (l/X)d(h(v), h&apos;(v)) is close to some integer k\ if ^ ^ 2, then

Write g gxg2 with /(g,) + &lt;f(g2) &lt; /(g) + e. We shall show that /(g,) or /(g2)
is &gt;2A. We may assume that Ag2 meets Ag9 since otherwise we get

First suppose that g2v is close to y4^. Then at least one of the numbers d(v, g2v)

or d(g2v9 gv) is &gt;2X, and we get /(g,) &gt; 2A for / 1 or 2.

If g2v is not close to Ag9 there exists x 6 [v9 gv\ nAg2 such that the open segment
(*, #2*) îs disjoint from ^g. Let j be the point of [x,gx] whose distance to gx is

/(g2). It has to be close to gxx, since /(gi) &lt; /(g) — ^(£2) + e ^(x&gt;^) + £- If x *s

close to Gv9 we argue as in the first case. If not, one of the segments [x9 y] or [y9 gx]
is disjoint from Gv9 so that the other one contains two points of Gv whose distance
is %2Â. It follows that f(gx) or /(g2) is
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IV. Questions and remarks

IV. 1. How gênerai are /-actions? For instance, do /-actions include ail small
minimal actions of finitely présentée groups with proper direction-to-vertex stabiliz-
ers (see [BF, p. 140])? We can prove it for actions of free groups.

IV.2. Is there a generalization of Theorems 1 and 2 to arbitrary minimal
actions?

IV. 3. Inspired by terminology from dynamical Systems and foliation theory,
define a minimal set to be a nonempty, closed, G-invariant subset of T which is

minimal for thèse three properties. Minimal sets are precisely preimages n~\x).
Theorem 2 implies that a minimal set of a /-action is a discrète union of

subtrees. What can be said in gênerai (assuming G is finitely generated)? For
instance, can a minimal set be exceptional (i.e. intersect a segment in a Cantor set),

or be a closed non-discrete orbit (compare IV.5)?

IV.4. Consider a transitive free action of a finitely generated group G. Can G be

written as a free product in such a way that each factor acts on its minimal
invariant subtree with the property that every orbit meets every nondegenerate
segment? Since free actions of surface groups are classified [Ski], the interesting
case is when G is free. This may be related (via Theorem III.7 of [Le]) to the

following géométrie question.
Consider a nonsingular, codimension one, measured foliation 3? on an open

manifold M. Can !F hâve exceptional leaves if nxM is finitely generated?

IV.5. Theorem 3 becomes false if G is only assumed to be countable. The

following simple example was pointed out by G. Meigniez. Let G be the free group
on countably many gênerators {#„}. Let Tbe the Cayley graph of G, with a metric
giving length l/n to the edges corresponding to gn. The natural action of G on T is

free and minimal.
The séquence G(l/n) is strictly decreasing. The space T/G is a Hawaiian earring.

In particular, it does not hâve the homotopy type of a wedge of circles. It has no
universal covering, and its fondamental group is uncountable. Also note that the
orbit consisting of the vertices of T is closed but not discrète.

For any action, there is a natural homomorphism q&gt; : G -^n^T/G): choose a

basepoint x eT, and send g e G to the projection of the segment [x, gx]. If G is

finitely generated, Theorem 3 says that ç is an epimorphism whose kernel is Go. In
the above example, cp is not onto.

Theorem 7, however, is valid for infinitely generated groups.
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