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Clones of spaces and maps in homotopy theory

C A McGibbon

This paper deals with certain infinité dimensional spaces which appear to be

almost identical m the homotopy category To explain precisely what îs meant by
&quot;almost identical&quot;, I need a few définitions Recall that two spaces, say X and F,

are said to hâve the same «-type if there exists a homotopy équivalence between
X{n) and Y{n\ their Postnikov approximations up through dimension n Thèse

approximations can be obtained by attaching cells to the original spaces to kill off
their homotopy groups in dimensions greater than n Obviously, if X and Y are

homotopy équivalent, then they hâve the same «-type for ail n However, the

converse statement îs false, indeed in [7] ît îs shown that counterexamples to the

converse can occur when X îs the classifymg space of a compact Lie group
Let X(p) dénote the localization of X at a prime p in the homotopy theoretic

sensé of Bousfield-Kan, [1] or Sullivan, [15] If X and Y are homotopy équivalent
nilpotent spaces then so are X{p) and Y(p), for each prime p Again the converse
statement îs false In fact, a famous example of Rector [11] shows that when X îs

the infinité dimensional quarternionic projective space, there are, up to homotopy,
uncountably many différent F&apos;s, each of finite type and each locally p-équivalent to
X dit each prime p

In this paper we will regard two nilpotent spaces, X and Y, as almost identical
if (î) they hâve the same «-type for ail n and (u) their locahzations at each prime
are homotopy équivalent When this happens we will say that the X îs a clone of Y
The obvious question îs then - does ît follow, when X îs a clone of Y, that the two

spaces are necessanly homotopy équivalent7 I will show that the answer îs no, even
when the spaces are 1-connected with finite type According to the définition just
given, any space îs a clone of îtself, and so I will use the adjective nontrwial in
descnbing thèse clones of a space which are not homotopy équivalent to ît

EXAMPLE 1 When X S3 x K(Z, 3), there are, up to homotopy, uncountably

many différent clones of X

Proofs will be given later in this paper Hère îs a simple construction of some clones

of S3 x K(Z, 3) Partition the set of ail primes into two subsets, say A and B Let
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Z dénote the homotopy pull back of the diagram

)9 3)

wherein the maps are rational équivalences. Let Z&apos; be a second pullback obtained

by reversing the rôles of A and B. Then define Y to be Z x Z&apos;. It will be shown that
Y is a clone of X, and that différent partitions give rise to différent clones of X. I
do not know, however, if every clone of X can be constructed in this manner.

One place where clones arise is in the study of the Mislin genus of an infinité
dimensional space X. Recall that this genus, &amp;(X), is defined to be the set of ail

homotopy types [Y] where F is a nilpotent space of fini te type and where, for each

prime p, Y{p) ~ X{p). If X(n) dénotes the Postnikov approximation of X up through
dimension n9 then one has a map

that sends a homotopy type [Y] to the séquence ([F(1)], [7(2)], [F(3)],. .)• Very little
is known about this function in gênerai. For instance, is it always surjective? Notice
that the preimage of [X] under this function is just the set of clones of X. Thus

Example 1 shows that this function need not be one-to-one.

EXAMPLE 2. Let Ar HPco, the infinité dimensional quaternionic projective
space. Then X{S) has nontrivial clones (uncountably many, in fact) if and only if S
is an infinité subset of prime numbers whose complément is also infinité. Moreover,

any two clones of X(S) become homotopy équivalent when localized at any finite set

of primes.

The vérification of this example involves a surprising amount of arithmetic. In
the proof, the existence of clones of X(S) is shown to dépend on whether or not the

index of a certain subgroup in Z(*5) is infinité. The subgroup in question consists of
ail positive units that hâve /?-adic square roots for each prime p e S. The question
about the index, in turn, is shown to dépend only on the cardinality of both S and

its complément. The proof of this resuit, Theorem 2.3, is due in large part to Hugh
Montgomery. I am very grateful to him for the clever proof he gave in response to

my query and for allowing me to présent it hère.

Let G dénote a 1-connected compact Lie group. The existence of nontrivial
clones of BG, before localizing, is an open question. Only two spécial cases of it are
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known (G SU (2) and SU (3), wherem no nontnvial clones of BG exist) As

Example 2 shows, the case of BSU (2), after iocahzing at any set of primes S, îs well
understood This case, however îs the exception The following resuit îs currently
the most gênerai one I know regarding clones of classifymg spaces

EXAMPLE 3 Let X BG(F) where G îs a compact connected Lie group of
rank at least 2, and F îs a finite set of two or more primes Then the set of
homotopy types of clones of X îs a countably infinité set

Following Wilkerson, [16], let SNT(T) dénote the set of homotopy types [Y]
with Postnikov approximations Y{n) ~ X(n) for ail n Notice that the set of homotopy

types of clones of X îs the intersection

Clones (X) SNT (X)n^(X)

This raises the question - Do nontnvial clones of X always exist when the sets

SNT (X) and ^(X) are both nontnvial^ This seems to be a hard question The case

of X BG, where the rank of G îs at least 3, îs a spécial case of ît
The study of clones reveals the strange manner in which the function SNT

behaves with respect to localization For, as Example 2 shows, there exists a space
Y such that

SNT (Y)ï* while SNT (Yip)) * for every prime p

However, the example of BSU (3) shows that there exists a space X such that

SNT (X) * while SNT (X(p)) # * for every prime p

This last example was worked out in [7] Thèse examples seem to suggest that

recovenng SNT (X) from that of îts locahzations îs going to be difficult if not
impossible

Clones of maps

We say that two maps, say /, g X -&gt; Y are clones of each other if their
locahzations at each prime are homotopic and if their Postnikov approximations at
each stage are homotopic

It îs worth notmg that if X îs a C W-complex with finite «-skeletons for each «,
then the condition that / and g are homotopic at each prime p implies that their
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restrictions to each skeleton of X are homotopic, by [5], Theorem 5.3. Hence, in this

case, the Postnikov approximations of / and g would likewise be homotopy
équivalent. However, if X does not hâve fînite type, then the first condition does

not, in gênerai, imply the second one (ibid., Prop. 5.5).
One place where clones of maps often occur is among phantom maps. Recall

that a phantom map is a based map from a CJF-complex X to another space Y,

whose restriction to each skeleton Xn is null-homotopic. Equivalently, a phantom
map from X to F is one whose projection onto each Postnikov approximation Y(n)

is null homotopic. Let Ph (X, Y) dénote the set of homotopy classes of phantom
maps from X to Y. The next theorem contains the most gênerai resuit I know
regarding clones among phantom maps.

THEOREM 4. Assume that X and Y are nilpotent CW-complexes offinite type.

IfX has the rational homotopy type of a suspension, or if Y has the rational homotopy

type of a loop space, then the following statements are true:

(i) Ph (X, Y) has a natural, divisible, abelian group structure.

(ii) The map Y -? TfYip) whose pth component for each prime p, is the canonical

map Y-*- Yip), induces an epimorphism

(iii) The map just displayed has a nonzero kernel whenever its domain, Ph (X, Y)
is nontrivial. This kernel (consisting of clones of the constant map) is also a

divisible group.

Remark. Part (i) generalizes results of Roitberg ([12], [13]) who reached the

same conclusion assuming that X is a co-//-space or that F is a //-space.
The resuit in part (ii) is not the most gênerai one possible. The rational

hypothesis on X or Y can be dropped hère at the expense of losing the natural

group structure on Ph (X, Y). More importantly, the induced map in part (ii)
remains an epimorphism of sets. This follows from a lim1 resuit of R. Steiner, ([14],
Theorem 2.5).

Since nonzero divisible groups are never fînite, one concludes in part (iii) that
there are, up to homotopy, infinitely many différent clones of the constant map in
Ph (X, Y), whenever this group has more than one élément in it. I do not know if
the rational conditions on X or Y are really necessary hère. In the proof, thèse

conditions enable one to identify the set Ph (X, Y) with Ext (A, Z), where A is a

certain torsion-free countable abelian group. The conclusions of parts (ii) and (iii)
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are then a conséquence of some homological algebra; namely that the obvious map

it always surjective and that it always has a nontrivial kernel (unless, of course, its

domain, Ext {A, Z) is the trivial group). This particular resuit was one announced

by Willi Meier in [9], but as far as I know, no proof of it was ever published. The
slick proof of it in this paper is due to H. Pat Goeters; I am very grateful to him
for allowing me to use it hère.

Let me mention two examples which are relevant to Theorem 4. The first one is

due to Harper and Roitberg. In [4], they study phantom maps whose domain is a

finite Postnikov space and whose range is the iterated loops on a finite complex. In
this case one can be more spécifie about clones of the constant map (or spécial

phantom maps in their terminology). The following example is représentative of
their Theorem 2.2.

EXAMPLE 4.1. In Ph (CP*, Q&quot;Sn + 3) the subgroup consisting of clones of the

constant map is uncountably large and its index is also uncountably large.

Compare this example to the next, in which every phantom map is a clone of the

constant one.

EXAMPLE 4.2. Let

cofiber|a, : V

where for each prime /?, a, | S2p (xx(p). Then Ph (X, S4) # 0, while Ph (X, S4ip)) 0

for ail primes p.

This phenomenon, where essential phantoms exist and yet ail of them are clones of
the constant map, also occurs in Ph (Q2S2n+ \ S2n) for each n ^ 2. Both examples

are verified in [3].
Hère is another situation in which clones of maps arise quite naturally. Let

Aut (X) dénote the group of based homotopy classes of self équivalences of a space

X and let WI(X) dénote the weak idenîities of X, that is, the subgroup of Aut (X)
consisting of those classes which project to the identity class on each Postnikov

approximation of X.
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THEOREM 5. Let X be a simply connectée CW-complex offinite type. If the

subgroup WI{X) is nonzero, then it contains nontrivial clones of the identity map.

A simple example in which WI(X) / 0 is X CP°° x S\ In this case, WI{X) «
Ph(CP°°,S3) ^R, as rational vector spaces, [12]. It is still an open question if
WI(Y) could be nonzero when Y is the space of loops, free or based, on a finite
complex.

This complètes the discussion of the main results in this paper. Before giving the

proofs, I wish to thank Hugh Montgomery and Pat Goeters for their contributions
mentioned earlier. I also want to thank Jesper Mtfller for his help in the early stages

of this project. In particular, it was he who first proved the existence of clones in

Example 1 by methods différent from those used hère. He also deserves the crédit
for naming thèse things clones.

Proofs

Proof ofExample 1. Let Y Z x Z&apos; as described in the introduction. It is clear
from the construction that Y is in the genus of X where X S3 x K(Z, 3). Thus the

Postnikov approximation Y{n) e ^(X{n)), for each natural number n. According to
Zabrodsky, [17], there is a short exact séquence

êt(X{n)) -^-&gt; Z* /+ 1 &gt; &amp;(X(n)) &gt; *

which is defîned as follows. In the middle term, Z* dénotes the group of units in the

ring of integers modulo t. This number t dépends upon X(&quot;\ The prime divisors of
/ include those primes p, for which there is p -torsion in the homotopy groups of
X(n\ Zabrodsky gives a description of the smallest possible exponents vp(t), in [17].
However, it should be noted that in this séquence, / can be taken to be sufficiently
large in the multiplicative sensé. The first term in the séquence, êt(X{n)), dénotes the

monoid (under composition) of homotopy classes of those self-maps of X(n\ which
are local équivalences at each prime divisor of t. The function d then assigns to each

such map the déterminant of the linear transformation /* on H3(X(n\ Z). Zabrodsky

shows that this image is a subgroup and that the quotient is isomorphic as an
abelian group to $(X(n)). Since X S3 x K(Z, 3) it is easy to flnd, for any integer
d, a self map of X, and of X(n\ which induces a linear transformation with
déterminant d on H3( Z). Thus the first map in Zabrodsky&apos;s séquence is surjective
and so ^{X{n)) *. Consequently, Y{n) ~ X(n) for each natural number «, and thus
F is a clone of X. However, notice that Y has the following simple property: There
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is a basis, say {m, v} c H3(Y, Z) « Z©Z, such that

0&gt;lup^o and ^^ 0, for every peA

while

^ &apos;

wp 0 and ^ ]vp # 0, for every /? e £

Hère xp dénotes the image of an intégral class x m //3(T, Z/p) Also when p 2,

one should replace ^ by SV72 in this property If one takes a différent partition
{A Bf) of the set of ail primes, ît is not difficult to venfy that there is no basis of
//3(F, Z) with the corresponding property in terms of A&apos; and Bf Smce this

property is clearly homotopy invariant, our claim follows that distinct partitions of
the set of ail primes give nse to distinct clones of X

Proof of Example 2 Recall that an i/0-space is one whose rationahzation is an
//-space In particular, HP00 becomes an Eilenberg-MacLane space K(Q, 4) when
rationahzed and so the following resuit from [7] applies to ît

THEOREM 2 1 Let X be a \-connected, H0-space with finite type over 7LP for
some set of primes P The following conditions are équivalent

(1) SNT(X)=*
(11) the usual map Aut X -&gt; Aut X{n\ has a finite cokernel for ail n

(111) the map Aut X Aut H&lt;n(X, ZF) has a finite cokernel for ail integers n

Let B dénote HP^ If we locahze at a set of primes S, ît is easy to see that for n &gt; 4,

because the cohomology ring in question is a polynomial algebra on a single

generator of degree 4, truncated at height [n/4] -h 1 Each graded algebra automor-
phism of ît is completely determined by what ît does in degree 4 The following
resuit then descnbes the image of the composite map,

Aut#(S)-&gt;Z(*Ç)

This resuit is a conséquence of the pioneenng work of Sullivan, [15], and Rector,

tu]
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THEOREM 2.2. Given A g Z(*S), there is a self-équivalence of BiS) that induces

multiplication by A in degree 4 ifand only if X has a square root in the p-adic numbers

for each prime p in S.

Recall from number theory that when p is an odd prime and À is a p -local unit, one
has the Legendre symbol

{ 1 if A is a square mod p
\—\ if k is not a square mod p

and that À is the square of a /?-adic integer if and only if (A//?) 1. For p 2, set

1 if A is a square mod 8

\—\ if A is not a square mod 8.

For a 2-local unit A to be the square of a 2-adic integer it is necessary and sufficient
that (A/2) 1. Thus letting S {p}, it follows that the image of Aut B{p) in

Aut H^n(B, Z(/0) has index at most 2 or 4, depending on whether p is odd or even.

In both cases it follows that SNT (B(p)) * by Theorem 2.1.

Now suppose F e SNT (B{S)), where S is any nonempty set of primes. Localizing
at any prime p e S, it follows that Y{p) is in SNT (B(p)). It was just shown that
SNT(Z?(/7)) has only one élément and so it follows that Yip)~B(P); thus
Y g $(B(S)). In other words, every member of SNT (B(S)) is a clone of B(S). Now,
the set SNT (B(s)) is either the one élément set or else it is uncountably large by
Theorem 2 of [7]. To détermine which alternative holds, one can use Theorems 2.1,

2.2, and the following resuit.

THEOREM 2.3. Let S be a set ofprimes and let °ll dénote the group ofpositive
units in the ring of integers localized at S. Define

G {A g % | (A//&gt;) 1 for every p e S}.

Then G has finite index in °ll if and only if either S is afinite set or its complément
is finite.

Note that $11 has index 2 in Z(*5). Thus, for the purposes of applying Theorem
2.1, it suffices to know whether the index of G in ^U is finite or not.

Let me begin the proof of 2.3 with the easiest case where S is a finite set of n

primes. For each odd prime p in S, the function A \—? (A//?) defines an epimorphism
from % to Z/2. If 2 g S, one can also map °ll onto the units in Z/8. The subgroup
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G is clearly the intersection (over S) of the kernels of the epimorphisms just
considered. It follows that the index of G in % is at most 2n+l in this case.

The next case to consider is where the complément of S consists of a finite set

of primes, say pup2, • - ,pn- Thèse primes freely generate the subgroup %. Within
% there is the subgroup ôU2 {x2\xe %}\ of index 2&quot; in fy. Clearly t2çG and so,
in this case, the index of G in ^ is at most 2\

We are left with the hardest case where both S and its complément are infinité.
The following argument is due to Hugh Montgomery. Let A dénote a doubly
infinité matrix whose rows are indexed by the odd primes p e S and whose columns

are indexed by the odd primes q i S. Each entry in A is an élément of Z/2 and is

given as follows:

0 if

CLAIM. The subgroup G has finite index in $11 if and only if the matrix A has

finite rank.

To verify this, consider the homomorphism, say

n
odd p in S

defined by the product of the Legendre symbols. The #-column in this matrix
records the image of cp(q) in additive notation. It is then easy to see that A has finite
rank

&lt;=&gt; A has only finitely many linearly independent columns

&lt;=&gt; the image of cp is finitely generated

o the kernel of cp has finite index in %.

If 2 e S, there is also a réduction mod 8 map,

p :*-&gt;(Z/8)*.

Since G ker cp n ker p, and ker p has finite index in ^, it follows that G has finite
index in ^ if and only if ker cp does.
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If 2 is not in S, it is then one of the units in %. It is clear that G has finite index
in ty if and only if the image of

n
p in 5

is finitely generated. But for this purpose, it is enough to consider the sub-group of
°il generated by the odd primes not in S. The claim follows.

Assume now that the matrix A has finite rank r. I will show that this leads to
a contradiction. Choose n larger than r. There is evidently a nontrivial linear
relation among the first n rows of A; that is, an équation

where the sum is indexed by the first n odd primes in S and where the mod 2

coefficients cp are not ail zéro. Let P dénote the product of those odd primes in S

for which cp ^ 0. It follows, that for each odd prime q e S,

p\p

Expressed multiplicatively, in terms of the Legendre symbols, this says

Y\ (q/p) l, for each odd prime q e S.
P\p

Using the Jacobi symbol, this is simply (q/P) 1 for ail odd primes q not in S. By
repeating this argument with rows and columns interchanged, we see that there is

an integer Q (squarefree, and composed of a subset of the first n odd primes not in
S) such that (Q/p) — 1 for ail odd primes p in S.

Choose a residue class a (mod P) for which (a/P) — 1. By quadratic reciproc-
ity, as b runs through the odd positive integers, the value (Q/b) has period 4Q.

(This is not necessarily the least period.) Choose a value of b (mod 40 for which

(Q/b)= — 1. Since P and 4Q are relatively prime, it follows by the Chinese

remainder theorem there is a c (mod 4PQ) for which c a (mod P) and c b

(mod 4Q). Since c and 4PQ are relatively prime, it follows by Dirichlet&apos;s theorem
that there is an odd prime / with / c (mod 4PQ). Thus / a (mod P) and / b

(mod 40, which is to say

(///&gt;) -! and
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The first équation implies that / is in S, while the second implies that it is not. This
contradiction complètes the proof of Theorem 2.2.

The last statement in Example 2 is a conséquence of the triviality of SNT (X(S))
when S is a finite set of primes. This, in turn, follows from Theorems 2.1, 2.2, and
2.3.

Proof of Example 3. Let X BG(F) where G is a compact, connected Lie group
and F is a finite set of two or more primes. Because F is finite, it follows from [17],

Proposition 1.5, that $(X{n)) * for each integer n. Thus

Y g &lt;S(X) =&gt;Ye SNT (X),

and consequently every member of the genus of A&quot; is a clone of X. However, the

genus of X is an infinité set when rank (G) &gt; 2, by Theorem 2.2 of [10]. That this
set is countable can be seen by representing ^(X) as a double coset space of the

form A\G/B where G is the «-fold product of Aut(Z0), and n is the number of
primes in F.

Proof of Theorem 4. The proof of part (i) starts with the natural bijection of
pointed sets,

See [1], Chapter IX, for this and background information on lim1. Let Gn

[X, QY{n)]. The finiteness conditions on X and Y imply that each Gn is a finitely
generated nilpotent group. The rational conditions on I or F imply that each

rationalized group, (Gn)0 « [A, Q2B], and thus is abelian. Since the rationalization

map,

has a finite kernel ([5], page 84), it follows that each Gn has a finite commutator
subgroup, denoted G&apos;n. Consider the short exact séquence of towers,

where An is Gn made abelian. Apply the 6-term lim — lim1 séquence to this short
exact séquence of towers and recall that lim1 vanishes on towers of finite groups. It
follows that the quotient map, Gn~&gt;An, induces a bijection

lim1 GM ^lim1^,,.
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Clearly, this bijection is natural as well. Since the tower {An} is abelian, there is a
well known description of its lim1 term as the cokernel of a homomorphism into
HnAn. From this abelian group structure on the lim1 term and the natural
bijections just described, one gets a natural abelian group structure on Ph (X, Y).

Since the groups Gn were finitely generated, so are their abelian quotients An. Let
Tn dénote the torsion subgroup of An. It is then a finite group which, for purposes
of lim1 calculations, can be ignored. Indeed, apply the 6 term lim — lim1 séquence
to the short exact séquence of towers

{Tn}-&gt;{AK}-+{Fn}.

Since lim1 Tn 0 for reasons noted earlier, the lim1 terms for {An} and for the

torsion free quotient {Fn} are isomorphic. Hence, we may (and wiil) assume from
now on that the groups An are torsion free.

It is easy to see that the group lim1 An is divisible; one method amounts to
applying lim1 to the short exact séquence of towers,

{An}-^{An}—&gt;{AJd}.

This could also be proved using Jensen&apos;s formula

lim1 An « Ext (lim Hom (An, Z), Z). 1)

We will hâve other uses for this isomorphism as well and we need to understand it
better. Jensen obtains it in the following way in [6]. He fîrst constructs a short exact

séquence of towers

{An}-U{Bn}-U{C.} (2)

in which Bn It ^ n A, An © Bn _ The structure map Bn-+Bn_{ coïncides with
An -+ An__, -+ Bn_ j on the first factor and it restricts to the identity on the second

factor. Since the map just described is an epimorphism, it follows that lim1 Bn 0

and the 6-term lim —lim1 séquence, applied to (2) reduces to the following

0 &gt; lim An -^-&gt; lim Bn -^-&gt; lim Cn lim1 An 0. (3)

Apply Hom Z) to (2), dénote it by )*, and then take direct limits. The resuit
is a short exact séquence of groups,

lim A * &gt; lim B* &gt; lim C*. (4)
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It is easy to see that \imB%&amp;®An, which is free. Consequently,
Ext (lim #*, Z) 0. Moreover, if D dénotes A, B, or C, one has a natural
isomorphism

Hom (lim £&gt;*, Z) « lim £&gt;„

because the groups /)„ are free abelian of finite rank. Therefore, the Hom-Ext
séquence, applied to (4) reduces to

0 lim An -X lim Bn -^-&gt; lim Cn Ext (lim A*, Z) &gt; 0. (5)

Comparing (3) and (5), the isomorphism in (1) follows. Using this description it is

not difficult to see that the following diagram commutes,

Ext (lim A*,Z) Ext (lim A*, Z{p))

&apos;[¦

&apos;

i-
lim1^ &gt; \iml(An®Zip))

wherein the horizontal maps are induced by the inclusion Z-*Z(/7). The rest of
Theorem 4 is then a conséquence of the following resuit. The proof hère is due to
H. Pat Goeters.

THEOREM 4.3. Let A be a countable, torsion free abelian group. The diagonal
embedding Z-^HpZ{p) induces a map

Ext 04, Z) &gt; fi Ext M. zo»)
P

which is always surjective and which has a nonzero kernel whenever Ext (A,Z) ^0.

Proof. Let P dénote the product UpZip) and consider the short exact séquence

0 &gt; Z -Î-» P C 0.

Hère ô is the diagonal embedding and C is its cokernel. Since ô induces isomor-

phisms under Tor Z/p) and ® Z/p for each prime p, it follows that C is

torsion free and divisible. Therefore the third term in the following portion of the

Hom (A, )-Ext(A, séquence

Ext (A, Z)
-^-&gt; Ext (A, P) &gt; Ext (A, C),
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is zéro and so ô^ is surjective as claimed. Since A is countable and torsion free, it
follows from Stein&apos;s theorem ([2], page 94) that

where F is free and Hom (B, Z) 0. Since Ext (F, Z) Ext (F, P) 0, there is a

commutative diagram

Ext

Ext

(A, Z) -
1=,

(B, Z) -

-&gt;Ext (A,

{B,

P)

*

P)

and thus ker ô 0 iff ker &lt;5&apos; 0. Suppose that ker ô&apos; 0. Then, in the following
portion of the Hom (B, )-Ext(5, séquence,

Hom (B, Z) Hom (B, P) Hom (B, C) Ext (B, Z),

the first group is zéro and the image of the last map is zéro. This forces the map in
the middle to be an isomorphism. However, since C is divisible, so is Hom (B, C).
The isomorphisms

Hom (B, C) « Hom (B, P) % [] Hom (B, Zip))
p

then imply the last group is divisible as well. However, it is easy to see that this can
happen only if B 0.

Proofof Theorem 5. Let aut X dénote the space of self équivalences of X\ hence

Aut X 7io(aut X). A Postnikov décomposition of X then induces a short exact

séquence of groups,

lim1 tu, aut Xin) Aut X &gt; lim Aut Xin)

according to [1], page 254. Thus WI(X) « lim1 nx aut Xin). Since each X(n) has finite

type, the tower {nl aut X(n)} is one of fînitely generated abelian groups. The

properties of its lim1 term are those described in the proof of Theorem 4 and
Theorem 4.3.
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