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Estimâtes for the energy of a symplectic map

H HOFER*

1. Introduction

In [9] the author introduced a bi-invanant metnc d for the compactly supported
symplectic diffeomorphism group and studied îts relevance in symplectic geometry
This metnc, though at the same time pnmanly introduced to study generahzed
symplectic fîxed point problems, turned out to be the natural measure of distance

in studying to what extent does the boundary of a symplectic manifold reflect

properties of îts symplectic intenor, see [6, 5, 7] Shortly afterwards, J Moser
(pnvate communication) observed that certain quantities (e g mean action) in
Aubry-Mather-theory, see [13, 14], dépend contmuously on this metnc J Moser
and J C Sikorav, [15], independently raised the question if ît îs possible to estimate
the d-distance in terms of C°-data

The aim of this paper îs to provide such an estimate We also take the

opportumty to dérive a good estimate for d from below Related estimâtes from
below can also be obtained by combining results in [3] and [9], see also [2] and [9]
However, the présent approach gives some interesting new înequahty in symplectic

geometry and the proof îs quite simple This înequahty can be taken as the single

starting point for developing the symplectic C°-ngidity theory as well as the

existence theory for penodic orbits with prescnbed energy
A survey, based on this point of view, descnbmg the récent developments m

symplectic geometry and topology, will appear elsewhere, [10] In order to state the

main resuit we hâve to mtroduce some notation Let ^ be the vectorspace of ail

compactly supported smooth maps H [0, 1] x C&quot;-»IR For p e[\, + oo] we define

norms || ||p on ^ by

ai
\i/p

^

\eH(t)\pdt) for/&gt;e[l,+oo)

||//||o0=max \eH(t)\ for/&gt;
(1)

&gt;e[0 1]

* Supported by SFB 237 and Procope
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Wlth

eH{t) max H(t, x) - inf H(t, x) (2)
x e Vn x e Cn

Clearly the following mequahty holds for every H

We view Cn as a real vectorspace with symplectic form œ — Im where

is the standard Hermitian inner product Given H e ^ we define the associated

Hamiltonian vectorfield by

and a symplectic arc (W?)te[0 i], by

*P?XCP?) *F^ Id

Given H e &lt;g we define the time-1-map WH by WH yf The collection 0 of ail
time-1-maps is a group We introduce a scale of énergies (i^efi +OO] as follows

One easily vérifies that

Ep(V) Ep(V l)=Ep(&lt;PV&lt;P l)
(4)

(*)
V ;

p EP(V) + £,(*)

for ail &lt;î&gt;, !P g @ The crucial property, which follows from results in [9] is that

=0 &lt;*&gt; y Id (5)

This will also be a conséquence of theorem 2 below Using (4) and (5) ît follows
îmmediately that
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defines a bi-invariant metric on 3). Observe that the complétions of the (3f9 dp) are

again groups, since dp is bi-invariant.
Our first resuit in this paper is the following estimate from above by C°-data.

THEOREM 1. The following estimate holds for d^.

^(tf), V) &lt; 256 diam (supp (4&gt;V1)) ||4&gt; - Y\\c0 (6)

for ail &lt;P,Ye3. Hère diam (Q) is the diameter of a subset Q of Cw and

Since dx&lt; dp &lt; dœ the above estimate holds for every dp9p e [1, -f oo]. The reader
will observe later that the proof of theorem 1 can be adapted for example to
estimate the energy in terms of the diameter of the support and certain Sobolev

norms. For example in C the following type of estimate seems to be true for

&lt;/«,(*, «0 &lt; c diam (supp (&amp;lV))\\4&gt; - W\

with

y/2
&lt;P(x) - Da*F(x)\2 dx ]

for a universai constant c. So the PF12-completion of the area preserving maps with
support in the unit disk can be considered as a subset of the completion lœ of
(3, d^). Is the abstract inverse of such a map in 3œ again of class Wh2l It would
be interesting to hâve more estimâtes of the above type.

In the same way distributions generalize functions, the groups 3)p seem to
generalize symplectic maps. It follows from theorem 2 below that the geometry of
3)p is closely tight to phase space geometry.

In order to proceed further we dénote by si the subset of ^ consisting of ail
autonomous Hamiltonians with compact support. For H e si ail the norms \#?\p
coincide. Similarly to a construction given in [12] we define a quantity c{^l) for
every open subset ^ of Cn. Dénote by siad the subset of si consisting of ail
Hamiltonian //, such that every T-periodic solution x of x XH{x) for T € [0, 1] is

constant. Given an open subset ^l of Cn we define

^«/l supp (//)&lt;=#}.
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We note that s/ad(0) {0}. Then we put

sup {|| tf^ | H g séj&amp;) and H &lt; 0}. (7)

It is an easy exercise, see [12], to show that c(B2n(\)) &gt; n. It is however nontrivial
to show that c(B2n{\)) &lt; n. But this will be a corollary of theorem 2.

THEOREM 2. For every W e 9 and open subset % of Cw, such that

n % 0 we hâve the estimate

In particular

sup {c(%) | ^ c: C&quot; open, !P(«)n« 0}

As a by-product of the proof of theorem 2 we obtain the following resuit for
autonomous Hamiltonians.

THEOREM 3. Let H e stfad, then for every p e [1, +00] we hâve the equality

Finally I would like to point out that C. Viterbo [16], motivated by [9], constructed
a homological energy function. Tt would be interesting to understand the relation-
ships.

Acknowledgement. I would like to thank Y. Eliashberg, J. Moser, J. C. Sikorav,
C. Viterbo, and E. Zehnder for many enlightening discussions. In particular I would
like to thank K. Sieburg and E. Zehnder for pointing out an inaccuracy in an
earlier version of this paper.

2. Localization of symplectic maps

Let Sl, Sk, k &gt; 2 be subsets of Cw. We say 5,, Sk are properly separated

provided for every choice of bounded subsets B, a Sn i 1,. k, there exist

parallel hyperplanes r, *= C&quot; ~ &apos;

© U9. It -~ at H-1{,.. Ik __ x, and a symplectic

map T6^, such that the sets x{Bx),..., t(Bk) are pairwise contained in différent

components of C&quot;\(Uf= i1 £f).
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For a given number/? e [1, -f oo] we define the proper displacement energy ep(S)
of a subset S of £n as follows:

ep(S) inf {a &gt; 0 | For every bounded subset A a S there
exists V g 9 with EP(W) &lt; a,
and A and Y(A) are properly
séparated}. (8)

Obviously ep(S) ep(W(S)) for every W g 2 and S a Cw. It is another easy exercise

to show that

ep{B\\) xCn&apos;l)&lt;n, forpe[l, +oo] (9)

(see [9]). For the proof of theorem 1 the following type of problem turns out to be

important. Assume fe^ and a subset Q cz Cn and a number k ^ 0 are given. We

say W | Q is localizable in a subset °ll a Cn with 2^-bound k provided there exists
4&gt; g ®, such that

)c:^ (10)

EPW ± k.

The key point for the proof of theorem 1 is to find on suitable sets Q localizations
in convenient sets °U with small energy.

Assume ¥ g ®, ¥ ¥= Id, is given. For x0 g supp (W) we dénote by CXQ(IF) the set

of ail points xeC&quot; which can be written in the form

x=(l-t)xo+tz (11)

for some f e [0, 1] and zGSupp(*F). Clearly CXo{W) z&gt; supp (Y) and CXQ(*F) is

starshaped with respect to x0. We need the following lemma. The proof is straight
forward and left to the reader.

LEMMA 4. Let &lt;PU ,&lt;Pk be éléments in 2 such that supp (#i),.. supp (&lt;j&gt;k)

are properly separated. Then

**) ^2max
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In [15] J. C. Sikorav stated the estimated E^{&lt;PX&lt;P2) &lt; max {£^(0,), £^(#2)},
which however is not correct. The next lemma which is due to J. C. Sikorav, [15],
relied in its original proof on the above wrong estimate. However replacing it by
Lemma 4 ail arguments work, only the constant 8 has to be replaced by 16.

Sikorav&apos;s proof, although quite short, is tricky and the resuit itself rather counter-
intuitive. We give the proof for the convenience of the reader.

LEMMA 5 (Sikorav&apos;s Estimate). Let H e% be supported in [0, 1] x (JU. Then we
hâve the estimate

In other words: the energy of a symplectic map *F can be estimated through the proper
displacement energy of the smallest support one needs to generate f.

Proof. Using the time évolution for the Hamiltonian H we fînd for given x &gt; 0

a finite séquence *Fk e 2, k =0,. 9 N such that

Vo Id, VN WH

s\xpp(Wk)czScz^ for k =0, N (12)

d^(Vk, {Fk + [)&lt;T for A: =0, ...,#-1,

where S is a bounded subset of °U. We find a séquence 0O,.. &lt;P2N in Q) with
&lt;P0 Id, &lt;2&gt;! &lt;P, such that for j 1,.. 2N the 4&gt;7&apos;s are pairwise conjugated to
each other, and the sets St &lt;P, (S) for / 0,..., 2N are pairwise properly sepa-
rated. Hère 0 g Q) is chosen in such a way that

&lt;P(S) and S are properly separated 13)

and

t. (14)

We define for / 1,. N, maps a, e 2 by
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and for / 0,. N maps f}t e 2 by

Clearly we hâve

supp (a,) c:S2l for i 1,. AT

(16)

supp (Pt c S2| for i 0,. N.

By construction any two différent symplectic maps among the &lt;xx,...,oln,

/?,,. pN hâve properly separated supports and therefore they commute. In view

of lemma 4 we obtain

(17)

and

max 0,. TV - 1}.

We hâve for / 1,.. N

(18)

for a suitable 9t e 2, and for / 0,.. TV — 1

(\9)

Using conjugacy invariance and the triangle inequalities for E^ we obtain from

équations (14), (19) and (20) since the &lt;Pl were ail conjugated for / ^ 1:

(21)
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and

5x. (22)

Combining this with (17) and (18) gives

x (23)

-5t).

Next we observe that f^1 f ^&apos; and jSw are conjugated so that

Eao(VH)=Eao(V]il)=E&lt;D(pN). (24)

We write

u na-+.ft)( n
N

Combining this with (23) we deduce

Eœ {VH) &lt; Eœ n a,/?,^ + £œ Tn&apos;

&lt; 16e» («) + 18t.

Since t &gt; 0 was arbitrarily chosen

Now we are ready to state the localization resuit.
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PROPOSITION 6. Let V # Id, &lt;P e 9, and ô &gt; ||f - Id||co. Suppose Q is an

open nonempty subset ofC intersecting supp (f), and x0 e Q nint (supp (f)). Then

W\Qis localizable in Bs(Q)nCXo(&lt;F) with Eœ-bound X^ 16^(^(0 nC,,(!P)).
//ère BS(Q) is the open ô-neighbourhood of the set Q.

Proof. Let -* V, e 9), t e [0, 1], be a smooth arc Connecting Id with the given
•F. For s e [0, 1) and t e [0, 1] we define Y*, e 2&gt; by

«&quot;{(*) sx0 + 1 - s)«P,(x0 + 1 - s) ~ \x - x0)). (25)

Pick R &gt; 0 such that

supp (y,) c BR(x0) for ail e [0, 1].

We observe that

suppOPJ) ¦»&lt;.-,&gt;*(*(&gt;) (26)

for ail (t, s) e [0, 1] x [0, 1). (Note that définition (25) is in some sensé the &quot;inverse

Alexander trick&quot;.) Moreover

supp0Pi)c:Cïo0P) (27)

for ail s e [0, 1). Fix a soe(0,\) such that

^||Id-f||co.
(28)

We define a subset f c i2 by

We take a smooth map /? := (a, b) : [0, 1] -? R2 satisfying /?([0, 1]) c F and moreover

j»(0) (0, j0)

;ii])c={i}x[o,i)
(1,0).
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Using p and / -* Wt we define a smooth arc t -x^,, r e [0, 1], by

4&gt;,:=«p*/&gt; (30)t A a(t) Wv/

By the preceding discussion we hâve

• supp (&lt;P,) c CXQ(W) for ail * g [0, 1].

• supp (*,) c= B€/3(x0) ^ CVoCF) n Q for ail * g [0, \]

with £= min {3/*(l -50), |Id-^||Co}. (31)

•|^r(x) -x| &lt;(1 -/?(/)) ||ld- «P||c0 for ail x g C&quot;

and /eg, 1].

Let ^ be the Hamiltonian in ^ generating f-»&lt;P,. Since CVoCF) is starshaped, we

hâve H(t,x)=0 for ail f e[0, 1] and jceC&quot;\C,om, i.e. supp (//) c [0, 1] x
CXQ(lF). Let y : C&quot;-&gt;[0, 1] be a smooth function satisfying

-
&quot;

(32)
y | (Cw\jB^(0) =0

for some Se (||Id — •F||eo, (3). In view of équation (31) we note that

(33)

for ail t e [0, 1]. We define a new Hamiltonian H e # by

//(/,x)=y(x)W(r,x). (34)

In view of (33) we must hâve

vh IQ *i I ô y I ô-

Using (31) and (32) we see that

supp (//) c [0, 1] x (CÏO(ÎP) nB,(0). (35)

Hence we hâve shown the existence of a Hamiltonian // satisfying (35) and

VH\Q V\Q, supp (•?„) c (C
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From lemma 5 we obtain

o
(36)

Assume °U — (au a2) ®i(bx, b2) ® C&quot;~ with — oo &lt; ax &lt; a2 &lt; +oo, — oo &lt;/?, &lt;

b2 &lt; +oo. Given any ¥ e Q) with supp^P) cf we can use the first part of the

proof of proposition 6 to construct a Hamiltonian H e %&gt; with supp (H) cz [0, 1] x $11

and WH W. This is of course possible since % is starshaped. It is an easy exercise

similar to (9) that

^oo((«i, a2) ei(bu b2) 0C«- &apos;) &lt; (a2 - ax)(b2 - bx). (37)

Hence we obtain in view of lemma 5 the following corollary:

COROLLARY 7. Assume W g 2 with

supp (V) a (ax,a2)®i(bx,b2)®Cn-1.

Then E^V) &lt; \6{b2- bx)(a2- ax).

3. The C°-Estimate

Using the results from section 2, theorem 1 can be quite easily deduced.

Proof of theorem 1. Let V e 9, W # Id and put c || W - Id||co. Pick a ô &gt; c

and choose a séquence (ak) cz R satisfying

«o 0, %+1-%=2^. (38)

We define g^ cz Cn by

fi^fe-t^.+TjeC&quot;-1 (39)

for some small r &gt; 0 satisfying

t 4- e &lt; ô. (40)
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Define I {k e Z | Qk n supp (¥) ^ 0} and pick jc^e^n int (supp (*F)) for A; e I1

such that

(41)

with R diam (supp (*F)). Clearly for A: g Z we hâve

CXk(V)czBR(xk). (42)

Pick a satisfying

ê&lt;^ and $+t&lt;ô. (43)

By the localization proposition we fînd &lt;Pk for k e I satisfying

(44)

We note that the

Bs(Qk) (ak-

are mutually properly separated. The same is then true for the sets B$(Qk) n
CXQ(W), k e E. We note that for A; e Z and a suitable choice of bk e R we hâve with
R diam (su

BsiQk) n CXk(V) Œ(ak-x-S,ak+T + $)® i(bk -R,bk+R)®C&quot;~ l. (45)

For différent kjel the supports of &lt;Pj and &lt;Pk are properly separated. Hence from
équations (44), (45), lemma 4 and corollary 7

e n 0,
\ke E

2R)

js (46)

&lt; 128 • Rô.
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Next we write W *F(nfc e E &lt;Pk) ~ l(TLk e z &lt;Pk) and estimate in view of équation (46)

(47)

On gfc for any k in Z we hâve with 0 Ylk€L&lt;Pk

Moreover, for every k el the support of &lt;Pk was contained in Bg(Qk)nCXkCF).
Hence W0~l can be written as a finite product of maps in 3), say y,,. y,, with
mutually properly separated supports contained in sets of the form

%&gt;=[&amp;j -(ô-Tlâj+iô-TÏÏQiiSj-Rjj + RjeC&quot;-1 (48)

for suitable à}, 6j e U. Hence arguing via corollary 7 along the previous lines

&lt; 32 • (2(&lt;5 - t) • 2R) (49)

128 R(ô-z)

&lt; 128 • Rô.

Combining now (47) and (49) we obtain

Eœ(T)£256 Rô. (50)

Since R diam (supp (f and S was an arbitrarily chosen number greater than

|Id— !P||co we hâve arrived at

&lt; 256 • diam (supp(«P))||Id- y ||co. (51)
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From this we deduce

&lt; 256 • diam (supp (&lt;PV ~1)) \\là-&lt;PWl \\c0

256 • diam (supp (&amp;¥ ~&apos;)) || V - 0 ||c0. D

4. Functional analysis of the action intégral

The method we are employing is close to [7,3,4,11,12] and utilizes the

variational approach to strongly indefinite functionals going back to Benci and

Rabinowitz, [1] and the author [8]. We dénote by 0$ the Hilbertspace consisting of
ail functions u e L2((0, 2); C&quot;) with Fourier séries

m= £ xkextkt, xk eC&quot;

k e Z

satisfying the summability condition

As norm we take

Clearly, || || is induced by some inner product -, •). M has an orthogonal décomposition

^=^&quot;©^°©^+ given by

u=u +t/° + w+=£ xkemkt + x0+ X xkemkt.
k&lt;0 k&gt;0

We dénote the corresponding orthogonal projections by P~, P° and P + The
action intégral is the quadratic form a : &amp; -? IR defined by

a(u)=-]- ||P - «||2 + \\\P + u\\2. (52)
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If u : IR/2Z -? C&quot; is a smooth 2-periodic loop we hâve

(»)={ f2&lt;-iM,M&gt;A, (53)

where &lt;•,•&gt; Re -, •) is the standard real inner product on C&quot;. Note that the right
hand side of équation (53) is the classical action intégral.

For pairs (H,K)ejrfx&lt;£, where s/ x# carries the norm ||(//, K)\x
|i -f- j| AT|| j, we define an associated smooth functional b(HK) by

ïl H(u(t))dt+ f2 K,_
(54)

Moreover, the gradient of bHK denoted by b[H K) : 08 -&gt; 08 has a relatively compact
image. This follows since H and # are compactly supported and smooth and J1 is

compactly embedded into Z/((0, 2); C&quot;) for every /? g [1, +oo). Also b{HK)($) is

bounded in R. Using a variant of a construction in [3] we introduce a spécial

subgroup 9 of the homeomorphism group homeo (08) of 08. We say a homeomor-
phism h : ^ -*$ belongs to ^ provided h, h~] map bounded sets into bounded sets

and there exist continuous maps y± : 08 -&gt; U, K\0b-*0b having the following
properties. y± and K map bounded sets into relatively compact sets. Moreover
there exists a constant R R(h)&gt;0, such that K(u)=0 and y±(u)=0 for ail

«e^+ satisfying \\u\\ ^ /?. Moreover A has the représentation

h{u) ey~(u)u ~ + u° 4- ey+(w)w + + A:(w). (55)

It follows immediately from its définition and elementary properties of nonlinear

compact operators that ^ is a group. In the following we shall need

LEMMA 8. For every h €$ we hâve

Proof. We hâve to find u e 08 + such that P + h(u) 0. This is équivalent to

Tu
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for some u e0è*. T \ @+ -±&amp;+ isa nonlinear compact operator with T(&amp;+) being
compact. Hence via Schauder&apos;s fixed theorem we find a u e &amp; + with u — T(u).

We define a map a : se x # -? U as follows. For (H, K) e s? x % we put

^Hxr=a ~b(H,K) (56)

and define

inf a(/fJÇ)(A(«)). (57)p

Let us define for (//, K) e s/ x&lt;é? two real numbers q(H, K) &lt; 0 and

(//, /^) inf //(x) -h I inf 7^(/, x) dtinf K(t,.
Jo xeC&quot;

+(//, K) sup //(x) + sup K(t, x) dt.
x e C Jo &lt;C

(58)
A K{ux)ai.

Observe that

I&quot;||i + ll^li &lt;1+(H, K)-q~(H, K). (59)

LEMMA 9. For (H, K) e se x &lt;^ vw /iaw

-9+(//, ^) ^ a(H, K) &lt; -q-(H, K)

-q + (O,K)+a(H,O) &lt; «(//, K) ^ a{H, O) - q~{0, K).
}

Moreover

\a(H2, K2) - a(//,, tf,)| &lt;ï |/f2 - //, | + ||K2 - Kx ||,. (61)

Proo/. We hâve for u e M +

&lt;*&lt;«,*&gt;(&quot;)

2
II&quot;II2-*(//,*:)(&quot;)
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Hence

a(//, K) &gt; mf - ||w||2 -q + (H, K)
ue* + \~ / (62)

For uel ©J°we estimate

(63)

In view of lemma 8 we hâve for every he^ h(@+)n(@ ©^°) ^ 0 Hence in
view of (63)

mf a{HK){h(u)) &lt; sup a(H K)(v)

So we obtam from équation (62) and (64) and the définition of a the first part of
the assertion (60) of lemma 9 The second part can be proved similarly The trivial
estimate

[\h2-Hx ){u(t)) dt + f ((K2)t («(0) - (^, MO)) dt
Jo Ji

gives immediately

\*{H2,K2)-z{Hx,Kx)\&lt; \\H2 -Hx ||, + \K2 - Kx\x U

LEMMA 10 Let (H, K) e se x% and assume (uk) c ^, de M, such that

û(h K)(Mk) -&gt; 0 in M, a(H K)(uk) -+ d (65)

Then there exists u g 31 satisfying

(w)=0, a(HK)(u)=d
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Note that this is a version of the so-called Palais-Smale condition However for the

maps (H, K) e se x &lt;# the condition (65) will in gênerai not imply that (uk) has a

converging subsequence

Proof Since b[H K)(@l) is precompact and a\u) — w ~ -f w + ît follows îmmedi-
ately after taking a subsequence that

Since ^° is fînite dimensional we are done if {u\) is bounded So without loss of
generahty if suffices to study the case

(66)

From équation (66) we deduce îmmediately that

V K)(uk)~+0 m M,

since H and K hâve compact support Hence u ± 0 and we conclude

That is d 0 Let c g C&quot; with [0, 1] x {c} n[([0, 1] x supp (//)) usupp (#)] 0
Then the constant loop (R/2Z -&gt; Cw r -^ c is a cntical point of a{H K) and

The key technical resuit for proving theorem 2 is the following construction of
a sélection functwn

PROPOSITION 11 There exists a not necessanly continuous map
p se x * -? ^ satisfying

*&apos;iHK)(ft(H,K))=0

Proof It is enough to find for every (//, AT) g se x&lt;£ a cntical point w(// ^} of

K) with
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Arguing indirectly let us assume a(//, K) e M is not a critical level. In view of lemma
10 we find c &gt; 0 such that

IKW&quot;) II * £ if *&lt;*.*&gt;(«) e M». *) - ^ «(#&gt; *) + 4 (67)

Take a smooth map g : ^ -* [0, 1] satisfying

a(w) 1 for a{HK)(u) g [a(#, #) - ê, a(//, iiT) + c]

o{u) 0 for aWiC)(ii) * [a(H9 K) - 2c, «(//, ^) + 2c].
(68)

Consider the ordinary differential équation in if given by

w o(u)a{HK){u)

-m. m

If u e &amp;+ and \\u\\ is large we hâve a(HK){u) &gt; a(//, K) H- 2c and consequently by

(68) G(u) 0. (69) générâtes a global flow denoted by

Mx@-+@ :(s,u)-+u*s. (70)

In view of (67) we find a real number T &gt; 0 such that the map h : ^ -&gt;^ defined

by /z(w) =u * T satisfies:

If aiHtK)(u) &gt; oc - c then cciHK)(h(u)) &gt; oc -f- c, (71)

with a a(#, #). We note that G(w) -o{u)u ~ -h 0-(w)w + -
For given «e^ define ^M(0 -o{u * r)^~ + ^(w * 0^+ and /M(0
— a(u * t)b{H K)(u * t). If / -? w(/) solves ù G(w) with w(0) w0, it solves the linear

inhomogeneous System

&quot;(0 Auo(t)u{t) +fuo(t)

*»* &lt;72)

Now using the variation of constant formula we see that h e &amp;. By the définition of
a(//, A:) we find h0 e &amp; such that

inf a{HK)(h0{u)) &gt; oc - c. (73)
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Since k h o h0 e &amp; it follows from équation (71), (73) and the définition of a(//, K)

a(H, K) &gt; inf aiHtK)(k(u))
u e # 4

&gt;(x(H,K)+c.
(74)

This contradiction proves the proposition.

Using proposition 11 and Sard&apos;s theorem we will be able to investigate the
behaviour of a on certain subsets of se x &lt;€.

LEMMA 12. For ail H e sead we hâve

&lt;x(H9 0) - min H(x) -q~(H, 0).
ve C&quot;

In particular, if in addition H &lt; 0 we hâve a(H, 0) ||//r||1.

Proof. A critical point u of a(//^) satisfies

u : [0, 2] -&gt;C&quot; is continuous

u(0)=u(2)

ù XH(u) on (0,1)
(75^

û=XKi i(u) on (1,2).

If K 0 we hâve u \ 1, 2) const, so that w(0) u( 1). This means u | [0, 1] can be

extended to a smooth 1-periodic solution of x XH(x). Since H e $4ad ail those
solutions are constant. Consequently, denoting by Cr (//, K) the set of critical levels

for a{HK) we must hâve

Cr (//, 0) c {-H(m) \ dH(m) 0}. (76)

The right hand side is obviously a compact subset of IR and by Sard&apos;s theorem
nowhere dense. Let c g C&quot;\{0} and dénote by He e séad the Hamiltonian

E\x) H(x - 6c)

for 0e[O, +oo). Clearly Cr (H6, 0) Cr (//, 0). Since 0-+oi(He,0) is continuous
and (76) holds this map must be constant. Hence we may assume without loss of
generality that

H(0) inf H(x). (77)
xreC&quot;
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Now consider a(i//, 0), where we assume (77). Clearly for x e [0, 1]

T//(0) t inf H(x).
xeC&quot;

The map x -» oc(xH, 0) is continuous and since for x e [0, 1] xH e &lt;séad we infer from
the preceding discussion

a(t//, 0) g { - xH(m) \ dH(m) 0}. (78)

Hence for x e [0, 1] the map x -»a(i//, 0) satisfies

a(r//,0) -xH(m) (79)

for a suitable m e Cn with dH(m) 0. If we can show that m 0 is a good choice

we obtain

a(#, 0) - inf //(x)

and the lemma is proved. For a suitable x0 &gt; 0 small the following holds

xH(0) &lt; xH(x) &lt; xH(0) + n\x\2 for all jgC&quot; (80)

provided x e [0, t0]. Hence for x e [0, t0]

0) &gt; inf û(m) - | n\u\2 dt - xH(0)
ue&amp;+ l Jo J

&gt; -xH(0) + inf û(m) - I tuIiiI2 A (81)
«^+L Jo J

On the other hand lemma 9 gives

a(t/f,0) &lt; -t/f(O) (82)

for all t e [0, 1], From équations (81) and (82) we obtain

(x(xH, 0) -t inf H(x) for x e [0, t0].
xeCn

Hence &lt;x(xH, 0] — xH(0) for all x e [0, 1] by the preceding discussions.
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Let us dénote by sé^) the collection of ail H g se with supp (H) c ^
LEMMA 13 Let % aC&quot; be a subset and Ke^ such that VK(W)n&lt;% 0

Then

a(//, tf) a(0, K)

for ail H g

For t g [0, 1] we hâve xH g ja/(^) Moreover the map x -+&lt;x(xH, K) îs

continuous We show that îts image lies in a nowhere dense subset and consequently
has to be constant Assume ux îs a cntical point of aixH K) Then wT .[0, 2] -?C&quot; îs

continuous, wT(0) wT(2), and

nT=T^(Mt) on (0,1)

ur=XK( ^ux) on (1,2)

Since Wk(%)n^ 0 and supp (xH) a % we must hâve wT | [0, 1] const $ fy
Hence

«(t// *)(wt) «(o /c)(Wt) e Cr (0, A:)

Cr(0, A^) îs the set of cntical levels for a smooth functional on a Hilbert space

having a Fredholm type gradient Moreover ît îs a compact set This can be used

easily to wnte Cr (0, K) as the countable union of cntical levels for smooth finite
dimensional functionals (using the implicit function theorem near cntical points)
Hence Cr (0, K) îs compact and has an empty interior Consequently the map

t -? a(i//, K) has to be constant, î e

a(0, K) a(//, K)

5. Estimâtes from below

The proofs of theorems 2 and 3 follow now quite easily by combining the results

in the previous section

Proof of theorem 2 Let x &gt; 0 and pick K e &lt;g with

^m+T (83)



70 H. HOFER

Let &lt;# be any open set with V(&lt;W) n&lt;% 0 and pick any H e jtfat,C%) with H &lt; 0.

In view of lemmata 9, 12 and 13 we estimate

&gt;a(//,0)-&lt;? + (&lt;), À&apos;)

Hence

Consequently ||Ar||, &gt; c(^) and since t &gt;0 was arbitrarily given

Ex{V)&gt;c{qi).

Now we prove theorem 3.

Proof of theorem 3. We can phrase the statement of theorem 3 alternatively as

follows: If H: Cn -* R is a compactly supported Hamiltonian in j^^ and K e &lt;&amp; such

that WH *FK, then \\H\\t &lt; ||^||,. Of course this implies that

EP{VH)&gt;EX{VH) \\H\\X.

Since however ||//||^ ||^||oo tne conclusion of theorem 3 follows.
We observe that xF_H WjIx. Hence

for ail xeC&quot;. Hence the set of critical points for a(_HK) is path connected.

Consequently, since the gradient is Fredholm type, Cr — H, K) c M consists of a

single point. Since H and K hâve compact support it follows that Cr — //, K) {0}
for ail pairs (H, K) e séad x ^, which satisfy *FK ^F,,. We estimate

0 a(-//,#)
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Hence

q+(0,K)&gt;q + (H,0) (84)

Define K(t, x) -K{t, V?(x)) Then W^ W^1 Since WK Y__H we obtam simi-
larly to (84)

q+(0,K)&gt;q+(-H,0) (85)

Observe that

q + (0,K) -q (0,K)

q + (-H,0) -q (//,0)

Hence (85) implies

q (H,0)&gt;q (0,#) (86)

Combining (84) and (86) gives

and the proof îs complète Note that we actually hâve proved the stronger
statement that the q + - and q~-parts satisfy the mequahties (84) and (86)
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