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Amenable groups and Euler characteristic

Beno Eckmann

0. Introduction

0 1 We consider an infinité amenable group G and a free cocompact G-space Y,

î e, a connected cell-complex on which G acts freely with Y&apos;/G being a finite
cell-complex (G îs necessanly finited generated) The purpose of this paper îs to
show that the Euler characteristic x{YIG) has some spécial properties due to the

amenabihty of G

In particular, if H, Y 0 for 0 &lt; i &lt; m dimension of Y then — \)mx(YjG) îs

^0, and =0 if and only if HmY 0 For example, assume that G admits an
Eilenberg-MacLane complex K(G, 1) with finite m-skeleton X and take for Y the

universai cover X or X, then — \)mx(X)^09 and =0 if and only if Y îs

contractible (whence X a K(G, 1), and the cohomology dimension cd G îs £m) As

a corollary one obtains the fact (cf Cheeger-Gromov [3] by différent methods)
that an amenable group admitting a finite K(G, 1) has Euler characteristic x(G) 0

Another corollary (case m 2) tells that a finitely presented infinité amenable

group G has defect &lt; 1, and 1 if and only if cd G ^ 2

0 2 We first recall that a group G îs amenable if ît admits an mvanant mean for
bounded real (or complex) functions Finite and Abehan groups are amenable, and

the class of ail amenable groups îs closed with respect to subgroups and factor

groups, to group extensions, and to mcreasing unions Thèse opérations apphed to
finite and Abehan groups yield a big class of groups called &quot;elementary amenable&quot;,

ail virtually solvable groups (i e, containing a subgroup of finite index which îs

solvable) are elementary amenable, but the converse îs not true Moreover there are

examples of finitely generated amenable groups which are not &quot;elementary&quot; (cf
Gngorchuk [5])

0 3 A free group on two generators îs easily seen not to be amenable Thus an
amenable group cannot contain a free subgroup of rank 2 As a conséquence, an

infinité amenable group G has one or two ends, îe Hl(G9ZG) 0 or Z For
otherwise, by virtue of Stalhngs&apos; structure theorem, G would be either a non-tnvial
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amalgamated free product or an HNN-extension which is not virtually infinité
cyclic, and thus contain a free subgroup of rank 2.

0.4. Our approach to the discussion of free cocompact G-spaces Y for infinité
amenable G is based on the Felner criterion for amenability of discrète groups; this
is a combinatiorial characterization which can be translated into a &quot;F0lner

séquence&quot; in F, i.e. a séquence of finite subcomplexes with properties described in
Section 1.1 below. Elementary arguments involving limits over that séquence yield
the statements - l)mx(Y/G) î&gt; 0, and =0 if Hm Y 0, mentioned in 0.1. For the

partial converse stating that #(I7G)=0 implies HmY 0 (Y contractible) a

stronger tool seems necessary, namely &lt;f2-cohomol°gy&gt; *n the cellular sensé, of Y
and a lemma of [3]; this lemma also uses the F0lner séquence in Y. The ^2&quot;c°ho-

mology method could also be used to yield the above results which we hâve

preferred to présent through the more elementary approach.

0.5. In a further section we apply the same procédure as before to get information

on x(M) where M is a closed 4-manifold with infinité amenable (finitely
presented) fundamental group. Namely, #(M) is always ^0; this can also be

expressed in terms of the group invariant q(G) considered by Hausmann-Wein-
berger [6].

0.6. Some of the results remain valid for groups G which need not be amenable
but are extensions of infinité amenable groups by groups with finite Betti numbers.
This is shown in Section 5, where also some applications are discussed.

0.7. In an appendix we mention briefly how most of the results of this paper can
be obtained, by an entirely différent approach, in the case where G is elementary
amenable.

It is a pleasure to thank Ralph Strebel and Ross Geoghegan for many helpful
discussions.

1. The Ffliner séquence

1.1. Let G be an infinité amenable group, and Fa free cocompact G-space; i.e.,

y is a connected CJF-complex on which G acts freely and cellularly such that
X Y/G is a finite CW-complex (this implies, of course, that G is finitely generated
since it is a factor group of nx X). We dénote by D a closed cellular fundamental
domain for the opération of G on Y.
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Using the F0lner criterion [4] for amenability of discrète groups one can
construct an increasing séquence YJ9 j 1, 2, 3,..., of finite subcomplexes of Y
with the following properties: (1) Y} consists of N} translates xD of D, xeG.
(2) (J, Yj Y- (3) Let Nj be the number of translates of D which meet the

topological boundary Y; of 77; then

1.2. We now consider the Euler characteristic x of the finite complexes X and
YJ9 i.e. the alternating sum of the numbers of i-cells, i =0, 1,..., m =dim X
dim Y dim D dim Yr Then

where Aj cornes from the topological boundary Y} of Yr Clearly \Aj\ £ NjA where
A is the total number of cells of the boundary of D. Thus

with \Aj\/Nj ^ (Nj/Nj)A which goes to 0 withy-&gt;oo.

PROPOSITION 1.1. With assumptions and notations above one has

Expressing the Euler characteristic by the alternating sum of the Betti numbers

P, dimQ Hl ; Q) we thus obtain

THEOREM 1.2. Let G be an infinité amenable group, Y a free cocompact

G-space and Y} a Felner séquence in Y. Then
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2. Finiteness asswnptions

2.1. With assumptions and notations as in Section 1 we further assume that,
for some i, the Betti number f}t(Y) dimQ Ht(Y; Q) îs finite. Exactness and
excision yield the commutative diagram for homology with Q-coefficients

(Yj interior of Y;). Since ij/ maps the kernel of q&gt; onto the kernel of p we hâve

Pt(Yj) ^ pt(Yj) + Pi(Y)- But ft(Y,) is at most equal to the number of /-cells of 77

which is ^ T^rf, where dt is the number of /-cells of Z&gt;. Thus

and finally

PROPOSITION 2.1. #ft(7) ù&gt;&amp;ite ^e« limy_&gt;oo(l/iV/)iSI(y/)=0.

2.2. If p,(Y) is finite for ail i&lt;m= dim F it follows from Theorem 1.2 that

X(Y/G) - \)m lim

THEOREM 2.2. Let G be an infinité amenable group and Y a free cocompact
G-space with pt(J) finite for ail i&lt;m= dim Y. Then - l)mx(Y/G) :&gt; 0. If more-

over, also fim(Y) is finite then x(Y/G)=0.

COROLLARY 2.3. If G is an infinité amenable group which admits a finite
Eilenberg-MacLane space K(G, l)=X then x(X) x(G) 0.

For in that case we can take above Y X, the universal cover of X.
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2.3. We obtain another corollary by assuming that G admits a K(G, 1) which is

finite in dimensions ^ m (i.e., G is of type FPm, and finitely presented if m ^ 2). We
then take for Y the w-skeleton of the universal cover of K{G9 1). Then X Y/G is

the w-skeleton of K(G, 1). Since 7 fulfills the assumptions of Theorem 2.2 it follows
that (-l)mx(X) is £0:

COROLLARY 2.4. Let G be an infinité amenable group oftype FPm {andfinitely
presented if m &gt; 2), and let X be the finite m-skeleton of a (suitable) K(G, 1). Then

COROLLARY 2.5. Let G be a finitely presented infinité amenable group. Then

the defect of any finite présentation of G is ^ 1.

Indeed, if a! is the number of generators and a2 of defining relations there is a

K(G, 1) with one 0-cell, a, l-cells and a2 2-cells. The case m =2 of Corollary 2.4

tells that 1 — a! + a2 ^ 0, i.e., al — a2 ^ 1. — We remark that this resuit also follows
from the known fact [1] that if at — a2 ^ 2 then G must contain a free subgroup of
rank 2 and thus cannot be amenable.

2.4. It seems convenient to express Corollary 2.4 in terms of group invariants
which we call qm(G); they are the géométrie counterpart of the &quot;partial Euler
characteristics&quot; as considered by Swan and Gruenberg in the context of finite

groups (see, e.g., [9]). Namely, for G as in Corollary 2.4, consider ail K(G, 1) with
finite m-skeleton A&apos;and let qm(G) be the minimum value of - \)mx(X) for ail thèse

K(G9 1); the minimum exists since - l)mx(X) =^~ol - l)l + mft(G) + )»„(*),
and fim(X) is bounded below by pm(G) pm(K(G, 1)).

COROLLARY 2.4&apos;. Let G be an infinité amenable group of type FPm {and

finitely presented if m ^ 2). Then qm{G) is ^0, and of course q,{G) ^ 0 for ail

We note that #o(G) Uqi(G)= n{G) - 1 where n{G) is the minimal number of
generators of G, and q2{G) 1 - d{G) where d{G) is the defect of G (the maximum
of the defects of ail finite présentations of G).

COROLLARY 2.5&apos;. The defect d{G) of a finitely presented infinité amenable

group is &lt;&gt; 1.
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3. £i-cohomology

3.1. In this section we prove a certain converse of the second statement
(vanishing of x(r/G)) in Theorem 2.2. The method of applying directly the Felner
séquence in Fdoes not seem to yield the resuit. However, (reduced) &lt;?2-cohomology

of Y in the cellular sensé and a lemma of Cheeger-Gromov [3] provide the

necessary tools; we note that this lemma too is based on the Folner séquence.
We recall that (reduced) cellular /2-cohomology H1 Y is defined by means of

&lt;f2-cochains/e C&apos;Y with real coefficients (i.e., Zff/(&lt;x)2 &lt; oo where a ranges over ail
/-cells of Y) and that H&apos;Y (kerôt : CT-CI + 1y)/closure of ÔCl~lY. If F is a

G-space the von Neumann dimension dimGH1 Y will be denoted by fît(Y rel. G). In
the case where F is a free cocompact G-space one has dimG CT a, number of
/-cells of Y/G. The standard argument applied to the von Neumann dimensions
shows that the analogue of the classical &quot;Euler-Poincaré formula&quot; holds for the

(fake) Betti numbers fft:

dim Y dim Y

X(Y/G)= £ (-l)&apos;a,= £ (-l)fi(rreLG).
1=0 1=0

3.2. If G is infinité amenable and Y a free cocompact G-space the Cheeger-
Gromov lemma [3] tells that the natural map HlY-&gt;Hl(Y; M) is injective. For
connected Y it is clear that H°Y 0 since Y is infinité. If we further assume
that HtY 0 for 0&lt;/&lt;w=dimF then Hl(Y;U)=0 for thèse i and thus
H1 Y 0,0 £ i &lt; m. It follows that

If also Hm Y 0 then HmY 0, pm(Y rel. G) 0 and thus x(r/G) 0—as we hâve

already shown by a différent, more elementary, method. But conversely x(YjG) 0

implies /Fm(F rel. G) 0 and this in turn ttmY 0. Now for any finite subcomplex
Yj of Y the exact /2-cohomol°gy séquence

shows that RmY3 jfiTm(y,; R) 0, i.e., pm(Yj) 0 which implies Hm Y} 0 since

this group is Z-free. Therefore Hm Y 0:

THEOREM 3.1. I^r G 6e infinité amenable and Y a connected free cocompact
G-space with HtY 0, 0&lt;i&lt;m dimY. Then /(r/G)=0 if and only if
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COROLLARY 3.2. Let G be infinité amenable oftype FPm (finitely présentée if
m £ 2) and let X be thefinite mskeleton of a suitable K(G, 1). If x(X) 0 then X is

itself a K(G, 1) and the cohomology dimension cd G of G is

Indeed %(X) 0 implies HtY 0, 0&lt;i £m, where Y is the m-skeleton of the
universal cover of K(G9 1). This means that Y is contractible, Le., that X is an
Eilenberg-MacLane complex for G.

COROLLARY 3.3. Let G be a finitely presented infinité amenable group. If
d(G) 1 then cd G ^ 2; Le., either G is infinité cyclic or cd G 2.

Note that, in Corollary 3.3, x(G) 1 - &amp;G + p2G 0, ^G 1 + j?2(7 £ 1.

Thus (see Bieri-Strebel [2]) G is an //AW-extension G H*KiP with # finitely
generated. But K must be equal to H since otherwise G would contain a free

subgroup of rank 2. So G H*Hp9 H finitely generated, and the possibilities for H
can be further discussed. If G is not infinité cyclic then H1 (G; ZG) 0 by virtue of
Stallings&apos; structure theorem; thus G is a duality group of dimension 2.

4. Four-manifolds wîth amenable fondamental group

4.1. Given any finitely presented group G there exists a (smooth) closed

orientable 4-manifold M with nxM G. For an infinité amenable group G the

methods of the previous sections give information on #(M).
The universal cover M Y of M is a free cocompact G-space; clearly

Hx Y H4 Y 0. Moreover H3 Y H3(M] ZG) H\M\ ZG) by Poincaré duality,
Hl(G; ZG). But as noted in the Introduction (Section 0.3) G has one or two ends,

i.e., H\G\ ZG) 0 or Z, whence H3 Y 0 or Z. Thus the only Betti number of Y

which is possibly non-finite is P2(Y). The method of Section 2 yields, in terms of a

F0lner séquence Y, in Y,

for i=0, 1,3,4

and thus

which is &gt;0.
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THEOREM 4.1. If M is a closed 4-manifold with infinité amenable fundamental

group G then /(M) is ^0.

REMARKS. (1) If above p2(Y) is finite, e.g., if Y has the homotopy type of a

finite cell-complex, then /(M) 0.

(2) In the context discussed above P3(Y) 1 if and only if G is virtually infinité
cyclic (i.e., G has 2 ends, H\G; TG) H3Y Z). If such groups are excluded
then /f3y 0; if moreover H2Y 0 then Y is contractible, M is a K(G, 1),

and G is a Poincaré duality group of dimension 4 (with /(G) 0). We note
that thus Hl(G,ZG)=0 and H2Y 0 imply H2(G; TG) =H\G; ZG) 0,
#4(G; ZG) Z.

(3) Since JT(M) =2-20, (M)+j?2 (M), Theorem 4.1 tells that j?2(M) ;&gt;

2)8,(M) - 2. We note that, quite generally, px(M) ^(G) and p2(M) &gt; p2(G) since

a K(G, 1) can be obtained from M by adding cells of dimension ^3.

4.2. As a corollary of Theorem 4.1 we obtain information on the group
invariant q(G) for finitely presented groups G considered by Haussman and

Weinberger [6]: q(G) is the smallest value of x(M) for ail closed orientable
4-manifolds M with nx{M) G. Clearly, see Remark (3) above,

On the other hand, as shown in [6],

2(1-

where d(G) is the defect of G.

From Theorem 4.1 we immediately obtain

COROLLARY 4.2. For a finitely presented infinité amenable group G the

invariant q(G) is always ^ 0.

We recall (Corollary 2.5) that for groups G as above the defect d(G) is &lt;&gt; 1; the

upper bound above for q(G) is thus ^0; and =0 if and only if d(G) 1 (whence
cd G £ 2).

EXAMPLES. (1) [cf. 6] q(Zm) ï&gt; 0 for ail m :&gt; 1. Clearly q(Z) 0.

(2) Virtually solvable groups G are amenable. Thus if they are infinité and

finitely presented then q(G) ^ 0. This applies in particular to virtually infinité cyclic

groups.
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4.3. Under suitable further assumptions Theorem 4.1 (or Corollary 4.2) admits
a converse, stating that if x(M)=q(G)=0 then M is a K(G, 1) and G is a

P2)4-group. We will return to this and similar aspects in a separate paper.

5. Group extensions

5.1. Corollary 2.4 concerning the finite m-skeleton of a Â^(G, 1) for a group G

of suitable type can easily be generalized to groups which need not be amenable but
are certain extensions of infinité amenable groups. This generalization has been

suggested by Ross Geoghegan.
We consider a group G of type FPm (and finitely presented if m ^ 2) and assume

that G contains a normal subgroup N with Betti numbers fit (N) finite for 0 ^ i &lt; m
and such that G/N A is infinité amenable. Let X be the finite m-skeleton of a

K(G, 1), and Y the m-skeleton of the cover corresponding to the subgroup N of G;
this cover is a K(N, 1). Then Y is a free cocompact ,4-space with Y/A X, and the

Betti numbers PAY) f}t(N) are finite for 0 ^ / &lt; m. Thus by Theorem 2.2 one has

0.

THEOREM 5.1. Let G be a group of type FPm {andfinitely presented ifm^ 2),
and assume that G is an extension of an infinité amenable group A by a group N with

finite Betti numbers Pt(N), 0 &lt; / &lt; m. If X is the finite m-skeleton of a K(G, 1) then

Or, in terms of the group invariant qm{G) introduced in 2.5:

THEOREM 5.T. For a group extension G as in Theorem 5.1 the invariants

qt (G), 0 &lt; i £ m, are ail &gt; 0.

5.2. The case m 2 présents some spécial interest.

COROLLARY 5.2. If G is finitely presented and contains a normal subgroup N
with PXNfinite and such G/N is infinité amenable then the defect d(G) is £ 1.

For example, assume that d(G) ^ 2 and that G/[G, G] is infinité; then [G, G]

cannot be finitely generated. This particular case can also be proved directly by the

group-theoretic methods as used, e.g., in Bieri-Strebel [2],

REMARKS. 1) It should be emphasized that the group G in this section is, in

gênerai, not amenable. (2) AH the above can be viewed as generalizations of the
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elementary fact that for a free group of rank ^ 2 the commutator group is not
finitely generated.

5.3. There is a similar generalization of Theorem 4.1 in Section 4 concerning a

closed 4-manifold M with fondamental group G. We again assume that G/N Ais
infinité amenable; hère the only assumption on N is that PX(N) be finite. We recall
that p{(N) dimQ HX(N; Q) dimQ (Nab ® Q) where Nab N/[N, N].

The cover Y of M with fondamental group N is a free cocompact ^4-space,

Y/A M. Clearly ^(7) &amp;(#) is finite and p4(Y) 0. As for p3(Y), we consider

H3(Y;Q) H3(M;QA)=Hl(M;QA)=Hl(G;QA) and the first ternis of the
&quot;Five-term exact séquence&quot; for G/N A :

0 &gt; H\A; QA) &gt; H\G\ QA) &gt; Hom^ (Nabi QA)

Now Hl(A;QA)=Hl(A;ZA)0Q is 0 or Q. Moreover HomA(Nab,QA)
Hom^ (Nab (g) Q, QA) 0; indeed, for any fe Hom^ (Nab (g) Q, QA) the image is a

QA -submodule of QA whose dimension over Q is finite, and A being infinité this
is possible for/=0 only. Thus H\G; QA) =0 or Q, and p3(Y) =0 or 1. As in
Section 4.1 the F0lner séquence argument for Y then yields #(M) ^ 0:

THEOREM 5.3. Let M be a closed 4-manifold whose fondamental group G is an

extension of an infinité amenable group by a group N with fix (N) finite. Then x(M)
is ^0.

Or, in terms of the group invariant q(G), see 4.2,

THEOREM 5.3&apos;. For a finitely presented group G as in Theorem 5.3 the invariant

q(G) is £0.

6. Appendix: The &quot;elementary amenable&quot; case

6.1. For elementary amenable (cf. Section 0.2) groups G one can obtain, under
mild restrictions, the main results by an entirely différent approach. It is based on
the classical ring of fractions R (QG\0)~lQG of the group algebra QG. In [8]

Kropholler, Linnell and Moody hâve shown that if G is elementary amenable, does

not contain finite normal subgroups # 1, and has bounded torsion orders, then the

ring of fractions R exists and is a matrix ring M€(D) over a division ring D (in
particular, if G is torsion-free then R D). Finitely generated R -modules hâve a

well-defined rank over R since they are Z&gt;-vector spaces.
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6.2. If G îs such a group and Y a free cocompact G-space one applies to the
cellular Q-chain complex Ç of Y, which is a free QG-complex, the &quot;locahzation

method&quot;; one passes from Ç to the free R-complex R ®QG Ç. The rank of C, over
QG is a,, the number of /-cells of Y&apos;/G, and so is the rank of R®QG C, over R.

Moreover R ®QG Q 0 so that the augmentation Ç-*Q becomes 0 after localiz-

îng. This procédure yields the results of Sections 2, 3 and 4 concerning the Euler
charactenstic of Y/G. The détails, which I had carried through before dealing with
the gênerai amenable case as described in the présent paper, will not be given
hère—not because they are uninteresting, in the contrary: I hâve learnt, in the

meanwhile, of a forthcoming paper of Hillman [7] which gives a very complète and

interesting treatment of elementary amenable groups and of the localization method

in ail their aspects.
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