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Complexity and rank of double cônes and tensor product
décompositions

Panyushev D I

(0 1) Let G be a reductive algebraic group defined over an algebraically closed
field k of charactenstic 0 Recently a rather significant progress has been achieved

in the theory of algebraic transformation groups, which îs related with the notions
of rank and complexity of G-vaneties, î e algebraic vaneties, equipped with a regular
action of G The notion of complexity has been mtroduced in [6] (for homogeneous

spaces of G) and in [9] (for arbitrary G-vaneties) One of the reasons, which led to
the appearance of this notion, was the thorough investigation of equivanant
embeddings of homogeneous spaces of G, in particular, of sphencal ones The rôle
of the rank of sphencal homogeneous spaces has also been recogmzed The gênerai
notion of rank of G-vanety appeared mdependently in [3] and [8]

In [8] a method of calculation of the complexity c(X) and the rank r(X) of an
irreducible G-vanety X has been estabhshed The idea îs as follows Let B be a

Borel subgroup of G and U the umpotent radical of B Let k[X] and k(X) dénote
the algebra of regular functions and the field of rational functions on X respectively
Then one has

c(X) tr deg k(X)B, c(X) + r(X) tr deg k(X)u (1)

(Hère k{X)A îs the subfield of A -invariant functions for a subgroup A of G Thus,
the définition uses only the solvable subgroups of G But ît has been shown in [8]
that rank and complexity can be calculated in terms of the stabihzer of gênerai

position of the G-action on the &quot;doubled&quot; vanety X x X* (see (1 2))

If X îs affine, then rank and complexity give us an initial approach to the

description of G-module structure of k[X] But in the affine case a more useful

object, than the rank can be defined This îs the rank semigroup which consists of
the highest weights of ail irreducible G-modules appeanng in k[X] Then r(X) îs

equal to the rank of this semigroup

(0 2) The purpose of this paper îs to apply the gênerai methods [8] to a spécial
class of affine G-vaneties Thèse vaneties will be called double cônes Following [4]
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we define a double cône to be the product of two HV-varieties of G, where an

HV-variety of G is the closure of the G-orbit of highest weight vectors in an
irreducible G-module. Also, an HV-variety may be considered as an affine cône

over a complète homogeneous space of G. The interest of the double cônes is

explained by the following observation, which is due to P. Littelmann [4]: the
freeness of the algebra of (/-invariants of a double cône provides a simple rule for
decomposing of a séries of tensor products.

A double cône is determined by two dominant weights A, /x of G. Let
Z Z(A, ju) be the corresponding double cône and R(X) be the irreducible G-module

with highest weight À. The algebra k[Z] is bi-graded and the component of
bi-degree (m, n) coincides with R(mÀ) ® R(njj). Therefore the knowledge of Poincare
séries of k[Z]u gives us the possibility to produce practical formulas for the

décomposition of thèse tensor products.
A double cône Z is equipped with a natural action of the extended group

G G x (k*)2. Let r(Z), c(Z) be the rank and the complexity of Z relative to the

G-action. A simple but important observation Connecting the complexity and the

structure of k[Z]u is the following: If À, \i are fundamental weights and c(Z) 0,

then k[Z]u is a polynomial algebra [4]. Moreover, [4] contains the classification of
pairs of weights of this form together with the degrees and the weights of a

homogeneous System of generators of k[Z]u. A part of this results has been

discovered independently by A. G. Elashvili.

(0.3) In this paper we shall give formulas for the complexity and the rank of a

double cône, relative to both G- and G-actions and also a method of Computing of
them. This method, which is a development of the one from [8], reduces the

problem under considération to the détermination of a stabilizer of gênerai position
of a représentation of a reductive subgroup H of G. This représentation is of the
form (//, V -h V*), where F is a //-module. Therefore, to détermine a stabilizer of
gênerai position one can use the inductive procédure from [7].

A nice conséquence of this theory is a fact, that c, r, c, r coincide for Z(A, fi) and

Z(x, //*), though the generators of the algebras of ^/-invariants and the formulas
for the décompositions of tensor products change essentially. (The star dénotes the

passage to the highest weight of the dual G-module.) However, it is more useful to
détermine the rank semigroup F{Z) of a double cône instead of the rank itself. The

reason is that the description of T(Z) allows us to restrict, a priori, the set of
dominant weights, which may appear in the décomposition of R(nX) ®R(mii). We
solve this problem by using a stabilizer of gênerai position for (//, V + V*) and its
canonical embedding in G.

(0.4) Applying our methods we also check the classification of the pairs of
fundamental weights À, \i with c(Z(À, //)) 0, given in [4], Moreover, in chapter 3
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we shall présent the integers c, r, c, f and the structure of the rank semigroup
for every pair of fundamental weights of the classical simple algebraic groups
(see Tables 1-3). For the exceptional simple algebraic groups we describe ail the

pairs of fundamental weights with c ^ 2 (Table 4). In a forthcoming paper we
shall give a full description of k[Z]u for ail pairs of fundamental weights with

(0.5) Our basic référence for invariant theory is [11] and algebraic groups is

[10]. We follow mainly the terminology and notatoins of them.

s.g.p. stabilizer(s) of gênerai position;
[L, L] and L° are the commutator subgroup and the identity component

respectively of an algebraic group L.

Acknowledgements. The author would like to thank A. G. Elashvili and P.

Littelmann for kind information about their results and useful discussions.

1. Computing complexity and rank

(1.1) Throughout this paper (except 1.2) G dénotes a connected and simply-
connected simple algebraic group with a fixed maximal unipotent subgroup U and

a fixed maximal torus T a NG{U) =-B. Let X{T) be the character group of T and

let 3f(T)+ be the semigroup of dominant weights relative to (B, T). X(T) ® Q will
be considered with a Weyl group invariant scalar product A subgroup K of G

is said to be regular, if NG(K) contains a maximal torus of G.

(1.2) Our results heavily rely upon the theory from [8]. Let us recall the

necessary results in the affine case. Let G be an arbitrary reductive group and X be

an irreducible affine G-variety. Put

where k[X]Y {fe k[X]u \ t */= À(t)f for any teT}. The semigroup r(X) is said

to be the rank semigroup of X. Let 0 e Aut G be an involution, such that 9(t) t ~l

for any t e T. By X* we shall dénote a G-variety which is abstractly isomorphic to
X, but provided with a twisted G-action. If i:X-*X* is the isomorphism, put
x* i(x). The twisted G-action is defined by (g, x*) h&gt; (0(g)x)*, g eG9xgX. Let
us consider the diagonal action (G, X x X*). It has been proved in [8, ch. 1] that
there is a point z (x, x*) € X x X* such that:
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(a) Ut-= Ux is a s.g.p. for (U, X);
(b) B+.= BX is a s.g.p. for (B, X);
(c) S:=Gr is a s.g.p. for (G, ^ x X*);
(d) there is / e T such that [ZG{t\ ZG(t)] cz S c ZG(0;
(e) [/

It follows from (d), (e) that S is a reductive regular subgroup of G, (7* is a maximal
unipotent subgroup of 5 and B0^ is a Borel subgroup of S0. As a conséquence of
thèse statements the following important relations has been derived in [8, ch. 1]:

(a) If I(G) is the root System of G relative T, then the root System of S0 relative
to (SnT)° is I(S)=E(G)nr(X)±.

(p) r(X) rk G - rk S,

2c(X) + r{X) 2 dim X - dim G + dim 5 tr deg *[* x X*]G;
(y) T(Z) cz ZF(Jf) n^(r)+ {co e X(T)+ \ œ\Tr&gt;s 1}

A point x e X, satisfying (a)-(e) is said to be a canonical one. If x e X is a

canonical point and S is the stabilizer of (x, x*), then the embedding 5 cz G is said

to be the canonical one. This embedding is uniquely determined, if T and U are
fîxed. Clearly, thèse notions dépend on the choice of U cz G.

Warning. If x e X is a canonical point, then it is not true, that x * e X* is a

canonical point relative to the same maximal unipotent subgroup. Actually, x* is a

canonical point relative 6(U). Therefore, it is important to distinguish X and X*.

(1.3) Let C(À) (À g X(T)+ be the closure of the orbit of highest weight vectors
in R(X). It is well-known that k[C(À)] ®^0R(nX*) and C(X) is the affine cône

over G/PÀ cz P(jR(A)), where PÀ is the parabolic subgroup of G, corresponding to k.

If A, ju are two dominant weights, then the affine variety Z(À, n) C(À*) x C(^*) is

said to be a double cône. The variety Z := Z(A, ju) is equipped with the natural action
of the extended group G G x (fc*)2.

By c(Z), r(Z) we dénote the complexity and the rank of Z relative to the

G-action and by c(Z), r(Z) - relative to the G-action. Since G, G hâve the same

maximal unipotent subgroup, (1) implies that

c(Z)+r(Z)=c(Z)+r(Z). (2)

Since k[Z(X, fi)] k[C(À*)] ® k[C(n*)] ©wm ^0 (R(nX) ©R(mpi% the rank semi-

group of Z(A, ju) coïncides with the set

r{Z) {œe %(T)+ | R(œ) cz i?(«A) ® i?(m/^) for some n,m&gt; 0}. (3)

Let Lk be a Levi subgroup of Px, Lxzd T and L^ Ker À a Lk. By Skfi we dénote
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a s.g.p. for the natural action (LÀ, G/L^) and by L; \G/L^ we dénote the (categor-
îcal) quotient [11]. Then dim Lk \G/L^ dim G + dim §Àfl — dim Lk — dim L^. Sim-

ilarly, let S/fX be a s.g.p. for (L&apos;À, G/L^) and L&apos;^G/L&apos;^ be the quotient.

1.4) Now we formulate the main results on double cônes.

THEOREM 1. Let À, jx be arbiîrary dominant weights and Z Z(A, /z). Then SkfX

is a s.g.p. for (G, Z x Z*), 5^ is a reductive regular subgroup of G and

2c(Z) + r(Z) 2 + dim U, \G\L&apos;^ r(Z) rk G - rk 5Aai.

THEOREM 2. 77*e following relations are valid:

(i) 2c(Z) + r(Z) 2 + dim L, \G/L^ r(Z) rk G - rk £„ ;

(ii) c{Z) c(G/P, x G/P,), r(Z) 2 + KG/P, x G//&gt;,).

COROLLARY 1. 77ie integers c, r, c, r /or Z(l, /i) a«t/ Z(A, //*) coïncide. More-

over, the groups S/fÀ, S/fi* are conjugated in G.

COROLLARY 2. Let k [x or X fi*. Then

(i) c(Z) c(G/L&apos;J + 1, r(Z)
(ii) c(Z) ciG/LJ, r(Z)

COROLLARY 3. If S^ c G w the canonical embedding, then (i) T a NG(S^),
(ii) a si/feef 6&gt;/^ simple roots of G form a System of simple roots for S/fi9 and (iii)
if œ e T(Z{X, //)), then œ\S/ nT= 1. /« particular, if a w «

(a, œ) 0.

(1.5) To prove the theorems we need two simple lemmas.

LEMMA 1. L; is a s.g.p. for (G, C(X) x

/. Let v, 6 P(A) be a highest weight vector (relative to B) and let

v_, e R(À*) be a lowest weight vector. Clearly, x =(v,,v_/) e C(À) x C(A*) and

GX L,. Since

dim G -dimL; -h 1

dim C(/) dim C(/*)

we hâve dim Gx dim(C(Â) x C(/*)) - 1. Thus, G&lt;x&gt; C(A) x C(A*) and Gx is a

s.g.p.
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LEMMA 2. Let G act on irreducible varieties Xx, X2. If L, is a s.g.p.for (G, X{),
then the s.g.p. for the diagonal action (G, Xx xl2) coincides with the s.g.p. for
(LuG/L2)or(LuX2).

Proof Obvious.

(1.6) Proof of the theorem 1. We consider the G-action on Z C(X*) x C(/i*).
First we note, that C(À)* ^ C(À*). Therefore Z x Z* ^ C(k*) x C(ji*) x
C(X) x COi).

Let us apply (1.5) to Y Z x Z* s [C(A) x C(A*)] x [C(/i) x COi*)]. We can
conclude that s.g.p. for (G, Y) coincides with s.g.p. for (L&apos;À, G/L&apos;^), i.e. with
SÀflczG. Thus, according to (1.2)(/?) S^ has the prescribed structure,
r(Z) rk G — rk SÀ/X and since

dim G — dim Z^ -h 1 dim G — dim U H- 1

dim Z 1

we hâve

2c(Z) + r(Z) 2 + dim G - dim L\ - dim L^ + dim S^ 2 + dim

Proof of the theorem 2. We shall consider the action of G on Z and the action
of G on PZ-=G\Pk. x GjP^. First we note, that B B x (fc*)2 is a Borel sub-

group of G and PZ is the géométrie quotient [11] for the action ((fc*)2, Z).
Therefore, k(Z)s ^k(PZ)B, i.e.

(4)

Further, the action of (&amp;*)2 on Z is effective, hence

tr deg k(PZ)u tr deg k(Z)u x (/r*)2 tr deg /c(Z) ^ - 2.

This equality, together with (1), (4), shows that r(PZ) r(Z) — 2. That is, part
(ii) of theorem 2 is proved. To prove (i) it is enough to show that

2c(PZ) + r(PZ) dim Lk \G\L^, r(PZ) rk G - rk SÀfl.

But this can be done in the same way as in (1.5). Consider the action (G, PZ x
(PZ)*). Taking into account that {GjPx)* s G/PÀ* and that s.g.p. for (G, G\Pk x
G\Pk+) is equal to Lk, we get the assertion that s.g.p. for (G, PZ x (PZ)*) is equal
to s.g.p. for (Lk9 G/Lp), i.e. coincides with §kfl and so on
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(1.7) Proof of the corollaries 1, 2, 3.

1. The replacement of \x by n* does not change Z x Z* and PZ x (PZ)*, hence
the subgroups §/fii S/fi do not change also. D

2. Let A fi* and Z Z(/z, /i*). Then (9 G/L^ is a G-orbit of gênerai position
in Z (2.2), hence r((9) r(Z). Since codimz 0 1 we hâve c(Z) c(0) + 1. The
variety PZ has the open orbit fî^G/L^ Hence, c{(9) c(PZ) c(Z), r(0)
r(PZ) f(Z) - 2. D

3. Since S/IÂ is a s.g.p. for (G, Z x Z*), ail assertions of the corollary are a direct

conséquence of the définition of a canonical point and of 1.2)(a),(y).

(1.8) Remarks. 1. It may happen that T(Z) ^ ZF(Z) nSF(T)+, i.e. the canonical

embedding S^ a G does not détermine T(Z) completely.
2. The subgroups S1^ and S/fi* are isomorphic and conjugated in G by corollary

1, nevertheless, they may hâve différent canonical embeddings. For example, let
G E6 and \i À &lt;p,, n* &lt;jp5 are the fundamental weights with numération as in
[10]. Then S/ti =5&quot;^*^ A3, but their canonical embeddings are described by the

following pictures:

A/W

(The black vertices indicate the simple roots of S/fi and S/fi*.)

(1.9) The previous results show that in order to compute the complexity and
the rank semigroup of a double cône one has to find the canonical embedding of
S/tl and S,p. The next resuit explains how this can be done.

THEOREM 3. Let m^m^ be the orthogonal compléments in Lie G to LieZ^,
Lie Lfl respectively. Then

(i) m/ c\m^ is a L, nL^-module; moreover, if V (m/ nm^) nLie U, then

m.nm^^V® V*;
(ii) §/tt is a s.g.p. for the linear action (L, nL^, m,
(iii) S/fJL is a s.g.p. for the linear action (Lf, c\Lf^ m/ ^

(iv) The commutator subgroups of §/fX, S/fl coincide and dim SAfi — dim SAfl

2 + c(Z)-c(Z).
(v) If S^cL^nLj, is the canonical embedding, corresponding to the action

(Lf, nL&apos;^, V® V*), then the chain S/fÀ a L&apos;, nL&apos;^ a G gives us the canonical

embedding, corresponding to the action (G, Z x Z*).

Proof Part (i) is obvious.
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(ii) To find a s.g.p. for (L;, G/L^), we consider the point Je eL^ e G/L^. Then

(LJz L; nL^, hence, the orbit Lxx is closed, because rk (LAnL^) rk Lx and

G/L^ is affine. Therefore, a s.g.p. may be found from the slice-representation at x
[5]. Set eé Lie L,, ^ Lie L^. Then T^G/L,) s Lie G/^, T,(Lxx) s^ n^
as L/ n Z^ -modules. Therefore, the slice-module N% is of the form:

L,x) s Lie

Thus, 5^ is a s.g.p. for {{LA)X, A^) (LxnL^ m;
(ii) Similarly, let us consider the point x eL^ e G/L^. Then (L&apos;x)x

To prove, that L&apos;,x is closed we cannot proceed as in (ii), because rk(Z^)v
rk U, — 1, when dim &lt;A, jU&gt; 2. But another way is not very difficult. By [7, ch. 1]

G/L&apos;h is equivariantly embedded in R(n) ®R(jx*) — W as a closed G-orbit, eL^ \-?

(^&apos;t;-^)=:r- Therefore, it is enough to prove that L^y is closed in W. But this

easily follows from the Hilbert-Mumford critérium, because LA is a regular
subgroup of G and v has a very spécial form (cf. [7]). For the slice-module at x we
hâve: Nx Lie G\(f&apos;, H- S&apos;^) =m? nm^ -\- (9, we hâve 0 is a trivial Z^ nL^-module
and dim S dim &lt;A, /*&gt;.

(iv) The assertion about the commutator subgroups follows from the same

assertion for L.nL^ and L;nL^. The dimension formula follows easily from
theorem 1 and theorem 2(i).

(v) The inductive process of fînding canonical points relative to a fixed maximal

unipotent subgroup has been described in [7] (for linear représentations) and in [8,
ch. 1] (gênerai case). We assume, that a fixed maximal unipotent subgroup of
L^nL^ is UAr\L^nU. In our situation the first two steps of this procédure
transform consequently the action (G, Z) first into (LÀ, C(n*)) and then into
(L&apos;A nlj,, V). This means, that there is a LA nL^-invariant closed subvariety in Z,
which is isomorphic to V and if v e V is a canonical point for the action

(LA nL^, V -h F*) then v is also a canonical point for the initial action. n

(1.10) Remark. The group UxnL^ is connected and semisimple iff both À. and

fi are fundamental weights [10]. In this case the Dynkin diagram of L&apos;^nL^ is

obtained from the Dynkin diagram of G by deleting the vertices corresponding to
X and fi.

2. Examples and applications

(2.1) In this chapter we shall show how to apply our results and présent some
classificational tables. We shall consider double cônes only for pairs of fundamental
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weights. We enumerate them and the simple roots as in [10]. By &lt;p, and a, we dénote
the fundamental weights and the simple roots of a simple group G and by
cpn cp\,. - the fundamental weights of simple components of L^nL^ ; e - is the
exact one-dimensional représentation of k*. We shall write Z(/,y), Lnmn in-
stead of Z((pn &lt;pf), L^, m^

In this chapter we shall use the multiplicative notation for représentations, i.e.

we write (p,(pj instead of R{q&gt;t + &lt;p7) and 1 instead of R(0), etc.

(2.2) EXAMPLE. G E8, Z Z(l, 1).

Hère (Z/,, m,) (E7, 2&lt;p, + 2). According to [1] we hâve Lie Su D4. There-
fore r 4, 2c + r 12 and c 4. In particular, we flnd out that dim k[Z]u 8.

Next, (L,, mx) (E7 x &amp;*, 9, ®£ H- &lt;p, ®e~l -fe2 + e~2). Therefore Lie S,,
Lie 5,, and c c — 2 2. According to the corollary 3(ii) the canonical embedding
Si c E8 implies the embedding of the Dynkin diagrams. Hère it can be done in a

unique way. Hence, the canonical embedding is described by the following picture:

A/W

That is, oc4, a5, a6, a8 is the System of simple roots of Su and according to Corollary
3 T(Z(1, 1)) is contained in M &lt;a4, a5, a6, ag)^ &lt;cp,, cp2, ^3, &lt;?7&gt;. This means,
that for any n, m the tensor product décomposition (p1&lt;8)(p™ contains highest
weights only from M.

(2.3) Now, we présent the integers r, c, c and Lie StJ for any pair of fundamental

weights for classical groups. Then r c + r — c and Lie §tJ — Lie Sy + 7^ + &lt;- _ &lt;,

where Tn dénote the Lie algebra of an «-dimensional torus. In the column
&quot;Embedding&quot; we indicate the canonical embedding of Lie S&apos;y in Lie G. The black
vertices correspond to the simple roots of SXJ and the arrows show the embedding
of the center of Lie S&apos;y. More exactly, each arrow gives us an élément of a base of
the center and the arrow, Connecting the *th and yth vertices, présents the élément

OLl—oLJ, lying in the center. Thus, the number of arrows is equal to the dimension of
the center of Sy. By the corollary 3 the obtained diagram indicates the structure of
the rank semigroup. Namely, ail weights from F(Z(iJ)) hâve zéro labels on black
vertices and equal labels on vertices, which are connected by an arrow. When Lie S&apos;y

is semisimple, we can also indicate the simple roots of Sy as a part of the set of
simple roots of G, instead of a coloured diagram.

Since &lt;pt,&lt;j)j e r(Z(i,j)), we hâve the ith andy&apos;th vertices on the diagram of the

canonical embedding are always white and without arrows. It is always assumed

that i &lt;j and m rk G.
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Table 1

N

1

2

3

4

Conditions

KJ
i +j &lt;&gt;m

i=J
i +7 &lt; m

KJ
,+7 m + l

i=J=*T1

c

0

1

1

2

r

i + 2

i+l

i + l

c

0

0

0

0

Lie StJ

A,_,_, xAm_,_J x

Am_2, x r,_,

Am_2lxr,_1

Embeddmg

•-O-O- • &apos;-O m -^ -j
i-o-6- .-6-o-#- • •-•
/^-. .-0 w -2i

(2.4) G Am. We can assume hère i +j &lt; m + 1. Actually, if / +7 &gt; m + 1,

then having replacée both weights cpn (pj on the dual ones (ç&gt;* &lt;pm+ x _,), we get

a double cône with i -+7 &lt; m + 1. Obviously, this procédure implies the same one

on the rank semigroup and does not change its structure.

(2.5) G Bm, Cm ; m ^ 2. The représentations {L&apos;t r\L&apos;n mt nrrij) for thèse types
of simple groups are distinct, nevertheless, it is found, a posteriori, that they hâve

s.g.p. Sy, S
y of the equal dimensions and ranks. Therefore, the integers c, r, c for Bm

and Cm coïncide and we présent the table for Cm only. To get the table for Bm one
has to substitute always in the table 2 Q on B,.

Table 2

N

1

2

3

4

Conditions

1 +j &lt; m

1+2* &lt;7

/ +7 &lt; m
1 &lt;^7 &lt;2*

1+7 &gt;m + 1

1+2* £7

/+7 Zm + 1

* &lt;7 ^ 2/

c

3(2)+ 1

2(/-(&apos;V)-

(7V)+2

G) + i +
(m -7X2/ +
7-1-m)

m2-{m-i)2-
(m-7)2-
™-(J)-(i)+2

r

3i + l

^+y

m + 1 +
2*-7

m

c

c-l

c-2

c-l

c-2

Lie 5V

A7_2&lt;-i x
xCm_,_7

Ay _ 2, ~ 1

0

Embeddmg

a,+y+i, ,«m

a, + 1, ,OLj-,-i
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For the sake of completeness we indicate the slice-representation for Cm.
Considération of this représentation allows us to détermine Lie StJ and to fill in the
table.

(L&apos;lnL^mlnmJ)=(Al__l x AJ_l_l xCm__7, F+ V*),

where V cpl ® cp\ ® 1 H- &lt;pl ® 1 ® &lt;p&apos;[ + q&gt;\ ® 1 ® 1. We use the agreement that for

f&lt;p 0, if ra &lt; 0

U ^forC^1=0, if«=O.

(2.6) G Dm,m&gt;4.
In the table 3 we use the convention that D3 A3, D2 A! x A,, D, Tx. The

slice-representation for Dm is of the form

(L&apos;lnL;,mlnmJ)=(At_lxAJ_l_lxT&gt;m_J,W+W*)9

and W cpx ® q&gt;\ ® 1 -h cpx ® 1 (g) q&gt;&apos;[ + &lt;p2® 1 ® 1.

In addition to the agreement from (3.5) we assume that for

2 0, if«i&lt;l ((pl=s + s~\ if m I

2=l&gt; if m l ^! 0, if m 0

If / +j m — l, then Lie SlJ is not semisimple in n.l,2 in the table 3. In this case

ail vertices on the right-hand side of the Dynkin diagram are white and the last two
vertices must be connected by an arrow:

(2.7) Looking through thèse tables it is not difficult to pick out ail pairs of
fundamental weights with c(Z(i,j)) — 0. But we omit this simple considération,
because this resuit has already been obtained in [4]. Therefore we présent hère ail

pairs (i,j) with c l. This is a very short list:

• For Bm,Cm-(2,m),m&gt;3;
• For D6 - (4, 5), (4, 6).

(2.8) For the exceptional simple groups we présent the table of ail pairs (ij)
with c l, 2. (The case c 0 is described in [4].)
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Table 3

N

1

2

3

4

5

6

7

8

9

10

Conditions

m-2

J

m- 1

or

j=m

i +j &lt; m
l+2/&lt;7

i +j &lt; m
i &lt;j &lt;2i

i 4-7 &gt; m 4- 1

1+2* &lt;7

* +7 &gt; w + 1

i &lt;j &lt;2i

2/ + 1 &lt; w

2/ + 1 &lt; m
i 2

i=2
m=4

f &lt;/ &lt;m-2
w &gt; 5

i =j m — 1

or / =7 m

i m — \

J =m

c

3(i) + 1

2i/ + 2 -

(m -7)(2/ +
J-rn)

m2-(m-i)2-
(m-j)2-
(l+2!)-
(/+21)+2

Cl&apos;)

1

2

m2-(m-/)2-
CV)-
m+2
2, m 2/

\,m =2/4-1

l,m=2/

0, m 2/ 4-1

r

3/ + 1

i+J

m 4- 1 4-

2*-y

m

2*4-1

4

3

m

l

/4-1

/+1

c

c-\

c-2

c-\

c-2

c,

if
i \,

c-1,
if
J&gt; 1

0

c-2

0

0

Lie Sy

Aj-2,-1 X

xDw_;_y

A/ - 2i - 1

0

A, _ 2i - 1

Am_5xr,

Tx

0

(A,)7

(A,)7&quot;1

(A,)7

Embedding

a,+ i. .«,-1-1.
a,+i/+i, ,«m

a,+7+1» » am

al+i, .«,-,-1

al+i, ,««_,_!

o—o—•— —•—cf

a2,a4, ,a2/-2»a7

a2,a4, a2/»a2/+i

a,,a3, ,a2/-i&gt;a2/

a2,a4, ,a2/&apos;a2/+i

This resuit is obtained with the aid of the case-by-case considérations. The

E8-case was elaborated in 2.2. Now we consider, for instance, the case E7, (1, 2).
Hère L\=E6, Lf2 D5x Al and {L\r\U2, mxrMn2) (D5, (p4-h (^5 + 2^),). Ac-
cording to [1] Lie Sn Ax, therefore r 6, c 3. For the détermination of §l2

we hâve the représentation (LlnL2,fnlnm2) =(D5x (k*)29cp4®e -h cp5®e~] -\-

&lt;P\®£&gt; + &lt;P\®£&gt;~X). Hence, Sl2 Al and c c —2= \.
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Table 4

Group

E6

E7

E8

F4

G2

weights

(6,6)

(1,2)

(6,6)

(1,1)

(1,1)

(1,4)

(4,4)

(1,1)

(1,2)

(2,2)

c

4

3

4

4

4

4

4

4

4

4

r

4

6

4

4

4

4

4

2

2

2

c

2

1

2

2

2

2

2

2

2

2

Lie S,,

T2

A,

(A,)3

E&gt;4

0

0

0

0

0

0

Embedding

The relation Lie S12 A, means that the Dynkin diagram of the canonical

embedding has to contain a single black vertex. To détermine the précise position
of this vertex, we need a more careful analysis. There are two ways to do it.

1. If the black vertex has the number /, then by the corollary 3 q&gt;t does not

appear in r(Z(l,2)). Therefore, by finding some first décompositions one has a

chance to détermine /. Actually, one may check, that q&gt;x (x) q&gt;2 3 &lt;p3 + q&gt;1 -f &lt;p, cp6 and
q&gt;\ (g) &lt;p2 zd (p5. Therefore, the only possibility is / 4.

2. The more conceptual way is to apply the theorem 3(v). But this is a rather
cumbersome procédure, beacuse we need to introduce notations for the simple roots
of subgroups appearing on each step and we hâve to identify thèse roots with those

of E7. So we shall omit the détails.

(2.9) In this chapter we hâve used Lie Sy only. In a subséquent paper we shall

show how the application of StJ itself enables us to use the restriction theorem for
^/-invariants and to dérive the explicit description of a séries of non-free algebras of
the form k[Z(X,ii)]u.
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