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A maximum principle for biharmonic fonctions in Lipschitz and C1
domains

J. PlPHER* AND G. VERCHOTA**

§1. Introduction

Our aim in this paper is to prove a maximum principle for functions biharmonic
in a domain D whose boundary is Lipschitz or C1. This resuit will be valid for
Lipschitz domains D c Rn, n 2 or 3, but fails if D c Un9 n &gt; 4. The dimension
dépendent aspect of this theorem is a new phenomenon in the theory of elliptic
partial differential équations and stands in sharp contrast to well-known results
both for solutions to second order équations and for solutions of higher order
équations in domains whose boundary is smooth. We then extend the method
employed for three dimensional Lipschitz domains to show that the maximum
principle holds for functions biharmonic in a C1 domain D c Rw, for any n. We

begin with some background and the explicit statements of the results.

A function is biharmonic in D if it satisfies A 2u 0 in D. A bounded domain D
is Lipschitz if there exist finitely many doubly truncated, right circular cylinders
Z, (with pZ denoting a dilation by p of Z) such that (i) dD \Jt (^ZtndD), (ii)
there is a change of coordinates and a Lipschitz function q&gt;t : M&quot; ~ l -* M such that
2ZtndD {(jc, y) e dD: y (pl{x)}, and (iii) 2Z,nD is starlike with respect to
some PteZtn D.

Let do dénote the surface measure of dD. A function / defined on dD is said to
belong to Lpx{dD) if for every cylinder Z with associated Lipschitz function q&gt; there

are LP(Z n ôD, do) functions g,,. gn _ x such that

f h(x)gj (x, cp(x)) dx=-[ /- *(*)/(*, &lt;/&gt;(*)) dx

whenever h e CS°(/?&quot;~1nZ). Thus to every function fe Lp(dD) is associated a

unique vector VTf9 called the tangential derivative of/, which in local coordinates

* Partially supportée by an Alfred Sloan Foundation fellowship and by the N.S.F.
** Partially supported by the N.S.F.
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may be realized as

te, (x, (p(x)), gn _ (x, cp(x)), 0) -
&lt;(*i(*, &lt;P(x))9 ...,*„_,(*, cp(x)% 0), N(x, cp(x))}N(x,

where N(x, (p(x)) N(Q) is the unit exterior normal to Q (x, cp(x)) on dD.

If D is Lipschitz then to every point Q edD there is a nontangential &quot;cône&quot;

r(Q) {XeD : dist (X, dD) &lt; (1 + a)pT - g|} for a &gt; 0 contained in D (see [J-
K]). If v is a function in D, we may define Nv(Q), the nontangential maximal
function of v at Q g 5Z), by Nv(Q) sup^^) (^(A&quot;)). The Dirichlet problem for
the operator zl2 may be formulated as follows. Given/e Lpx{dD) and g e Lp(dD),
we seek a unique function u satisfying

(i) A2u=0 in D

(ii) lim m(I) =/(£) a.e. da(Q)
X-+Q,XeT{Q)

&apos;

(iii) lim &lt;Vu(X\ N(Q)} g(Q) a.e. ^(0
(iv) \\N(Vu)\\LPida)&lt;+oo

such that, for C depending only on the dimension and the Lipschitz character

of A

In Dahlberg-Kenig-Verchota [D-K-V], the Dirichlet problem with data in
(L2UL2) was solved in every Lipschitz domain D e Un, for any n, and in analogy
with the corresponding theory for the Laplacian, was shown to fail to be solvable

with Lp data for p &lt; 2. (As usual in this theory, once the L2 resuit is known, a

real variable argument gives an automatic improvement. Namely, there exists an
e e(D) such that the Dirichlet problem, together with the appropriate Lp
estimâtes on N{Vu), is solvable with data in (Lpu Lp) for 2-e &lt;p &lt; 2 + s.) Thèse

results were extended in [V2] to show that the Dirichlet problem with data in
(LPULP), for ail \&lt;p&lt;co is solvable if the domain DaM&quot; (any ri) has C1

boundary. For Lipschitz domains D, the solvability of the Dirichlet problem in
(Lpu Lp\ p&gt;2, was shown in Pipher-Verchota [PV1] to hold for D c HT, n 2

or 3, and to fail for p p(n) sufficiently large where D c Rn, n ^ 4. This failure of
solvability for large p is in fact a failure of the following maximum principle and
the example will be recalled in §2. Our (weak) version of the maximum principle is
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just the case p oo of the Dinchlet problem

(M P If \Vu\ € Lcc(dD, do) and \\N(Vu) \\L2(d(T) &lt; oo, then the (unique) solution
to the Dinchlet problem with data m (L2,L2) satisfies ||Fw||loo(£&gt;) ^
01^^1^00(5/)) f°r some C dependmg only on the Lipschitz character
of D

A more classical version of the maximum pnnciple may be phrased as follows

(MP)* If A2u=0 m D, a bounded Lipschitz domain in IR&quot;, and \Vu\ is
continuous in Z), then there is a constant C that dépends only on the

Lipschitz character of D such that

sup \Vu(X)\ ^ C max \Vu(Q)\

A conséquence of standard elhptic theory ([A], [A-D-N]) and speciahzation to the

biLaplacian of results on higher order operators due to Agmon and Miranda is that
the maximum pnnciple (M P holds for C4 domains in Rn, for ail n Moreover,
Miranda [M] has proven related maximum pnnciple results (with sharp constants)
relating maxD u to maxdD \Vu\ for very gênerai domains in IR2, including Lipschitz
domains Our results show that Lipschitz domains are the sharp class of domains
for which (M P may fail

THEOREM 12 If D is a Lipschitz domain in Rn, then (M P is valid
Moreover, there exist Lipschitz domains in Rn, n &gt; 4, for which (M P faits

THEOREM 13 If D is a Cl-domain in Rn, then (MP) is valid

In addition we obtam solutions to the Dinchlet problem (for D c R3) with data

in BMO and appropnate Carleson measure estimâtes on the solution in virtue of
the vahdity of (M P and estimâtes on the Green&apos;s function Thèse estimâtes also

give Holder continuity of \Vu\ in dimension n 3 and of the solution u îtself m
dimension n 4 and n 5 Thèse will be discussed in §4, and mdeed we shall rely
on such estimâtes to prove (M P for gênerai Lipschitz domains, once ît has been

venfied for spécial (starhke) Lipschitz domains

§2. The maximum pnnciple on starlike domains

The failure of the maximum pnnciple on Lipschitz domains Dci&quot;, n &gt; 4,

follows from the existence of a biharmonic function u(x) m the extenor of a cône
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T(0), with vertex at the origin satisfying

(a) u(x) |jc|acp(jc/|jc|) where cp is a smooth function on the sphère,

(b) u 0 and du/dN 0 on the latéral sides of the cône T(0),
(c) If the aperture of the cône is small enough (i.e., the Lipschitz constant is

large) then a may be chosen to be less than 1.

The existence of such a u was established in [MPN] in dimensions n &gt; 5 and shown
in [PV1] in dimension n =4 where the limiting value a 1/2 was computed.

A bounded domain D may be constructed so that dD is smooth except at the

origin, and if 5(0, r) dénotes the bail of radius r centered at the origin, we may
require that

5(0, |)\r(0) czDcz 5(0, l)\r(0), with dD n dr(0) dF(0) n 5(0, £).

By the smoothness of dD away from the origin and interior estimâtes, the solution
m given above will satisfy |Fw|gL°°(3D), yet near the origin, |Vu(x)\ O(\x\a~ x)

which fails to be bounded when a &lt; 1.

Consider now a bounded starlike domain Lipschitz domain D cz |R\ Then the

fundamental solution of the biLaplacian is F(X, Y) \X — Y\. The Green&apos;s function

G(Z, Y) for A2 satisfies A\G(X, Y) ô(X- Y) and both G{X,-)\dD and

(dG/dNQ)(X, • vanish on dD. An intégration by parts gives the following représentation

of a biharmonic function u in D for which N(Vu) e L2(da):

u(X) f u{Q) -£- AQG(X9 Q) do(Q)
JdD O^Q

Jdu-— AqG(X, Q) d(j(Q). (2.1)
dDdNQ

To establish Theorem (1.2) for starlike domains, we fîrst recall the regularity
problem for A2 and the known results on its solvability. A Whitney array ([V3]) in
WAp(dD) is a séquence of functions &lt;/0,/i,/2,/3&gt; =/with/; g Lpx{dD) such that/
belongs to the completion, in Lp{dD) norm, of the séquence space {(F\dD, D]F\dD,
D2F\dD, D3F\dD &gt; : F e Cg°((Rw)}. In a starlike bounded Lipschitz domain D, this is

équivalent to the statement that a compatibility condition holds:

Let dD {p(0)0 :deS&quot;-1} for p : Sn~l -+R+ and assume dist (32), 0) 1.

Given f\ÔD and a boundary point Q p(X)X/\X\,f dénotes the homogeneous
degree zéro extension of/defined by f{X) —f(p(X)X/\X\). The vectors eJ9 j 1,2,
or 3 dénote the standard basis for U3. Then/= {/a g Lp(dD) : |a| ^ 1} belongs to
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WAp(dD) iff

=fe,(Q)-

1 &lt;y &lt; 3 holds a.e. on dD.
The regularity problem for D is, roughly speaking, the assertion that a biharmonic

function whose second &quot;tangential&quot; derivatives on dD are in Lp(dD) possesses an Lp
estimate on N(VVu). In particular, the next theorem was shown for p e (2 — e, 2 + é)

in Verchota [V3] and for 1 &lt;p &lt; 2 - e in R3 in Pipher-Verchota [P-Vl].

THEOREM (9.3 of [P-Vl]). Let D c R3 be a bounded Lipschitz domain with
connected boundary. Then, given f e WAp{dD) there exists a unique function u in D
such that

(i) A2u=0 inD
(ii) lim u(x) =fo(Q) a.e.

(iii) Km Vu{X) &lt;/,,/2,/3&gt;(0 a.e.

(iv) \\N(VVu)\\LP&lt;oo

and in addition, if/= &lt;/,/2,/3&gt;,

(v) \\N(VVu)\\LPiôD)&lt;C\\VTf\ LP{m.

The duality between the regularity problem with data in Lp and the Dirichlet
problem with data in Lp(\/p + \\p&apos; 1) (see [V3]), established the solvability of
the Dirichlet problem for 2&lt;p&lt;cc as a conséquence of the above theorem.
Theorem (9.3) above was proven by establishing the correct &quot;p 1&quot; analog and

interpolating between this endpoint resuit and the known p 2 resuit ([D-K-V]).
The endpoint resuit which gave this interpolation is formulated, as is typical in this

theory (see Dahlberg-Kenig [D-K] for example), in terms of a Hardy space Hlai

estimate. We recall some définitions from [D-K] and [V3].
If A dénotes the graph of a Lipschitz function, a compactly supported function

/is an H\M - Lq atom if \VTf\ e L\A, do) and/and hence each (d/dTj)f (which
automatically has mean value zéro) is a (1, q) atom, i.e., each (d/dT^fis supported
on a bail B c A and satisfies the estimate

bt/ L1{A)
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Then ([D-K])/e H\M if there are H\M(A) - Lq atoms ak so that

d °° ô

J^f= Z xkj^ak9 £|A*|&lt;oo (*)
ôlj k=l ôTj

and H\ at(A) is a Banach space modulo constants if |l/1//j inf {S \Àk\ : Xk as in

(*)}. More generally, / is an H\M(dD) — Lq atom, for D a bounded Lipschitz
domain, if/is supported in a cylinder Z and ZnôD A, the graph of a lipschitz
function and / is in fact an H\at(A) — Lq atom. A Whitney array / belongs to
Hl2M(dD) if/= &lt;/o,/i, ..-,/„&gt; and the^ are in H\M{dD).

THEOREM (9.6 of [P-Vl]). Let D c= R3 be a bounded Lipschitz domain with
connected boundary. Given f e H\M{dD) there exists a unique function u in D such

that

(2.3)

(i) A2u =0 in D

(ii) lim u(X)=fo(Q) a.e.

(iii) lim Vu(Q)=f=(fuf2J3) a.e.
X-*Q,Xer(Q)

(iv) \\N(yVu)\\LHdD)&lt;co

and in addition,

(v) \\N(VVu)\\LHm&lt;C X ||/,|Uit.
k 0

Fix a starlike domain DcR3 and X g D with dist (A&quot;) 1. Consider now the

Whitney array / with fo(Q) \X-Q\ and fj(Q) Dj(\X ~ • |)(g). Observe that

l^l-l^-ôl&quot;1 and hence belongs to L2 + e for any £&gt;0. Let y(X, 7) be the

biharmonic solution to this L2 + E regularity problem guaranteed by [V3]. Then if
G(X, Y) is the Green&apos;s function for A2 in D we hâve G(X, Y) r(X- Y) -
y(X, Y). Moreover (since dist (X) 1), there is a constant C such that

\\N(VVy)\\L2 + E{dD)£C (2.4)

where C dépends only on the Lipschitz character of D. Therefore &quot;two tangential
derivatives&quot; of G are in L2 + e(dD). The next lemma is the main estimate needed for
the maximum principle and asserts that this L2 + e estimate can be improved to an
Ll estimate. The next lemma will be shown on an arbitrary bounded Lipschitz
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domain D. However, to prove (M.P.) in gênerai Lipschitz domains it will be

convenient to specialize first to the situation of starlike domains. It will be

important to keep in mind the situation where D is starlike and the X (named
below) is at a distance much smaller than diam(D). In this case, the domain D&apos;

defined in this argument can also be assumed to be starlike.

LEMMA 2.5. Let D be a bounded Lipschitz domain with Lipschitz constant M
and let X e D with dist (X) 1. Then there exists a constant C such that

l \AQG(X,Q)\da(Q)&lt;C (2.6)

where C is independent of diam (D).

Proof. Cover dD by cylinders Z, and assume that there exists a Lipschitz
function cp and a cylinder Z such that Z ndD {(x, cp(x)) : (x, cp(x)) e dD},
X (x0, (p(x0) + 1) and for some r r(M) &gt; 1, A&apos; {(x, (p(x)) : \x — xo\ &lt; r} ç=

Z ndD. Let Xf (x0, cp(x0) -f /?) and F&apos; be the cône with vertex at X&apos; such that
F&apos; ndD A&apos;. Let D&apos; be the (Lipschitz) domain defined by D=D\F/. Then
ôD&apos;ndD =dD\A&apos; and by suitable choice of /?, the Lipschitz constant of D&apos; will be

a bounded multiple of that of D.
The intégral in (2.6) will be estimated in two parts. First,

r
\AQG(X,Q)\da(Q)&lt;CU \AQG(X, 0|2 + e da{q) \

and since AQG(X, Q) AQF(X - Q) - AQy(X, Q) and both F and y hâve two
derivatives in L2 + f, that part of the intégral over A&apos; is bounded by an absolute

constant which dépends only on dimension and the Lipschitz constant of D. It
remains to estimate that part of the intégral over dD\A&apos; and to this end we will
show that

)ôD
\N(VQVQG(X9 0)| da(Q) &lt; C. (2.7)

(In proving (M.P.), it will be important that the estimate in (2.7) is obtained for the

nontangential maximum function on dD&apos;.) The inequality (2.7) will follow from
(2.3)(v) if we show that the/; (i.e. the DjG(X, • )(0) are in fact H\M - L2 + e atoms
in D&apos;. Observe that G(X, Y) is biharmonic for Y e D&apos; and that G(X, • and

D;G(X, - are supported on the unit size surface bail dD&apos;nF&apos; on the boundary of
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D. To obtain a size estimate on the tangential derivative of DjG(X, • on dD nf
observe thatJe r

\VtDjG(X, P)\ da{P) &lt; \ \VTDj
ôd or U^o&apos;

I 1/(2+ «

JdD&apos;rsr

&lt;C + c\\ \N(VQ VQy)(X9 • )(Q)|2 +£
Ubd

&lt;: C by (2.4).

The tangential derivatives automatically hâve the cancellation since D;G(X, • is

compactly supported and together with the size estimâtes, an application of
theorem 9.6 [P-Vl] yields (2.7).

THEOREM (2.8) (The (M.P.) for biharmonic functions). Let D be a bounded

starlike Lipschitz domain in M3 and let u be the L2 solution of the Dirichlet problem
in D with \Vu\e Lco{dD). Then there is a constant (depending only on the Lipschitz
character) of Z&gt;, and independent of diam (D) such that

\Vu(X)\ + \u(X) - u(X*)\/d(X) &lt; C\\Vu\\LaD(m, (2.9)

where d(X) dist (X, dD) and X* is the radial projection of X onto dD.

Proof We will assume that X is near dD, i.e., that d(X) &lt;^ diam (D) so that the

ratio d(X)/âmm (D) is smaller than some fixed constant which dépends only on the

Lipschitz constant of D. Once (2.9) is proved for ail points X in this band near the

boundary we shall use the dilation invariance both of the estimate and of the class

of Lipschitz domains to rescale so that diam (D) 1. In this situation, the Mi-
randa-Agmon maximum principle for smooth domains will yield (2.9) for ail
interior X. In this way, it is assured that ail constants are independent of diam (D).

There is a number a sufficiently small so that when d(X) &lt; a diam (£)), the

domain D&apos; defîned in the proof of Lemma 2.5 is also starlike. Recall the représentation

(2.1) of biharmonic functions. Two cases will be considered. In the first case,

assume u\dD=0. Then u(x) \dD (du/dN) AG(X, • )(Q) da and, by interior
estimâtes, it suffices to show that \u(X)\ ^ Cd(X). This is équivalent to the estimate

l \âQG{X, 0| MQ) * Cd(X). (2.10)
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The estimate (2.10) rescales. That is, it suffices to prove (2.10) for every starlike
Lipschitz domain under the assumption that d(X) 1. For if d(X) r, let
D&apos; {X&apos; : rX&apos;g/)}, a dilation of D by the factor r. Let XeDr dénote the point X/r.
Then dist (X, dD&apos;) (1/r) dist (X, dD) \. By Lemma (2.5),

f \AQG\X,Q&apos;)\dG(Q&apos;)&lt;C (*)
JQ edD

where G\ •, • dénotes the Green&apos;s function for A2 in D&apos;. But G\X, Qf) is just
(\/r)G(rX, rQf) =(\/r)G(X, g), Q e dD, where G( •, • is the Green&apos;s function for
the original domain D. A change of variables in (*) yields (2.10). Then (2.10)
together with the fact that \dujôN\ e Lœ(dD) prove (2.9).

In the second case, assume that du/dNQ 0 so that the représentation (2.1) has

the form

u(X) [ u
JdD

(Q) J- AQG(X, Q) do{Q). (2.11)

We will show that for any X in D,

\u(X)-u(X*)\
d(X)

&lt;C (2.12)

where X* is the projection of X onto dD. Fix now Xo€ D and, arguing as before,

we assume that d(X0) 1. With Xo fixed, assume also that u(X$) =0. Define T&apos;

and A&apos; as in Lemmas 2.5, with A&apos; — T&apos;nôD. The strategy is to use the représentation

(2.11), convert normal derivatives to tangential derivatives and integrate by

parts. In order to replace the normal derivative by tangentials, we need the Riesz

transforms.

Suppose h is a harmonie function (with nontangential limits in L2(dD)) in a

Lipschitz domain Q, starlike with respect to the origin. Suppose further that
h(0) 0. Define the harmonie function H(x) by

-rH(x)=\ h(tX)-9 XeQ. (2.13)

Then h(X) X • VH(X) and the vector VH restricted to the boundary of Q is the

vector of Riesz transforms of the function h. An easy calculation using the
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harmonicity of H shows that

ôh(Q) d

dN ~dN

YJJJ\ Q£J,k CM

Observe that, for any function F and fixed j and k (NJDk — NkDj )F is a

tangential derivative of F. If êk dénotes the unit vector in the xk -direction, an

application of the divergence theorem yields, for any function u on dD :

u(Q)(NJDkv - NkDjV) da(Q) div [uDkvêj - uDjVek] dX
JdD JD

div [vDjUêk - vDkuêj] DX

f v(Q)[NkDjU - WDku](Q) da{Q).
JdD

Hence, if h is harmonie in D and H is defined by (2.13), we hâve

f u(Q) H (0 da(Q) 1 - n) [ u{Q) ^ (0 do(
JdD dN JdD SN

o(Q)

f u(Q)~^(XkDJH)(Q)da(Q)
ôD C1j,k

JdD ÔN

+ - *) I Uf&quot; «Q)(Q*dj
J* J Vljjk

where d/dTJfk is the operator (NJDk —NkDj). Furthermore, by area intégral
estimâtes for harmonie functions ([D]) together with a lemma of Stein ([S], p. 213) it
can be shown that ||#(*,/&gt;*#)||l#w&gt;) - c\N(h)\LP{dD) for 0 &lt;/? &lt; oo. The estimate

above, with N(DkH) in place of N(XtDkH) appears in [V2] and the présence of the

term Xt éliminâtes the dependence of the constants on the diameter of the domain.
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We shall use thèse observations to convert normal derivatives of AG(X, • ){Q)
(or AQy) into tangential derivatives as follows. Let (p, \j/ be defined in Un so that for
B B(X$, M) for some M with BndD A\ then &lt;p

1 on B, &lt;p se 0 on C(2B) and
\j/ 1 on c(2£), ^ ss 0 on £ and &lt;p + i// 1. Then (2.11) may be written

u(x)=\ u-
JdD

Consider one term in the sum:

— AQG(X, Q) dc(Q) u&lt;p — âQrdo-\ ucp — AQy do.

Because u(X$)=0, our explicit knowledge of (ô/ôN)AQr shows that
| \dD ucp(d/dN) AQrda\&lt;C\\Vu\\. Now AQy(X, • is harmonie so let Hy dénote the
harmonie function associated to AQy as in (2.13). Then

DjHy)(Q) do{Q) - 1 - «) f cpu(Q) ^JdD Oiy/
(0

For each y and k,

f (u(p)(Q)(QkDJH7)(Q)d(7(Q)
dT, ¦(0

d(p

~d¥7k

Since |«(0| |«(0-«(Jrî)|s||Fii|i..(ai))|fi-^| and

e|i2+«^ C, both ternis above are dominated by a constant multiple of
||^(a/)). A similar estimate holds for JaDr^&apos; |u| \dH/ôN\ de and it remains to

bound the intégral taken over CA &apos;. We hâve,

f -i «
JdD&apos;
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by définition of if/, and in D\ AQG(X, • is harmonie. Thus we apply (2.14) with
h AQG in D&apos; to obtain

J*
F) C P\

u^jzzAQG da(Q) £ — (W)[g,/),/fG(0] do
ÔD&apos; Oiy/ j,k JôD&apos; CIj,k

+ (l-«) uil, — (HG)(Q)da (2.15)
JdD- ON

where //G is defined by (2.13) for h AQG. Fix a y and k and consider

f T^-(#)(00*a&gt;,tf)(G)&lt;fo&lt;6)
JôD&apos; 01j,k

f ^- ÏQ^HiQ) do{Q) + f « ^- QtDjHiQ) da{Q).
JdD&apos;n&lt;(A&apos;) G/j,k JdD&apos; n(2A&apos;\A&apos;) CIj,k

(2.16)

Recall that (2.7) implies that

Hence,

A similar estimate holds for the second term in the sum (2.16). The lower order
term in (2.15) is handled the same way using \N(XkDjH)\L2 + F{dD-n2A&apos;\A-&gt; ^ C. This
last estimate follows from the L2 + e improvement on D\ see p. 400.

§3. The Dirichlet problem for BMO data and Hôlder continuity of the gradient
of solutions.

A function / on ÔD is said to be in BMO{do) if there is a constant C such that

sup — \f-h\do\^C (3.1)
a sa
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where/j (\/a(A)) \Afda is the average of/on the surface bail A. The définition
(3.1) leads to an improvement of itself, by the John-Nirenberg Theorem, namely

ip

for any p &gt; 0. In particular a BMO function belongs to L\dD). We shall put a

norm, | I*, on BMO(dD) by defining ||/||+= inf {C : (3.1) holds} + \\dDfda\. We
shall prove in this section two natural extensions of the maximum principle for
starlike domains. In the first place, the Dirichlet problem for A2 will be shown to
be solvable when the data is BMO(da) and the appropriate Carleson measure
estimate on solutions is obtained. Secondly, solutions with data vanishing on a
surface bail on ôD will hâve a Hôlder continuous gradient at points in the domain
near the surface bail. We begin with the theory for BMO data. As usual, d(X)
dénotes dist (X, dD) and \VVu\2 Hjk \DjDku\2. For a biharmonic function u define
the square function of its gradient by

S2(Vu)(Q) | d(X)2~n \VVu(X)\2 dX.
Jn&lt;2)

We shall need the foliowing theorem, but only in the spécial case p 2.

THEOREM 3.2 ([P-V2]). For u biharmonic in a Lipschitz domain D^U&quot; with

\Vu(P)\ =0for some P eD and 0 &lt;p &lt; oo.

\\S{Vu)\\LP{da)^\\N(yu)\\LP{da)

with a comparability constant depending only on dimension and the Lipschitz charac-

ter of D.

Given a surface bail A(Q, r) c dD, define the Carleson région associated to
A(Q, r) by T(A) B(Q, r) nD. For a Lipschitz domain D ç M&quot;, if h is the solution
to the Dirichlet problem for the Laplacian in D with boundary values/ e BMO {do)
then the Carleson estimate

sup
A^d

is valid (see [F-K-N]). The analog of this resuit for biharmonic functions is the

foliowing theorem for starlike Lipschitz domain D ç IR3.
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THEOREM 3.3. Letf= &lt;/0,/i,/2,/3&gt; e WA2 and let u be the solution to the L2
biharmonic Dirichlet problem in D Ç= IR3 which satisfies

u\dD =fo

du_

dN&apos;

nontangentially. If f} e BMO(dD) for j 1,2,3 then there exists a constant C

depending only on the Lipschitz character of D and the norms \ft ||
^ such that

sur.
A ç

P j-^jr iï d[X) \VVu{X)\2 dx\ &lt; C, (3.4)

where T(A) is the Carleson région associated to A.

It may seem at first more natural to ask for Carleson measure results on \VVu\
merely under the assumption that du/dN e BMO. In fact, the hypothèses of
Theorem 3.3 state that ail derivatives of u (restricted to dD) belong to BMO(dD),
a condition which is certainly implied by (3.4) but does not necessarily follow from
the assumption that ôu/ôN e BMO(dD).

Proof of Theorem 3.3. Fix a surface bail A ç= dD with center Qo and radius r0.
From the compatibility conditions, we hâve \VTf0\ &lt; c E, \ff\. If 4A A(Q0, 4r0)
and (^)4^(lM4zl))J4,/J(0^(0, let c,=(fj)4A and define v(X)=^lCjXr
Then VVv 0 and (ô/ôN)(u —v)=yLJ{fJ— ct)Nj and hence, by subtracting v from
w, we may assume that c} — 0, j 1, 2, 3. We may also assume that j4Af0 do 0 by
subtracting a constant from u.

Now let il/eC^(U3) be such that \j/ 1 on 2A and ^=0 on l4A, and

~l/r0 on 4J\2zl. Define

&lt;/&gt;=/o^ and

Then there are functions gn hn i — 1, 2, 3 such that both &lt;/o\gi,#2&gt;£3&gt;

(f{o\ hu h2, h3} are Whitney arrays. For simplicity, we calculate this in local
coordinates. Thus if the boundary of D is locally defined by the graph of the

Lipschitz function cp, we see that
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for j 1,2 and so

gj-fj+lfo

and

We shall set w(1) to be the biharmonic solution to the Dirichlet problem with data
&lt;Jll\ E, gjNj &gt; and similarly define w(2) so that u w(1) + w(2). By Theorem 3.2, the

quantity (3.4) for u(l) may be estimated using L2 norms:

1

a(A) JJt
do{Q)

\N2{Vu^)da&lt;^- [\Vu

We return to local coordinates to calculate the L2 norms of the derivatives i

on the boundary

do

And, by Poincaré&apos;s inequality,

by assumption.

0 \ J4J/2/J

f
4à\2A

11/; I Z i/; I

It remains to estimate (3.4) when w(2) is substituted for u. The solution w(2) has the

représentation

u{2\X) f X hjN&gt;(Q)AQG(X9 Q) da(Q) + f /o2)(0 t^-
J^£&gt; 7 JdD UDIq

where G(Z, F) is the biharmonic Green&apos;s function for D. We consider fîrst the term
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h(X) J5D E, hjNJ(Q)AQG(X, Q) da(Q), i.e., A 2h 0, h s 0 on dD and «3/î/cW

I.j hjNJ, where &lt;/^2), A,, A2, /j3&gt; is the Whitney array associated to u(2\ To estimate

(l/a(A)) \jnà)d(X)\VVh(X)\2 dX, we begin by obtaining a pointwise estimate on
h(X). Fix X e 7\.d). Set J* A(Q0, 2kr0) and ^ Ak - ^ _,, so that

Z f ihjN\Q)àQG{X,Q)MQ)
:&gt; 0 JRkj 1

Z [ l\MQ)\KG{X,Q)\da(Q).

Fix a A and k. We hâve

The basic estimate on atoms used to prove Theorem 9.6 (see Lemma 5.7 of [P-Vl])
when specialized to G(X, • is the following, for d(X) 1 and r0 1

1 AQG(X, Q)\2 da(Q) &lt; C(2k)-2-&apos; (3.5)

for some e depending only on the Lipschitz character of D. Rescaling this estimate

yields

f
JR

(3.6)

Recall that c, (f,)^ 0 and a standard 5M0 estimate shows that

f \fj(Q)\\àQG(X,Q)\da(Q)

s f MeG(x,0|{i/;-(/y)

The term J^ \AQG(X, Q)\ \(fj)Ak -Cj\da(Q) has the bound

C* 11/11, • 2*r0 • j f \AQG(X, Q)\2
URk

by (3.6).
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The other term has a better estimate:

f [f,(Q)-(f;hk\\AQG(X, Q)\da(Q)

\ ro

Finally, to bound |A|, we need an estimate for $Rk\f0\\Vilt\\AQG(X,Q)\d&lt;T(Q).
Again, we use Poincaré&apos;s inequality, and the fact that \VTf0\ &lt; Z7 |/J|, so that only
the term k 2 does not vanish in the sum.

Altogether, interior estimâtes will give a bound on ^l+d(X) \VVh(X)\2 dX
where / is a dyadic subcube of D and /+ {(je, j&gt;) : Je g / and /(/)/2 &lt; dist (^, dD)
&lt;/(/)}. We hâve

&apos;

II d(X)\vvh(X)\2dx&lt;&lt;?(i) II

(hère /=§/).
For ^6/

Z 2&quot;*-* |A, U ¦ (^ ¦ d(X)

and so (3.7) is bounded by

Then,

/cr zj &apos;0

as desired.
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To complète the Carleson measure estimate, we hâve only to show that

1
&quot;

d(X)\VVF(X)\2dX&lt;C

where F(X) $ÔDfoXQ)(d/dNQ) AQG{X, Q) da(Q). Because/02) is supported on CA

we may form a new domain Z)&apos; relative to D and convert normal derivatives to
tangential derivatives as in the proof of Theorem 2.8. Our basic estimate (3.5) is

valid for N(AQG(X, Q)) replacing AQG(X, Q) and consequently ail estimâtes are the

same, so the détails are omitted.
We turn now to results on Hôlder continuity of the gradient of solutions when

the data is sufficiently smooth. Recall that g e Au if

sup
2

THEOREM 3.8. Let u be the solution to the L2 biharmonic Dirichlet problem in

the starlike domain D with data

U\ÔD =/o

where &lt;/0,/i,/2,/3&gt; e WA2, and NJ is thej&quot;1 comportent of the normal vector. Assume

that fj e Ax where a. &lt; e, for e defined by (3.5). Then Vu e AX(D); in fact

+ SUP d(X)l-\VVu(X)\ &lt; C
Xe D

where C dépends only on the Lipschitz constant of D.

Proof. The theorem is a conséquence of the basic estimate (3.5) and the L°°
bound on the gradient. We mimic the simple argument of [DK2]. It suffices to
show, after rescaling and invoking the dilation invariance of the constants in the

estimate, that
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when d(X) 1. We hâve, as always, the représentation

u(X)=\ fo(Q)^-AQG(X,Q)da(Q)+! YJf/(Q)N\Q)AQG(X, Q) da(Q).
JdD OiyiQ JdD /

After subtracting a constant (namely fo(Qo) where Qo is the radial projection of X
onto dD) and substracting the linear function I73= \f/(Q0)X/ we may assume that
fo(Qo) 0 and that (du/ôN)(Q0) 0. We shall treat each term in the sum above

separately. The argument for the term §dDf0(Q)(d /dNQ)AQG(X, Q)c is similar to that
of Theorem 2.8 - normal derivatives are converted to tangential derivatives and
Riesz potentials are introduced. Ail estimâtes are the same as those for the second

term so we shall give thèse estimâtes only. We hâve

[ YJfl(Q)N\Q)AQG(X, Q) da(Q) &lt; £ \[f, \\A^ f \Q - Qo\* \AQG(X, Q)\ dQ
JdD j / JdD

and the basic estimate (3.5) immediately shows, when a &lt; e, that

[ \Q-Qo\*\AQG(X,Q)\da(Q)&lt;C.
JdD

Interior estimâtes give the desired bound on |FFw(^0|&gt; since d(X) 1.

REMARK 3.9. We now observe (following a suggestion of C. Kenig) that an

analog of the above theorem with continuous data follows from the Hôlder
continuous case and yields a &quot;classical&quot; solution, i.e., a solution with Vu continuous

up to the boundary. To see this, approximate the continuous data by Ca functions
and use the Lœ bound to estimate the différence between the solutions to the

approximating data and the continuous data.

§4. The maximum principle for C1 domains

The essential reason that the maximum principle for the gradient of biharmonic
functions is valid on C1 domains in ail dimensions is that the Dirichlet problem for
A2 is solvable in every /?, 1 &lt; p &lt; oo ([V2]). This fact allows us to obtain an atom&apos;s

estimate in every dimension by using solvability of the Dirichlet problem for p near
1. Indeed, by the remarks following the proof of Lemma 2 of [V2], we know that
the Dirichlet problem 1.1) is solvable for ail 1 &lt; p &lt; oo when D is a Lipschitz domain
whose Lipschitz constant is smaller than some e0 &gt; 0. We shall state and prove the
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following results for Lipschitz graphs with small constant in order to hâve available
the rescaling and dilation invariance techniques which simplify the arguments.

An L°° bound on \Vu\ follows, as in §2, from the atom&apos;s estimate. For arbitrary
Lipschitz domains, this estimate was only valid in IR3 but we shall prove it for
Lipschitz domains with small constant in 1RW, ail n &gt; 2. From the L°° estimate and
the basic estimate on the Green&apos;s function, one can obtain Hôlder estimâtes on
gradients of solutions as well as Carleson estimâtes for BMO data. Ail of this will
follow from the appropriate analog of Lemma 5.7 of [P-Vl].

Let D be the domain above the graph of a compactly supported Lipschitz
function cp : Un -+ IR with Lipschitz constant smaller than e0 &gt; 0. We will need the

following Cacciopoli type inequality, which is in fact valid for any Lipschitz constant.

LEMMA 4.1 (Lemma 5.6 of [P-Vl]). Let Qx cfi2 be bounded Lipschitz
domains with Q2 c D. Let A2u=0 in D with N(VVu) e L\dD). Let \\p + \\pr 1 and
0 &lt; d dist (Qu D\Q2). Then there is a constant that dépends only on 1 &lt;p &lt; oo

and the Lipschitz constant so that

l \VVu(X)\2dX &lt; C(\\Vu\\LP(gD^a2) \\N(VVu) LP(dD)

d-l\\u\\LP(ÔD^ÔQ2)\\N(VVu)\\LP(dD)

+ d-2\\u\\L2{Q2)\\VVu\\L2iQ2y

Proof. The proof uses the équation together with several intégrations by parts,
and is given in [P-Vl].

The following lemma gives the atomic estimate for which a Hardy space

regularity resuit follows. This was Lemma 5.7 of [P-Vl] which was valid on an

arbitrary Lipschitz domain only in IR3 (and (R2). Recall that a (\,q) atom a is a

function supported in a surface bail A(Q, r) {P e ôD : \P — Q\ &lt; r} such that
~-1 and jade =0.

THEOREM 4.2. Let a be a 1, #) atom, q &gt; 2 — s on ÔD and let u be a solution

to the following regularity problem

(i) A2u=0

(ii) lim Dnu(X)=0 a.e.
XQXr(Q)

(iii) lim t&lt;TÀQ)&gt;rDAx)&gt; &lt;Q) ae-
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Then,

N(VVu)d(T^C, (4.3)
JdD

where C dépends on e but not on the support of the function cp for D {(x,y):
yxp(x)}.
(Cf. Theorem 4.6 of [P-Vl] for this formulation of the regularity problem above a

graph.)

The following lemma is a spécial case of a more gênerai theorem due to J. L.
Lions. Since the argument is brief and shows the dependence of the constants, we
shall give it hère. This estimate will be used in the proof of Theorem 4.2.

LEMMA 4.4. Let u be a C2 function in a bounded Lipschitz domain Q ç Un.

Then there exists a constant C such that for any e &lt; 1,

&amp;4 \ o &quot; /I \%J*e 11/

where R diam Q, and C(s) ~ l/eM for some M M(n).

Proof Without loss of generality, assume that diam £2 1. Let v D,u for
some \ &lt; i &lt; n. We may assume that \Q v dx 0. We then claim that for some
0 0(«),

i/2 \ / \[\ v\). (4.6)i2
I &quot;M \vu\ \

The estimate (4.6) gives (4.5) with constants e and l/eM, where M (1 — 6)/6.
To prove (4.6), let aM=4/(« + 2) and choose pn so that p&apos;nan 1, where

P&apos;n =Pnl(Pn - !)• Then

Then (2 — OLn)pn 2n/(n — 2) and by Sobolev&apos;s Theorem, since Jo v 0,

\ «/(/!- 2)

\Vv I2
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Thus,

l/2 / /* \&lt;n/(n-2)) (1/(2/.,)) / f \l/(2pn)
(lIM&quot;) (Jlw)

and if 0 (2/O &quot;
&apos; (^ - l)/2^, then 1 - 6 (/&gt;„ + \)/2p,, and /»„ + 2«/

(« - 2).

Proof of Theorem 4.2. By translation and dilation invariance, we may fix
cp(O) =0 and assume that the atom a is supported in the unit size surface bail
centered at the origin with ||«||L^a) &lt; C, for \ &lt; p &lt; q.

Define, for x e M&quot;- l (n &gt; 3), as in [P-Vl],

r
û(x) \ \x - y\3 &quot;a(y, cp{y)) dy,

J

so that

Axû{x) a(x, (p(x)) a.e.

The support and cancellation properties of a(x, (p(x)) yield the following estimâtes:

u(x)\ &lt; C x 2- n

\VÛ(x)\&lt;C\x\]~&quot; (4.7)

\VVû(x)\ &lt;C\x\-n.

for ail |x| &gt; 2. By Weyl&apos;s Lemma and the Liouville Theorem, û{x) differs from
u(x, (p(x)) by a linear function of x; by subtracting this linear function we may
assume û(x) u(x, (p(x)) a.e.

The estimate (4.3) follows from the L2 regularity theory via Schwarz&apos;s in-

equality when the domain of intégration is restricted to {(x, cp(x) : \x\ &lt; 2}. For
Q (x, &lt;p(x% define

^ (Q) r(Q) n {X : dist (X, dD) &gt; \x\}

r2(Q) r(Q) n {X : dist (X, dD) &lt;\x\}
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and

Nl(VVu)(Q)= sup \Wu(x% N2{VVu)(Q)= sup \VVu{x)\
Xer{(Q) Xer2(Q)

Then N(VVu) &lt;Nx(VVu)+ N2(VVu) and each term will be handled separately We

first observe that for |x| large, \Vxu\ &lt; C\x\l n and since Dnu\dD 0, u has Dinchlet
data in Lp(do) for any p &gt; 1, In [S-S], the Dinchlet problem for the biharmomc
équation above a graph with small Lipschitz constant was solved for Lp data,
1 &lt;p &lt; oo This fact could also be proved from the results of [V2] for bounded C1

domains In any case we hâve, for this w, \N{Vu)\LP{da) &lt; Cp, where Cp dépends

only on p and the dimension
For n &gt; 3 fîxed, we fix a p &lt; {n — \)/(n — 2) so that ||iV(PM) ||l/v&lt;x) - ^o? where

Co dépends only on n

Thus for X g A

\Vu(X)\ &lt; Cd(X) {n x)lp

and by interior estimâtes,

\VVu{X)\&lt;Cd{X)x n E

if e îs defined by p (« — \)/(n — 2 -h e) Consequently the estimate (4 3) holds if
Af(FTw) îs replaced by Nx{VVu)

We now proceed as in [P-Vl] to estimate \N2(VVu)\L\{d(y), applying the

Cacciopoh estimate of Lemma 4 1

Let AR {(jc, cp(x)) R&lt;\x\&lt; 2r}, and for 1 &lt; t &lt; 4 define

OT {J^eZ) X (x, q&gt;(x) + s), t 1R&lt;\x\&lt;2tR,Q&lt;s&lt;4R}

so that ^O} c\dD AR Then

N22(VVu)(Q) da(Q)) (4 8)

/
By the L2 regulanty theory for bounded starhke Lipschitz domains,

{N2(VVu))2(Q) da{Q)
\en,

ea,\aD
rt(i0 +Ï f 4^ F«

2

da(Q))
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for ail 1 &lt; i &lt; 2 and C is independent of t and R. By (4.7), the last term is of order
R~n~l. Averaging in t yields

N2(VVu)2da &lt;c(r1\ \VVu(X)\2 dX + R -n~ l \ (4.9)
JôQ n d£&gt; \ JQ 2

The Cacciopoli estimate of Lemma 4.1 will be used to bound the solid intégral of
\VVu\ over Q2. We first observe that for any 1 &lt; q &lt; oo, the regularity problem with
data in (Lq, L\) is solvable on Lipschitz graphs with Lipschitz norm &lt;e0, by the

duality between this problem and the Dirichlet problem. (This duality was shown
in [P-Vl] where it was used in dimension 3 for the Dirichlet problem above any
Lipschitz graph.) Thus, for a fîxed q, namely \/q 1 — (n — 2 + s)/(n — 1), and the

assumption that a is a unit (1, q) atom, we hâve ||A^(PPM||L&lt;/(aD) ^ C. For this fîxed

q, C dépends only on the dimension (and e0). In addition, we hâve the following
estimâtes from (4.7):

(4.10)

Thèse easy estimâtes follow from the définition of nontangential maximal function
and calculus. For example, if X* (x, q&gt;(x)) when X (x, cp(x) H- s),

j \u(x)\2dX&lt; I \u(X) -u(X*)\2Dx+ I \u(X*)\2DX
JQ2 JQ2 JO2

OU V / 1 V
— (x,q&gt;(x)+y)dy) dX + l-—-_^j R&quot;

&quot;(T
&gt; o \J^ o

JQ2

From (4.10), Lemma 4.1 with d R becomes

Ja2

(4.11)
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By Lemma 4.4, and a to be determined later,

IIMUo,) * C«R&quot;i2R-(&quot;-&quot;i»\\N(yu)\\LHm+aiR\\VVu\\Ll(aj

* cxR&quot;12 -&lt;-•&gt;* + a/? I rru\\L2(ai).

Because HL^) s C{R-l\\Vu\\LHaj) + R(~n + 4y2}, inequality (4.11) becomes

f \VVu\2 £ C{R~i—l)»&apos;+CaRi&quot;-x&gt;l2R-i—lv&apos;&apos;lVVulLHa3
Jfl2

\\\\(i) \\\\H3) (4.12)

Now,

j? f
Jd

With this estimate, (4.12) becomes

f \VVu(x)\2dX£

Y| N2(VVu)2 daj + aR f N2(VVu)2da

Observe now that Ca ^ l/aM for the M of Lemma 4.4 and thus we choose
&lt;x=R ~e/2M and recall that p (n - \)/(n - 2 -h e). Hence,

f |FFi&lt;x)|2dX^c
Jfl2

+ ^i-£/2m
F N2{VVu)2da\

JdQ3ndD J
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By (4.8) and (4.9), the above estimate yields

I N2(VVu) do &lt;: R(&quot;~ 1)/2( I N2(VVu)2 do\2
JàR VJdQjOdD J

N2(VVu)2doj

N2(VVu)2do) \. (4.13)
dQ3 J

Let

and

where

i
and

&quot;L&lt;|fi|*2,+

\J{2J&lt;\Q\^2J

N2(VVu) do

\l/2
N2(VVu)2do\

N will be determined later. In this

N2(VVu)do
R

-&apos;,

îorj&gt;

notation, and with R 2\

\J^3(/?)

Therefore (4.17) becomes

N jïz N

C X (2&apos;)O- »/22-V^_, + £ + £+,). (4.14)
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This inequality shows that Z7 ^ N (Xj
&lt; C, and since E, ^ N oij

&lt; Co, this complètes the

proof. To see this, observe that each fy is bounded from above by an absolute
constant and that N may be chosen sufficiently large so that the last term in (4.18)
is less than ^(Z7&gt; N{2J){n&quot; 1)/2/?7). The second term in (4.18) is estimated using
Cauchy-Schwarz.

At this point, the passage from solvability in H\ at above a graph to solvability
on bounded C1 is achieved in the same way it was achieved in dimension 3 for
Lipschitz domains in [P-Vl]. Hère the main fact we are using about C1 domains
is that a covering by cylinders of the domain may be chosen with the cylinders small

enough so that the Lipschitz constant of each local graph is as small as we wish.
The localization arguments needed to conclude the weak maximum principle from
the H\dt regularity resuit (and its implications thereby for the Green&apos;s function) are
discussed in the following section.

§5. The maximum principle on arbitrary Lipschitz domains

In this section we give the localization arguments which prove, from the

corresponding results on starlike domains, that (M.P.) is valid for Lipschitz
domains in 1R3. Thèse same arguments can be used to show that (M.P.) is valid for
any C1 domain in 1R&quot;, so we confine ourselves to proving the following.

THEOREM 5.1. Let D be a Lipschitz domain in M3 and u be the solution to the

L2 Dirichlet problem for A2 in D satisfying \Vu\ e L°°(dZ)). Then there is a constant

C, which dépends only on the Lipschitz character of Z&gt;, such that

sup \Vu(X)\&lt;C\\Vu\\L^m. (5.2)
X e D

Proof of 5A. It suffices to prove (5.2) when the supremum is taken over ail

X e D with dist (X, dD) &lt; s. (We may also assume that diam (D) 1.) In this case

a C°° surface C contained entirely in D n{X : dist (X, ôD) &lt;e} may be constructed
with \Vu\e L^iC) and u biharmonic in the domain determined by C. By the

Miranda-Agmon maximum principle for smooth domains we could conclude that

\Vu\e L°°(D). So, for some e &gt; 0, it must be shown that

sup \Vu(X)\&lt;C\\Vu\\Lao{m. (5.3)
Xe D

dist (X,dD) &lt; e

We now observe that (5.3) foliows from estimate (2.6) of Lemma 2.5 when u 0 on
dD and so we further assume that our biharmonic function satisfies du/dN 0 on
ôD, u =/on dD with \VTf] e L
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Let {Zt }*œ be finitely many double truncated right circular cylinders such that
dD c (J*=, (±zt ndD) and such that, for ail /, 4Z, nZ) is a starlike Lipschitz
domain. Fix a cylinder Z,. For \ &lt; a &lt; 4, let Aa dénote ocZtndD and Oa dénote

aZtnD. Let r rad (J), let B be a bail centered at the center of the surface disk Ax

of radius r and let ^ be a C°° function satisfying ij/ 1 on B and ^ 0 on c(2i?).
We now define two biharmonic functions ux and u2 in D by specifying
duJdN ôu2jdN 0 and w,|5Z&gt; i/&gt;(/- c0) and M2^z&gt; (1 ~ ^)(f~ Co) where

Co Jd2/(^O&apos;M^2))- Then, in Z), u ux+u2 + c0 and so zlw Aux + zlw2- We want
to show that ux and u2 hâve bounded gradients at points in Q2 within s of the

boundary of D.
First observe that m, has (L2X, L2) Dirichlet data in Q2 since

iFw,!2^^) N(Vux)2da&lt;\ \Vux\2 da \ \VTux\2do
JdQ2 )à2 JôD JdD

and VTux (VTxlj)(f- Co) + *VTf.
Now \VT\lt\ &lt; Cr~l and

[
2A

[f-C0\2da&lt;c! \VTf\2da&lt;C\\VTf\\2œa(A)
J2A

so that \Vux\eL2(dQ2).
We turn now to the L°° estimâtes on \Vux\. If X e ôQ2 and dist {X, dD) &gt;Cxr

then |Fm,(J!0| ^ ^(^2 (Mwi)2 ^)l/2 ^ ll^r/IU by the L2 estimate above. To
bound |Fw,(JO| when X is near dD requires the Hôlder continuity of the gradient.
That is, consider ux in the (starlike) domain Q4 where (L2,L2) Dirichlet data
satisfies the same estimâtes obtained when we consider ux as a function in Q2. On

A4\AX, both ux\dD and ôux/dN vanish. Let G4(X, Y) be the Green&apos;s function for the

operator A2 in Q4 and write

f ^(Q)AQG4(X,Q)dQ+ f

/ + //.

Fix Z 6 5O2 with dist (JT, 5i)) &lt; c^. Then

Yf
\JdQ4\A4
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since dux/dN 0 on A4. By the basic estimate,

V/2
\AQG4(X,Q\2dQ

ï

and \\dux/ôN\\L2&lt; ||Pr/||ooa(zd)1/2 rllP^rlL. Therefore,

Because the domain Q4 is starlike, term // has the same estimâtes. (Observe that ux

vanishes on A4\A2 and the Hôlder estimâtes will be applied hère. So even though
ux does not vanish Al9 we are in a position to apply the Hôlder estimate away from
Ax.) Hence,

for dist(X,dD) &lt;cxr.

Consider now the function u2 in the domain O,. We hâve

f \Vu2(P)\2 dP &lt; [ N(Vu2)2 da(P) &lt; C f \Vu2(P)\2 da{P)
JÔQx/2 JA JdD

In addition, both u2 and du2/dN vanish on Ax. For any X eQx, we may write

J*

% (* %

-^AQGx(X,Q)dQ+ u2(Q)—-AQGx(X,Q)dQ.

Thus if £ is sufficiently small (£ &lt; min {o{dD), r}) and X e Ql/2 with dist (X, dD) &lt; e,

thèse L2 estimâtes on the starlike domain Qx together with the basic estimate will
show that | Pw2 (J^T) | &lt; C^Ft/I*,.

Thus \Vu{X)\ &lt; CIIFt/Ioo for X e \Z nD when dist (X, dD) &lt; s and the argument

may be repeated in each of the finitely many cylinders.
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