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Stably spherical classes in the /C-homology of a finite group

K. Knapp

§1. Introduction

Let G be a finite group and BG its classifying space. In this paper we study the
Hurewicz map

hK:nsn{BG)-»Kn{BG).

Hère jfn(X) dénotes the stable homotopy and Kn(X) the (reduced) /C-homology
of X\ the homomorphism hK is induced by the unit map from the sphère spectrum
to the spectrum of complex K-theory. Since Kn{BG) 0 for n even, we assume n

to be odd. Somewhat surprisingly it turns out that for n sufficiently large the

image of hK is more accessible than for example im (h :nsn{BG)-+ Hn(BG)) or
even Hn{BG) itself. This simplicity in high dimensions is, of course, obscured by
the fact that im (hK) can be rather complicated for small n.

The major results of this paper are (i) a computation of the odd primary part
of im (hK:JÏ2n-i(BG)-* K2n-\(BG)) for ail but finitely many n and (ii) a

complète computation of the image for some small groups, e.g. G Z//?, Zip2,
Z/p x Z//?, (Z/p x Zip) xZ/p. To state (i) more precisely fix an odd prime p and
choose / generating {Zip2)*. The Adams opération ty&apos; defines a stable opération
ipln on p-local /C-homology K^X)^ which acts as the identity on stably spherical
classes. Therefore we hâve im (hK) c ker (ipln - 1). For X BG and n large it
turns out that tyln -1 gives the only restriction for an élément to be stably
spherical:

THEOREM 4.4. Let G be a finite group and p an odd prime. Then there exists

no{G,p)eN such that for n &gt; n{)(G&apos;, p) \m{hK:jtsln^{BG){p)^ ^^{BG)^) is

the subgroup ker (t^-i - 1).

There is a similar resuit for p 2 with real /C-theory.
One reason for being interested in hK:7i2n-\{BG)-+ KS(BG) is the following

relation to equivariant topology. First of ail nsn(BG+) can be identified with the

equivariant bordism group £2£(G) of free, equivariantly framed G-manifolds. By
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Bott periodicity we hâve K2n^x(BG) KX(BG). For any finite group G there
exists an embedding

where R(G) is the complex représentation ring of G, R(G) i?(G)/(reg) and reg
is the regular représentation of G (see §2). With respect to Pontrjagin duality ty is

dual to the well known map

a:R(G)-+K°(BG+).

The Hurewicz map hK composed with xp has the following interprétation. Given x
in 7iS2n-i(BG+), represent x by a free, equivariantly framed G-manifold M. Since

jïs2n-i(BG+) is finite, some multiple of M, say m • M, bounds a free G-manifold
W

For W, the G-signature sign (W, G) e R(G) is defined. The value of a(My G):
(1/m) sign (W, G) e R(G) &lt;8&gt; Q dépends only on M and is a bordism invariant in
R(G)&lt;8&gt; (Q/Z). Then

(2)&quot;//() i(WG)

in ^(G) ® Q/Z. Thus a détermination of im (hK) shows which values the
invariant a(M, G) eR(G) &lt;8&gt; Q/Z can take on equivariantly framed free G-
manifolds.

The paper is organized as follows. In §2 we collect the necessary facts about

K^(BG) and its relation to R(G) used in the rest of the paper. One main point is

an investigation of the skeletal filtration of K^BG).
In §3 we study the invariant ker (rp2n-\ - !)• The fibre of the Adams

opération \pln — 1 defines a p-local homology theory Adrt (X) and for X BG we
hâve ker(t//^_1-l) Ad2n_,(!3G). We show that for n^O Ad2/Î_1 (BG) is a

finite group annihilated by e • n where e is the exponent of G. Because of the
close relation to the représentation ring, the structure of Ad2n_i (BG) can be

determined more easily than for example that of H*(BG). For example, if G is

the symmetric group Sm then Ad2n-i (BIm) is isomorphic to ©Z/p1+Vp(n) for
n s 0(p - 1) and 0 otherwise (n =£ 0). Hère vp(n) dénotes the exponent of p in the
prime décomposition of n. At least for a p -group there is an explicit description



416 K KNAPP

of Ad^-i (BG) in terms of the conjugacy classes of G; see (3.16). A universal
coefficient formula for Ad-theory relating Ad-homology to Ad-cohomology gives,
in the spécial case X — BG and n#0, an isomorphism Ad1+2n(BG)
Ad!_2rt (BG), thus reducing the computation of Ad* (BG) to that of Ad* (BG).

In §4 we use a solution of the Adams conjecture to construct the éléments

necessary to generate im(hk) and prove theorem (4.4). The method used to
construct éléments in im (hK) relies on the fact that the skeletal filtration of the
éléments in question is small enough. This only works in dimensions larger than
some no(G) e N and seems to be a spécial property of the classifying space of a

finite group. For G abelian we give an explicit estimate for the constant no(G). In
the case of some small groups the bound no(G) turns out to be small enough for
the computation of im (hK) to be completed by other methods.

In §5 we deal with the case of a cyclic group C in the dimension range
n^no(C). We show how im(hK) is related to the e-invariant on Jt^n-^BS1)^
(this study was already begun in [10]) and give examples where im (hK) is acutally
much smaller than ker (t^L-i ~ !)• Results on K2n-\(BSl) (see e.g. [13]) may
then be used to show that im(hK) can be rather complicated in the range
n &lt; no(G) - even for cyclic groups. We close with the example G Z/p2.

The case G Z/p, reproved in §5, is already known. For p 2 im (hK) was

computed in [18], for p =£ 2 and n 0(p - 1) in [20] and for the other values of n
in [10].

We shall use the convention that ail (co-)homology théories which occur will
be taken as reduced théories. Throughout the paper we shall work at an odd

prime p, but with some additional work many of the results carry over for p 2.

The main resuit (4.4) is also true at p 2 and this is contained in remark (4.14).
I would like to thank M. Crabb, M. Hopkins and E. Ossa for valuable help

and stimulating discussions. I also owe thanks to the Mathematics Department of
the University of Warwick, where part of this work was carried out.

§2. K*(BG) and the représentation ring of G

Let EG dénote a free contractible G-space with EG/G BG and pr:£G+-»
5° the canonical projection. The map a:R(G)-* K°(BG*) in Atiyah&apos;s theorem
[2] may be viewed as the map induced by pr

R(G) - K°G(S°)-^ K°G(EG+) K°(BG+)

Hère K&amp; is reduced G-equivariant £-theory and we hâve used K%(X+)^
K°(X/G+) for a free G-space X. Dual to this, with K^ G-equivariant
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X-homology, we hâve a map

V&gt;c : K0(BG+; Q/Z) K$(EG+; Q/Z) -^-» AT?(5°; Q/Z) /?(G) ® Q/Z. (2.1)

To deduce the properties of 1/;G we relate tyG to ûr via Pontrjagin duality. The

£-theory Kronecker pairing

)K:K\X)®Kt(X;Q/2)-*Q/Z

defines a linking form

L.KXX; Q/Z)^Hom (K&apos;(X); Q/Z). (2.2)

Since Q/Z is injective as a Z-module, Hom(K&apos;(X); Q/Z) is a (non-additive)
homology theory in Z and L a natural transformation of homology théories.

Clearly L is an isomorphism on coefficients, hence L is an isomorphism for finite
CW-complexes. Let BG{m) dénote the m-skeleton for a CW-structure on BG,
then L induces an isomorphism

L : Kt(BG; Q/Z) lim Hom (K&apos;(BGim)); Q/Z) : Homc (Kl(BG); Q/Z).
m

The usual Kronecker pairing

defined by (À, ju)/?: dimHomG (À, ju) (e.g. see [19], §7) is nonsingular and

induces an isomorphism

LR:R(G)®Q/Z-^&gt; Hom (R(G); Q/Z).

The map K0(BG+; Q/Z)-*/?(G) ® Q/Z defined by the composition

K0(BG+; Q/Z) -^
Hom (K°(BG+); Q/Z)-^ Hom (/?(G); Q/Z) ^- /?(G) ® Q/Z (2.3)

is easily seen to be the same as t//o in (2.1). For simplicity we shall use (2.3) as

définition for \pG and take (2.1) as motivation.
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PROPOSITION 2.4.

(i) tyG is injective.
(ii) For a p-group G, ipG : K{)(BG+; Q/Zip))--&gt; R(G) QQ/Z^ is an

isomorphism.
(iii) tyG is natural in G.

Proof. Observe first that yo factorizes through Homf (/C°(BG+); Q/Z).
Since a:R(G)-+ K{\BG+) is continuous, R(G) having the /-adic and

K°(BG+) the skeletal topology, ([2], §7) we obtain a map

Homc(*:0(£G+);Q/Z)-^Hom( (R(G);Q/Z) which is easily seen to be injective.

Therefore the composition

+; Q/Z)-^Hom( (K0(#G+);Q/Z)-^&gt; Hom,

c Hom (/?(G); Q/Z) ^- /?(G) ® Q/Z

which is simply t/&gt;G, is injective.
For a p-group G, /-adic completion is the same as /?-adic completion. This

implies that the map Homc (K&apos;XBG^Q/Z^)-* HomiRiG^Q/Z^) is an

isomorphism, hence \}&gt;G must be an isomorphism after localizing at (p).
The map x^G is characterised by the équation (y, iPg(*))r {&amp;{y)&gt; x)k&gt;

y eR(G). The naturality properties of xpG then follow simply from corresponding
properties of a. Let/://-»G be a homomorphism of groups, f*:R(G)~*R(H)
the induced map on représentation rings and ind%: R(H)-* R(G) the map
generalizing the usual induction map for H-+G an inclusion (see e.g. [19] 7.1.).
Then

&lt;*(f*(y)),x)K &lt;B/*(^)), x)

implies
Similarly, if/is an inclusion with tranfer t:BG*-^&gt; BH+ we find i|;h(/(jc))

Remark 2.5. Let i:* fl{l}-»2?G dénote the canonical map. Then

^Q/Z) coker(indfu:/î({l})®Q/Z-&gt;iî(G)®Q/Z) which is simply
R(G)® Q/Z, where R(G) «(G)/(reg) and reg indfI} (1). We obtain the

embedding tpiK^BG)^ K()(BG;Q/Z)-^R(G)® Q/Z mentioned in the
introduction. The relation of xp to the G-signature is then proved in [11] (see also

[24]), where also a différent proof of (2.4) may be found).
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Adams opérations ipl on R(G) may be defined by the character formula

Xv&lt;p)(g) Xp(g&apos;) (2.6)

where g e G, peR(G) and %p is the character of p. Define for i
&lt;/&gt;2«(p) : &lt;&quot;&gt;&apos; on fl(G)® Q/Z^. Then

LEMMA 2.7. For i ^ 0(p), (|G|, i) 1, the Adams opération ip&apos;2n commutes
with t//G : K0(BG+; Q/Z^)-* R(G)

Proof. Let ct//o be the opération which is adjoint to xp&apos;o with respect to
)k- (c*I&gt;o(x)&gt; y)ic (*&gt; VôOO)*- It is easy to see that c^l0= yl0/l. The formula

(fo(p), Vo(v))r &lt;P, f*&gt;* in *(G) ([19], 12.4) implies that K&apos; is adjoint to ^o
with respect to )R, (i, \G\) 1. The well known property of Adams opérations
ao \pl — xpl o oc implies the resuit.

If G is not ap-group, then a\R{G)-+ K°(BG+) has a non-trivial kernel. Dual
to this tpG has a non-trivial cokernel. To describe im (ipG) we first introduce the
foliowing notation.

For a finite group G let Gp be a p-Sylow subgroup of G and res:R(G)-^&gt;

R(GP), ind:R(GP)-+ R(G) the restriction and induction map associated with
Gp cz G. Recall that every x e G may be written in a unique way x xp - x&apos;p where

xp has order a power of p (=p-element) and the order of x&apos;p is prime to p and xp
and x&apos;p commute. Choose k e N such that the k-th power map g-*gk on G acts as
the identity on p-elements and by gk e for g with order prime to p. Using the
décomposition x=xp-xp above one easily sees that tyk :R(G)—&gt;R(G) is

idempotent and res induces an isomorphism t/;*(/?(G))—Mm(res).
Let t : K0(BG+; Q/Z^)-* Ki}(BGp; Q/Z{p)) dénote the transfer associated to

Gp a G. Since k is prime to p, t commutes with ipk. From the fact that \pk 1 on
R(GP) and the injectivity of t it follows that im (ipG : K0(BG+; Q/Z^)-» R{G) ®
Q/Z^) is contained in \l&gt;k(R(G))®Q/Zip). Let NG(GP) be the normalizer of G;,
in G and define W : NG(GP)/GP. Then W acts on /?(GP) and K^BG) in the
canonical way. Dénote by Kl(G) the C-vector space of C-valued class functions
on G and by Klp(G) the subspace of Kl(G) consisting of class-functions vanishing
outside the set of p-elements.

PROPOSITION 2.8. With the notation as above we hâve

K0(BG+; Q/Z(p)) a
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The last isomorphism describes t(K0(BG+;Q/ZM)) as a direct summand in

;; Q/Z(p)) a R(GP)

Proof. Consider the commutative diagram

R(G) ® Zip1 -2^ im(res) ~^U R(G) ® Z/p1

In
&apos;

R(Gp)®Z/p&apos;®Z/p R(Gp)®Z/p 77ker(res) ker(res)

Then ind (res (x)) * -ind(l). Now ind(l) |G|/|Gp| + z with zeI(G) and

i. In (/?(G)/ker(res))®Z/// we hâve zw 0 for m large enough. To

prove this claim, observe that it is enough to show res (zm) res (z)m 0 in

R(Gp)&lt;8&gt;Z/pl. But res(z)m e/(Gp)m and the éléments in I(Gp)m are divisible by

p\ m large enough, because for a p-group /-adic and p-adic topology coincide.
Therefore multiplication by ind(l) on (/?(G)/ker(res))®Zip1 is an isomorph-
ism. Since this is true for every /, it is true in the limit. The commutativity of the

following diagram then implies the proposition.

—*&gt; Kl}(BG+&apos;,Q/Zip))

i

Observe that the discussion above also shows that im(res)(p)c/?(Gp)(p) is a

direct summand (that im (res) cR(Gp) is the inclusion of a direct summand was
first proved in [15] by applying Brauer&apos;s theorem).

In some cases one can describe im (ipa) as the subgroup of éléments invariant
underW ~NG(GP)/GP.

PROPOSITION 2.9. Let Gp be a p-Sytow subgroup ofthefinite group G and
assume that the following condition is satisfied: (c) lfx,ye Gp are conjugate in G,
there exists g e NG(GP) with gxg&quot;1 « y. Then

(a) imires)^R(GP)?P)
(b) *
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(c) is satisfied, for example, if Gp is a normal subgroup of G or if Gp is abelian
(see (2.5) IV in [7]).

Proof. (a) We trivially hâve im (res) c R(GP)W. As observed in the proof of
(2.8) im (res)(p) is a direct summand in R(Gp)^p)t hence also in R{Gp)™py To see

im(res)(p) -R{Gp)^p) it is therefore enough to show that im(res) and R(GP)W
hâve the same rank.

We identify R(G) &lt;g&gt; C with Kl(G). The map res restricted to Klp(G) c Kl(G)
is still onto im (res &lt;8&gt; lc) &lt;= R(GP) ® C. It is injective since every conjugacy class

of a p-élément in G contains at least one élément of Gp. We now show that the

composition

Klp(G) im (res &lt;8&gt; lc) im (res) ®Cc R(GP)?P) ® C

is surjective. This then proves the assertion about the ranks of im (res) and

R(GP)W completing the proof of (a).
Let / 6 Kl(Gp)w be a class function on Gp invariant under W. Define

F:G-»C by F(jc) 0 if x is not a p-element and by F(x):=f(gxg~l) for a

p-élément x where g e G is such that gxg&apos;1 e Gp. To see that F is well defined,
assume that heG also satisfies hxh~l e Gp. Since hxh~l e Gp and gxg~l e Gp are
conjugate in G, they are conjugate in NG(GP) by (c). Therefore/ takes the same
value on hxh~l and gxg~ly hence F is well defined. In the same way it foliows that
F is a class function, which clearly restricts to /.

Part (b) is an immédiate conséquence of (a) by observing that ij&gt;Gp carries the
action of W on KO(BGP; Q/Z(p)) to the action of W on R(GP) &lt;8&gt; Q/Zipy

For réduction to cyclic subgroups we use

LEMMA 2.10. In K0(BG+; Q/Z) we hâve

AczG

where A runs through ail cyclic subgroups of G, iA:A &lt;-*G is the inclusion with

transfer tA:K0(BG+\ Q/Z)-»K0(BA+; Q/Z) and dAeR(A) is the (virtual)
représentation whose character takes the value \A\ on group generators and is zéro
otherwise.

Proof. We deduce this from the corresponding formula in R(G). In R(G) we
hâve \G\-y i:AcGind$(OA®TesA(y)) (e.g. see [19]). Applying R(G)
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K°(BG+) to this gives

|G|-y= 2 tA(a(OA)UBi*A(y))
AczG

for ail y e im (a),
Since tpG:K()(BG+;Q/Z)-»R(G)®Q/Z is injective, an élément * e

K0(BG+; Q/Z) is determined by the values of (y, Jt)* for ail y e im (or). Hence

&lt;4c:G

is true if (y, x)K is equal to

for ail y € im (&lt;*). But this follows from the formula above.

A main ingrédient for the proof of theorem (4.4) is some knowledge of the
skeletal filtration on KX(BG). We first handle the case G cyclic and then reduce
the gênerai case to this using (2.10).

PROPOSITION 2.11. Let p be a prime, C Z/pa and xeKx(BC) be an
élément with ph • x 0. Then the skeletal filtration of x is less than 2(p —

l)p&apos;-\a+b).

Proof Well known properties of lens spaces translate by duality into
(a) i, : K{)(BCi2m); Q/Z(|l))-» Ki}(BC; Q/Z(p)) is injective and

(b) i*(K0(BCi2m); Q/Z(p)) {z e K()(BC; Q/Z(/,,) | {(H - 1)»; z)K 0 for s &gt;

m} (e.g. see [9]). Hère //-» BC is the Hopf line bundle, H a(k).
Now K{iBC&apos;¥&apos;,QIZ{p)) R{C)&lt;&amp;QIZ{py is generated by éléments jc of the form
x XlpTlpky i zf* 0(p), r &lt; a and every élément jc with phx 0 can be written as an

intégral linear combination of such éléments with k^b. Let x kipr/ph, then
(HJ, x)K \lpb if j^ipr modp&quot; and zéro otherwise. Hence

/a-0
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If f(t) E aktk is a power séries in t and uf v integers with 0 &lt; u &lt; v then

aju + &lt;WM+ v + aw+2ur&quot;+2u + ± § ûT*7(û&gt;*0

where œ^e2*&apos;&apos;&quot;. We apply this with v=pa, u ipr, i^O(p), r&lt;a and

f(t) (i _ t)s. The coefficient of ^r+/p° in f(t) is

hence with t 1

But (œk - lfa !(p~1} is divisible by p. This implies that for s &gt;pa~\p - \){b 4- a)
the Kronecker products {(H - \)\ Xip&apos;lpb)K vanish.

COROLLARY 2.12. Let G be a finite group with exportent e=pa-m,
(m,p) l and order \G\=pc-mf, (m&apos;,p) l. If x e K0(BG; Q/Z(p)) is an
élément with pb • x - 0 then the skeletal filtration of x is less than 2(p - l)pa~l(b +
c + 1).

Proof Consider the élément 6A defined in (2.10). Let A Z/pr, B Z/p and

Py:A-+B the réduction map. Then, as is easy to see, we hâve dA=pr* (p -
TtgA) • pr~l which implies that 6A is divisible by pr~l. Using this and (2.10) we can
estimate the skeletal filtration of a(6A) n ^(jc/|G|) by (2.11).

Remark 2.13. A slightly better estimate for the skeletal filtration of an
élément of order pb may be obtained as follows:

If pb x o in KX(BC), C Zlp\ then x e im (AT,(5C(2m))~&gt; /
for m =&gt; (p - l)^0&quot;1^ + 1). (2.14)

Since we shall use this only in the examples we give only the main steps for the

argument and refer to [11] for more détails. The first step is to show that (1 - A1)

for Z^O(p) is invertible in R(C)®Z[l/p] where R(C) R(C)/(rcgc). Hence,
for af^0(p), l/nr=i(l~Afl&apos;) is a well defined élément in Kx(BC)^R(C)®
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Q/Z(p). It is not hard to show that the skeletal filtration of such an élément is at

most 2m. The formula

p—ï

for x e I(A) and A Z/// c C is proved by comparing characters on both sides.

Since 0A is divisible by pr~\ this équation shows that the skeletal filtration of

for

C does not exceed 2(p - l)//&quot;1^ + b -r + 1). By (2.10) we hâve

jc/pa TéA BiA*(xA) with ^4 running through the cyclic subgroups of C. Hence

x € im (/C0(BC(2m); Q/Z(/?))-&gt; K0(BC; Q/Z(p)) for m &gt; max {(p - l)pr~\a + 6 -
| (p- ÎK&quot;1^ +1).

If we use this bound in the proof for (2.12) we obtain 2(p - \)pa~l{b + c -
a -f 1) as an upper bound for the skeletal filtration of an élément of order pb in
K0(BG;Q/Zip)).

The last topic we hâve to discuss for the proof of theorem (4.4) is the kernel of

the inclusion map *1(2ïG(m))-^ K{(BG). We need

PROPOSITION 2.15. Let G be a finite group and meN. Then there exists

r r(m, G)eN such that K0(BG{m+r);Q/I)-^ KO(BG;Q/1) is injective on

im (K0(BGim); Q/Z)^ K0(BG{m+r); Q/Z)).

This is essentially a statement about the Atiyah-Hirzebruch spectral séquence
for the #-theory of BG. It is true for every CW-complex X with Hl(X\ Z) finite
for ail i. In the spécial case X BG much more is true, namely there exists

r(G)eN working for ail m. This means simply that the Atiyah-Hirzebruch
spectral séquence for the X-groups of BG collapses after finitely many steps,

despite BG being an infinité complex. For G F£, an elementary abelian group,
this is stated in [2], there is only one non-zero differential d2p~\. I learned the fact
and the proof that the Atiyah-Hirzebruch spectral séquence for K°(BG) satisfies

dr 0 for r^rQ(G) from M. Hopkins. Later on I found out, that this resuit is

already known [23]. We shall work with the weaker version (2.15).
To compute differentials in the Atiyah-Hirzebruch spectral séquence seems to

be simpler in cohomology, so we turn to the dual statements. Using (2.2) we
deduce (2.15) from the following two propositions.
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PROPOSITION 2.16. Let X be an CW-complex with H\X\ Z) finite for ail i
and meN. Then there exists r0 ro(X, m) e M such that in the Atiyah-Hirzebruch
spectral séquence for Kn(X) we hâve dPq 0 for r^r0 and ail p&lt;m.

Proof This follows trivially from the fact that the £2-term consists of finite

groups.

PROPOSITION 2.17. Suppose that in the Atiyah-Hirzebruch spectral

séquence for Kn(X) we hâve dpn~p 0 for r&gt;rQ and ail p&lt;m. Then every
x e Kn(X{m)) which lifts to KH(X&lt;m+*-l)) lifts to Kn(X).

Proof We use the exact couple

K*(XU)fX{s~l))

Bs;q &lt;5(ker f&quot;1 : Ks+q-\X{s-l))--&gt; Ks+&lt;f~l(Xis-r)))

Zsr&apos;q =/&quot;1(im ir~l : Ks

Consider

K&quot;(Xis-X)) &lt; Kn(X{s)) ^^ K&quot;(X{m)) ^- Kn(X{m+r)) &lt;-L-

We first show: If x e Kn(X(m)) has a lift to an élément x&apos; e Kn{&amp;m+r)), r &gt; r0 - 1,

then it has a lift to Kn(Xim+r+l)).
Let s be the exact filtration of x, i.e. im~s(x) # 0 in K*(XW) but im-s+\x) 0

in ^&quot;(Ar(i-1)). Then im-*(*)=/(y) for some y e K&quot;^, Xis~l)). If x&apos; e

définition z e B^îjvV&quot;&quot;&apos;&apos;- Now im (&lt;4) 5*+1/5* and since dpk&apos;&quot;~q 0 for
/c&gt;r0, p&lt;m and m + r-s + 2s:r + l we hâve z e5™++,r+1 &quot;&quot;m~r. Hence there
exists ^&quot;e/C&quot;(X(m+r)) with ô(x&quot;) z and ^&quot;eker(r). Therefore x&apos;~x&quot;e

ker (ô) im (i). But ir(x&apos; - x&quot;) ir(x&apos;) x, hence x e im (ir+1). We conclude:
x € lim K&quot;(Xim+n)) and there exists an élément x e K&quot;(X) restricting to x.
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§3. Upper bounds on im (hK)

Restrictions for éléments in K*(X) to be stably spherical are given by Adams

opérations. The simplest way to handle thèse seems to be the following. Fix an
odd prime p and choose / generating (Z//?2)*. Recall that there exists a

generalized homology theory Ad* fitting into the long exact séquence

-&gt; Ad, {X)-2-+K,(X){p)^K,{X)(pt-è-+Ad,-l(X)-+ (3.1)

Hère xplt dénotes the stable /C-theory opération induced by the Adams opération
ipl. We hâve a similar séquence in cohomology.

The /C-theory Hurewicz map hK factors through Ad-theory

hK : K(X)iP)^ Adw (X) -£* Kn(X)

and since tpln — l vanishes on im(hK), ker (ipln — 1) D(Ad,7 (X)) is an upper
bound for im (hK). In the case X BG, G a finite group, we hâve K{)(BG) 0,

so ker (vLi-i - 1) Ad2n_i(BG) and the Ad-group itself gives the upper bound.
Now stable homotopy is a connected homology theory, there fore the

Ad-theory Hurewicz map will factor through the connected version A*(X) of
Ad-theory. For X a CW-complex, connected Ad-theory may be defined by

An(X): im{AdH{Xn)-+Adn(Xn+x)). (3.2)

Let d:An(X)—&gt; Adrt (X) dénote the canonical map. In gênerai d is neither
injective nor surjective and ^4-theory gives an even better bound for im (hK). But
usually A*(X) is much harder to calculate than Ad* (X). The following resuit is

the only one of this chapter which is needed in the proof of theorem (4.4).

PROPOSITION 3.3. Let G be a finite group, e the exportent of G and n^O.
Then (i) AA2n (BG) 0, (ii) Ad2/Î_, (BG) is finite and (iii) n-e- Ad2w_, (BG)
0.

Proof. First of ail we may reduce to a /?-group by the following standard
transfer argument. Let t be the transfer associated with the inclusion i : Gp—» G of
a p-Sylow subgroup of G. Since Bi*0* induces multiplication with |G|/|GP| in
ordinary homology, it follows that Bi*°/ is an isomorphism for any p-local
homology theory. Hence Ad* (BG) is a direct summand in Ad* (BGP) and

Bi* : Ad* (BGp)-&gt; Ad* (BG) is onto.
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Let now G be a p-group, e the exponent of G and vp(e) the power of p in
the prime factorization of e. Observe next that the Bockstein map
j3: Ad2n (BG; Q/Z)-&gt; Ad2n_, (BG) is bijective and that

Ad2rt(BG;Q/Z) ker(i/4-l) on K2n(BG; Q/Z(p)).

This is the same as ker (rnipl0 - 1) ker (Vo - O on K0(BG; Q/Z(p)) J?(G) &lt;8&gt;

Q/Z(/?). From (2.6) we see that ^o is periodic in s with period e. Since / générâtes
the p-adic units, it is easy to see that for s ^ 0(p) if&gt;s0 opérâtes on ker (iplQ - /&quot;) c
K0(BG; Q/Z(p)) as multiplication by sn. Let now v (p - 1) • e/p, then sv^l
mode and tf# ^ id on K0(BG; Q/Z(p)). Therefore

(sv n - 1)- ker (v&gt;&amp; -T) 0.

But min {v^(5&apos;IU - 1) | 5 ^ 0(p)} vp(n) + vp(t;) + 1 v^e • n). This proves (iii).
Since K0(BG; Q/Z(p)) is a finite sum of copies of Q/Z(/?) (ii) follows from (iii).
The vanishing of Ad2w (BG) Ad2rt_, (BG; Q/Z) is then implied by (ii) using
(3.1).

We first deal with Ad*(Z?G) for a /7-group G. Let G be a p-group with
exponent e and p an irreducible représentation of G. For / with (/, |G|) 1, \pl(p)
is again irreducible (e.g. [19], 9.4). Hence tpl acts as a permutation on the set

Irr (G) of irreducible représentations of G. Dénote by Vt {p\&apos;\ p2&apos;\ P^},
i 0, Wy the orbits of this action. By renumbering we may assume

V/p^) p(ik+i), k&lt;sn and tylp^ p\l). We also assume p\0)==l, the trivial
représentation. For an orbit V {p,, p,} of the action of tpl on Irr (G)
definè

ïîr-r-2K(Pi) ï^-r2&apos;-&quot;;-P,+i (3-4)
/ — 1 ;=() / - 1 y=()

as an élément in R(G) ® Q/Z(p) s K2n(BG; Q/Z{p)).

LEMMA 3.5. xn(V) e ker (t/;2n - 1)

Proof. Because of t//2rt /~nVo we hâve ^2m° vL Vz^1- Therefore

(VL. &quot; l)(*n(V)) (/-JWPi - Pt)/(r &quot; 1) - 0 mod Z(p).

Note that the denominator r - 1 in Jcn(V) is maximal.
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PROPOSITION 3.6. Let G be a p-group. Dénote by Vt {p\l\ p&lt;;}}

i 1,.. w the orbits of the action of ty1 on the set of nontrivial irreducible

représentations of G. Then for n

(BG) a © (Z(p)/(r •• - 1)) • xn(Vt)

Proof Let x TtalJpf} be an élément in ker(t/;^-1) Ad2n (BG;
Then tp^x - x E,f/ («,/vLi(P/(l)) - «i/P}0) 0 gives the congruences

altjrn^altJ+l for ;&lt;s, and atj~n~altl.

Thèse imply (l~sn — l)alf/ 0 mod Z(p) showing that x can be written as an

intégral linear combination of the éléments xn{Vt).
Next we give two reformulations of (3.6) and prove that Ad2n_i (BG) has w

cyclic summands (not depending onn).
The numbers w and s, are related to the rational représentation ring of G. To

see this, recall the following facts from représentation theory (e.g. see [19]). Let §

be a primitive e-th root of unity. Then ail représentations of G may be realized

over Q(§). The Galois group F Gai (Q(§) : Q) opérâtes in the usual way on
R(G) via its opération on the character values. If o e F satisfies a(£) §&apos; then

o(p) ty*(p)f hence Galois action and action by Adams opération are the same.

If G is a p-group with p # 2 then F is cyclic and we may take ipl as generator.
Dénote by R(G)r the éléments of R(G) invariant under F. Then R(G)r

consists of représentations with rational characters and the rational représentation
ring Rq(G) is contained in R(G)r as a subgroup of maximal rank. For a p-group,
p¥=2, they are actually the same since ail Schur indices are 1 ([8], (10.14)). If
V ~ {pi,..., ps} is an orbit of the action of (ipl) F, where G is now a

p-group, then p px + p2 4- • • • + ps is an irreducible rational représentation.
Thus 5 (p, p)R and w is the number of nontrivial irreducible rational
représentations. Hence

PROPOSITION 3.7. Let G be a p-group. Then the number of orbits of the

action of ipl on Irr (G) is equal to the rank of RQ(G) and the number s of éléments

in an orbit V {pu ps) is s ~ (p, p)R where p px + p2 + • • ps is the

rational représentation corresponding to V.

There is still another description of the orbit set of F. The Galois group F acts
also on the set of conjugacy classes of G. If g € G and o e F satisfies o(%) §&apos;,
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then o(g) g&apos; is well defined. This induces an action of F on the set

C(G) {cïf cm) of conjugacy classes of G. Let wt {c[&apos;\ c^}, i
0,. r, the orbits of this action, c;(l) e C(G), with the convention c[0) {1}. For
a /?-group G we take t/*&apos; as generator of F. We use this action for our final
description of Ad2n_i (G).

THEOREM 3.8. Let G be a p-group with exportent e. Dénote by wt

{c[°,. cj^}, i 0, 1, r, the orbits of the action oj the cyclic group (ty1) on
conjugacy classes c)l) of G induced by the l-th power map, ipl(g) g&apos; for g e c;(l).

Let cf}={l} be the conjugacy class of 1. Theny for n#=0, Ad2rt_i(fiG) has

exactly r cyclic summands of order pMn^Mh^ + \y / 1,.. r. In particular
ht s 0(p - 1) for i &gt; 0, vp(ht) &lt; vp(e) and ht=slf w r in (3.6).

Proof Let /;(l) be the class function on G which is 1 on c;(/) and zéro
otherwise. Clearly the F set Ar1:= {/;(l)} is Aequivariantly isomorphic to the Tset
C(G). The Fset Xx defines a complex permutation représentation W1 and the F
set X2 consisting of the irreducible représentations of G defines another
permutation représentation W2. Clearly W1 W2 R(G) ® C as complex vector
spaces, but (2.6) shows that they are also the same as T-modules. To show that
the two Fsets X\ and X2 are isomorphic Tsets, observe that it is enough to show
that Xx and X2 define the same élément in the Burnside ring Q(F) of F. The map
which associâtes to a T set its permutation représentation defines a canonical map
Q(F)-+R(F). As long as Fis cyclic this map is injective (e.g. [19]). Hence Xx is

isomprhic to X2 as a F set, in particular r w and hl st.

It remains to show /t, 0(p — 1) for i&gt;0. For then vp(lnSl- 1) vp(n) +
vp(st) + 1 and the order of xn(wt) is as stated. Let w {cïf cs} be an orbit of
the (ipl)-action on C(G) not containing 1, and arranged in such a way that
tplct c,+i, i &lt;s, and \jjlc5 c^ If cx {h~lgh \ h e G} then ct {h~xgli &quot;h

\ h e

G}. For some hoeG we thus hâve g/s hô1gh0. Induction shows that h~lgh= ga

implies h~kghk =gfl\ Let pb be the order of h0 and /?c the order of g, then
g(isy =h~pbghpb g ancj therefore lspb ^ lmodpc. By the choice of / this is only
possible if s s 0(p - 1).

COROLLARY 3.9. Let G be an abelian p-group and I the family of cyclic
subgroups of G différent from {!}. Then

Ael

Proof Study the orbit set of (xpl) on C(G) G.
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EXAMPLE 3.10. (a) G Zlp\ R(Z/pa) Z[k]/(kp&apos; 1). The orbits of
are vt {kpl&gt; \j#0(p)}, i 0,. a - 1, with st (p - \)pa~l-\ We hâve

S &quot;* W) /pa-&apos;^Vp(n)
&apos;I \ 7 1

and

Ad2n_, {BZIp&quot;) 0 (Z/p—+v&apos;&lt;&quot;&gt;) • *„(*,,).
1=0

(b)G Z/pxZ/p, R(G) R(Z/p)®R(Z/p). The orbits are u, {À&apos;&lt;8&gt;

A^11 ; 1, p - 1}, i 0, p - 1 and vp {1 ® k1 \ j 1, p - 1}. The
éléments

and

r2)/+Vp(ll) generate

(c) G a non abelian group of order p3. For simplicity let p 3. There are 2

non isomorphic groups G, (Z/3 x Z/3) xiZ/3 and G2 Z/9 xZ/3. In both cases

we hâve 5 orbits of length p — 1 2. So

5

Ad2w_1(BGl)=©Z/31+Vi(rt) for î l,2.

We now turn to an arbitrary finite group G with exponent m, e — vp{m) &gt; 1 and
5(e):«(p-l)-p&apos;-&apos;.

To describe éléments in Ad2AI-i (SG) we introduce the map

defined by

7=0 *

We assume / is chosen satisfying (|G|, /) 1.
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LEMMA 3.11. If G is a p-group with exportent pe then

im (r :/?(G)-&gt; R(G) ® Q/Z^) Ad2n (BG+; Q/Z).

Proo/. Let v {pi, p*} be an orbit of the action of %i&gt;1 on Irr (G) - {1}.
It suffices to show r(pt) c • *n(u) for some c ^ 0(/?). Let r s(e)/k then

S &apos;&quot;n&quot;a(Pi + &apos;&quot;&quot;P2 + • • • + /-&quot;&lt;*-%))/(/&quot; *&gt; - 1)
a=o //

1 /n k — 1 1 — l~nkr

Recall the notation introduced preceding (2.8). Let GpczG be a p-Sylow
subgroup of G and A: e N as in (2.8). For x e R(G) the élément r(x) e R(G) ®
Q/Z(p) is not necessarily in ker (v4t ~ 1)» but this is true for x e im (ind:#(Gp)—»
R(G)) ovxe yk(R(G)) as we shall see now.

PROPOSITION 3.12. (a) r(im (ind)) il&gt;G(Ad2n(BG+; Q/Z))
(b) r(fi&gt;k(R(G))) s t/;G(Ad2n (BG+; Q/Z)) m

Proof. Consider the following commutative diagram

R(GP) -^ R{GP)®Q/Z(r)^- K{}{BG;;Q/Zip))
Ud |.nd &lt;|bU (3.13)

Because of (|G|,/) 1 indgp and %pl will commute, so the left hand square in

(3.13) is commutative. This shows (ipl2n - 1)(t(jc)) 0 for x e im (ind). The facts

that Bi% and \pGp are onto in (3.13) then imply (a) by (3.11). Part (b) is proved
similarly.

EXAMPLE 3.14. Let G Im be the symmetric group on m symbols. Then

R(2m) RQ(Im) ([19], 13.1) hence ^ lon R(Sm). Therefore

(o-i \ / a-rns{e))
2 l-&quot;&apos;)/{l&quot;

-&gt; - 1) x ¦ p.i-^yj.^
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and Ad^-i (BSm) is zéro if n ^ 0(p -1) and a direct sum of cyclic groups of
order p1+V*) if n m 0(p -l), n* 0.

The following proposition describes Ad2rt_i (BG+) as a subgroup of

PROPOSITION 3.15. The map Bi* : Ad^ (BGp+)-&gt; Aà2n.l (BG+) re-
stricted to r(im (res)) c Ad2w (BG+; Q/Z) Ad^-i (BGp is bijective.

Proof. Let xe Ad2n(BG+;Q/Z) be given. By (3.12) (a) there exists xx with
T(ind (*!)) *. Choose i with p&apos; • Ad2n-i(BG£) 0. The proof of (2.8) then
shows that we can choose xx in im (res) modp&apos;. Hence there is x2 € im (res) with
r(ind (jc2)) x. But then Bî^(t(jc2)) x and Bi* is onto.

Assume that we hâve r(res (z)) € ker (Bi^) for z e R(G). Since ipk(z) and z (k
as in (2.8)) hâve the same image under res, we may assume z e tyk(R(G)). But
then r(z) e R(G) ® Q/Z(p) is in ker (i/;2rt - 1) Ad2n (BG+; Q/Z) and t(r(z))
r(res(z)) in Ad2n (BGp ; Q/Z) by naturality. Since Bi*°f is bijective it follows
t(res (z)) 0 and Bi^ is injective.

We now turn to the problem of determining the group structure of
Ad^.x (BG). Let CP(G) be the set of conjugacy classes of p-elements in the
finite group G and F the finite cyclic group generated by the action of the /-th

power map on CP(G). Dénote by Bt {Ci0, C£°,.. Cj°}, i 0, 1,. r,
Cy(0 e CP(G), the orbits with respect to this action with the convention that Bo is

the orbit of the unit élément of G.

The class functions dual to C;(l) give a basis of Klp(G), the vector space of
class functions vanishing outside the p-éléments of G. Since the action of ipl on
Klp(G) corresponds to the action of the /-th power map on CP(G) we see that

Klp(G) is a permutation représentation of the finite cyclic group (ty1) generated
by t//. Consider now

P :=im (res)(p) c R(Gp)ip).

A direct generalization of (3.8) fromp-groups to arbitrary groups is possible if one
knows that P is a (ty1)-permutation représentation. This is true at least

rationally: In the proof of (2.9) we hâve seen that P®C and Klp(G) are

isomorphic as (^O-modules. Hence P ® C is a (^/)&quot;Permutati°n représentation.
Since r:i?Q((^/))-&gt;/îc«t/;/)) fa injective, Klp(G), P® C both are in im(r) and

Klp(G) may be realized as a permutation représentation over Z it follows that
F®Q is a {^-permutation représentation.

Whether or not P itself is a (t^&apos;}-permutation-représentation seems to be

unknown in gênerai. In (3.17) we shall describe some cases where this is true.
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PROPOSITION 3.16. Let G be a finite group with p-Sylow subgroup Gp.

Assume that P im(res:/?(G)-»/?(Gp))(p) is a (ipl)-permutation représentation.
Then

Proof. By (3.15) we hâve Ad2n (BG+; Q/Z) r(F) in R(GP) ® Q/Z(p). Let 5
dénote the (t/^-set defining the (i//)-permutation représentation P. As in the
case of a p -group we obtain a description of the group structure of r(P) by
number and length of the (i/^-orbits on 5. The fact that the (t//)-permutation
représentation P® C and Klp(G) are (î//)-isomorphic implies that the (il&gt;l)-sets

S and CP(G) hâve the same orbit structure (see proof of (3.8)).
The assumptions of (3.16) are clearly satisfied if the /-th power map acts

trivially on Cp(G)y for then P has to be the trivial permutation représentation.
We may apply (3.16) also in the situation of (2.9):

PROPOSITION 3.17. // P im(res)(p) R(GP)^P) then P is a &lt;i//&gt;-

permutation représentation.

Proof. The actions of W NG(GP)/GP and (y1) on R(GP) commute and we
hâve an induced action of (y1) on R(Gp)™p). Define s:R(Gp\p)-+R(Gp)™p) by

Then s is (t//)-equivâriant. It is easy to see that if keR(Gp) is irreducible and
aeW then a(Â) is irreducible too. Hence W opérâtes on the set Irr (Gp). Under
the map s the W-orbits on Irr (Gp) define a basis of R(Gp)™p) and since t//) maps
W-orbits to W-orbits we see that R(Gp)™p) is a permutation représentation of the

group &lt;t//&apos;}.

EXAMPLE 3.18. Let G D10 Z/10 xi Z/2 be the dihedral group of order 20

and p 5. There are two conjugacy classes of éléments of order 5 in D10, which
are permutated by ipl. Hence we hâve one orbit of length 2, so
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Remark. The number of cyclic summands in Ad2w_i (BG) dépends only on
the residue class of nmod(p-l). This is easily seen by introducing modp
coefficients and observing that vLi s ^2m modp if n m mod (p — 1). Using this
and the fact that P&lt;8&gt;Q is a (ipl)-permutation représentation one can still prove:
The groups

^ (BG) and © Z(p)/(/&quot;^ - 1)

hâve the same order and the same number of cyclic summands. We omit the

détails.

Remark. Comparison of the exact séquences for Adrt (BG ;Q/Z) and

Ad^(5°;Q/Z) (hère AdG dénotes G-equivariant Ad-theory), gives the relation
between Ad* (BG) and A

AdftS&quot;; Q/Z(p)) -&gt; K(n&apos;(S&quot;; Q/Z(/))) -^ K&apos;^S&quot;; Q/Zlp})~* Ad,V_ ,(S&quot;; 0/Z,.,,) ¦

In particular, if G is a p-group, then t/&gt;G is an isomorphism. We close this chapter
with a short discussion of Ad* (BG).

For a finite group G, Rector [17] studied K¥*(BG), where K¥* is the

algebraic /C-theory associated with the finite field F^. If we choose the number / in
the définition of A* to be a prime power then K¥?(X)ip) A*(X). Let RW(4(G)

dénote the Grothendieck group of finitely generated FJG]-modules, / the

augmentation idéal of R$q(G) and /?F&lt;/(G)A the /-adic completion of R^(i(G).
Rector proved an analogue of Atiyah&apos;s theorem [2], KP^BG^)^ R^(G)A and

^ 0 for i &lt; 0. For i &lt; 0 and Fs a splitting field of G he gave a description
of K¥ll+l(BG+) as the kernel of V« - 1 on R

Since we are mainly interested in Ad* (BG) we hâve given a description of
Ad* (BG) which is independent of [17]. The two approaches may be related by
the following universal coefficient formula for Ad-theory which is proved in [14].

PROPOSITION 3.19. Let X be a CW-complex and R an abelian group. Then

the following séquence is exact

0-*Ext (Ad,., (X); Rip))-&gt;Ad&apos;+l (X; R)-*Hom (Ad, (X); R{p))^0.
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COROLLARY 3.20. Let G be a finite group and n #0. Then

§4. Lower bounds for im (hK) and the proof of theorem (4.4)

We shall use an extension of the classical /-homomorphism to A°(X)

to construct éléments in jï%(BG). For other applications of this method see e.g.
[4], [5]. The extension jA of / results from a solution of the Adams conjecture and

may be constructed as follows (in the complex case): Let BSF dénote the

classifying space for spherical fibrations, J the fibre of \pl- 1 and J.U-+SFthe
classical (complex) /-map. Then A°(X) [X, J] and [X, SF] ji°s(X) for con-
nected X. A solution of the Adams conjecture provides us with a map a in the

following commutative diagram of classifying spaces (localised at p):

U -^ J -£-&gt; BU ^ BU

II h I- II

U &gt; SF SF/U &gt; BU

Then jA is the induced map between fibres and J =jA° A- It is then proved in [22]
that hA°jA is a bijection. Observe that jA induces a map A{)(X)-&gt; jï{XX){p) only
for X a space, not for a spectrum. So there is no corresponding map in
^4-homology.

Using 5-duality we can still draw the following conclusion from the existence

of jA. For a CW-complex X with finite Jfc-skeleton X{k) let D(X{k)) be an 5-dual of

PROPOSITION 4.1. Suppose xeAân{X) is in im (Adn (X{k))-* Adn {X))
and there exists a space Y such that SnD(X(k))^p) and Y(p) are homotopy
équivalent. Then x is in im (hA : nsn(X){p)^&gt; Aân {X)).

Proof. Consider the following commutative diagram
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where the isomorphisms are defined by S-duality. Since ZnD(Xik^)^ — F(p) is a

space and Ad°(Y) i4°(Y), the existence of jA implies that ^:&lt;(Z(/c))(p)-&gt;

Adn (A^**), is onto. Hence the resuit.
Theorem 1 of [6] states that a 2n — 2 connected spectrum of finite type

(localized at p # 2) with dimension less than 2np — 1 can be realized by a space. If
we apply this to desuspend the stable dual Z)(BG(2m)) we obtain

COROLLARY 4.2. If x e Ad2w_1 (BG) is in im (Ad^ (BG(2m))-&gt;

Ad2n_i (BG)) with pm ^ n(p - 1) then x e im (hA).

This is the lower bound for im (hA) which we shall use. Examples show that
usually this type of lower bound gives only a proper subgroup of im (hA). This is

also true in the case of BG in a certain dimension range. But as we shall see now,
for n sufficiently large, the skeletal filtration of the éléments in Ad2n-i (BG)
becomes small enough so that (4.2) applies. We first prove the main resuit in the
spécial case of a cyclic group G 1lpa. Let co(a) e f^J be minimal with
pc &gt;pa(2a + c) for c &gt; co(a).

THEOREM 4.3. Let p be an odd prime, C be the cyclic group of order pa and

no pa(2a 4- co(a)). Then, for n &gt; n0,

hA : ns2n^(BC)-&gt; Ad^.! (BC) is onto.

In particular, for n &gt; n0, im (hK: ns2n-i(BC)-^ KX(BC)) is the subgroup

Proof Let x be an élément in Ad^-iCBC). Then vp(\D(x)\)&lt;a + vp(n)
by (3.3) and this implies D(x) i&lt;i(jc1) for some xleKl(BC(2m)) with
m &lt; (p - l)pa~l(2a + vp(n)). Since i, :Kx{BC(2m))^ KX(BC) is injective we hâve

(Vifi-i-lK^O^0* hence there exists x2eAd2n_l(BC{2m)) with xt D(x2). If
pm ^ n(p — 1) we hâve x e im (hA) by (4.2). This is satisfied if pa(2a + vp(n)) ^ n.

Write n~pc-ri, (n&apos;,p) l. If c&gt;co(a) then n =pV &gt;pc&gt;pa(2a + c)
pa(2a + vp(n)) by the définition of co(a). If c&lt;co(a) then n &gt;no pfl(2a -f
co(a))^pa(2fl + vp(n)) by the définition of n0- Hence n^n0 implies pa(2a +
vp(n))^n finishing the proof.

Remarks. (a)Combining (2.14) with (5.4) gives a slight improvement for
no:c&apos;o(a) min {c |pc &gt;pa(a -hc)} and n&apos;0=pa(a 4-c&apos;0(a)). (b) The exact skeletal

filtration of the éléments of order p in Ad2n^X(BC) is known, see [13].
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We now prove

THEOREM 4.4. Let G be a finite group and p an odd prime. Then there exists

no(G) e N such that for n ^ no(G) the image of the Hurewicz map

hK\n*2n-1{BG\p)-*Kl{BG\p)

is the subgroup Ad2n_! (BG) ker (tpl2n-i — 1).

Proof Let y € Ad2rt (BG; Q/Z) be given. Then x D(y) e ker (v4t ~ 1) &lt;=

K2n(BG; Q/Z(p)) satisfies vp(|x|) &lt; c + vp(n) for some c e f5^ by (3.3). Consider

xA :=a(6A) H tA{^j e K2n(BA+; Q/Z(p))

for a cyclic subgroup A — Z/pa of G. Then vp(\xA\)&lt;c&apos; + vp(n) and we hâve

*a î*(x&apos;a) for some jc^ e K2n(BA(2m)+ ; Q/Z(p)) with m m(a)&lt;(p -
l)pa~l - (a + c&apos;+ vp(n)) by (2.11). Now jc^ may not be in ker(^2n-l). But
|G| • xA is, since vLiC^C^/O ^ *a(x)) ^0(^(6^)) H t/;2n(^(jc))) 0^(0,4) D tA(x).
Let m max{m(a)|Z/pfl&lt;G}. Then jc&apos;:= E^ Bu- (x&apos;A) e KQ(BG{2fh);QIZ{p))
maps to x under the inclusion 1 : fiG(2m)~^ BG.

Since i*:K0(BGi2jh);Q/Z(p))-*K0(BG;Q/Z) is in gênerai not injective we
only know (\l&gt;l2n - 1)(jc&apos;) € ker (i#). But we know (t/;2n - \)(x&apos;) is at most of order
\G\ since (t/;^ - 1)(|G| - xA) 0 as observed above. The éléments ze
K0(BG; Q/Z(p)) with \G\ • z 0 are ail in im (K0(BG(mi); Q/Z(p))-&gt;

*To(SG;Q/Z(p))) by (2.12), m! depending only on |G|. By (2.15) we can find
r r(m!, G) such that i# : A&quot;0(i5G(mi+r); Q/Z(p))-^ K0(BG; Q/Z(p)) is injective on
im^oCBG^^îQ/Z^^-^^oCBG^^îQ/Z^)). We conclude that, letting m2:
max {2m, mx + r}, the élément /^(jc&apos;) e K0(BG(m2); Q/Z(p)) is in ker (v4i- !)•
Hence y e im (Ad2/Î (5G(m2); Q/Z)-* Ad2n (BG; Q/Z)).

Now m2 dépends linearly on vp(n), so we may argue as in the proof of (4.3) that
there exists no(G) such that for n &gt; no(G) the élément y is in im (hA) by (4.2), proving
the theorem.

Remark 4.5. (a) The only constant going into no(G) in (4.4) which is not
known in gênerai is the constant r(mu G) coming in by using (2.15).

(b) For G (Z/p)ky an elementary abelian group, we know r()(G) ^ 2p by [2].
(c) for G (Z/pb)k, k&gt;2, the length of the non-trivial differentials in the

Atiyah-Hirzebruch spectral séquence for K°(BG) grows with b. It can be made

arbitrarily large by increasing b.
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(d) The case (Z/pb)2 is spécial, since there are no non-trivial differentials
starting in £f l~p with p 0(2), hence r(mx, G) 1 in this case.

(e) Closely related to this is the case of a p-group with p-rank at most 2 (the
p-rank of a p-group is the rank of a maximal elementary abelian subgroup). If
p&gt;5, it is known [21] that f/even(BG;Z) is generated by Chern classes of
représentations, implying that /feven(BG;Z) consists of permanent cycles. So we

hâver(mlt G) 1 forthosegroupstoo. Thegroupsofexample (3.10c) belongtothis
class of groups (even for p 3).

(f) By using the fact that the Atiyah-Hirzebruch spectral séquence
for K*(BG) collapses after finitely many steps [23], one can easily prove
that there exists a constant nt(G)^:w0(G) such that for n^nx(G)
hA:M2n-i(BG)-^ Ad2n-\ (BG) is a split surjection.

For G abelian we can avoid the use of (2.15) and thus obtain an explicit
estimate for no(G) as follows.

We first prépare a lemma true for arbitrary finite G. Recall the situation in

(3.12). Let Gp &lt;±&gt; G be a p-Sylow subgroup of G, Rp im (ind:R(Gp)-+R(G)),
E exponent of G, e vp(E) and s(e) (p - l)pe-1, then ip1** 1 in R(GP) and

therefore in KX(BG) (2.8). By (3.12) every élément in Ad2n (BG; Q/Z) is given by

r(x) E^&quot;1 V2n{x)l(r{e)-l) for some xeRp. Dénote by i:Y(m)-*BG the
inclusion of a subcomplex contained in BG(2m).

LEMMA 4.6. With the notations above, let xf e K0(Y(m)\Q/Zip)) be an
élément with i*(x&apos;) x/(ln s(e) — 1) for x e Rp. Assume that the following conditions

are satisfied:
(a) mp&lt;n(p-l)
(b) v&gt;r= 1 on K()(Y(2m); Q/Z(p))
(c) (lns(e)-l)x&apos;=0

Then x(x) e im (hA).

Proof. We show that Jt&quot;:=E&lt;tÉ&lt;t1 YinW) is in ker(^4-l). We hâve

W2n-\)(x^ x&apos; -v£Xx&apos;)=x&apos;{\-rm™) Q by (b) and (c). Then r(jc)
i*{x&quot;) is in im (hA) by (a) and (4.2).

Next we show how to satisfy (b) and (c) for G abelian. Let G be an abelian

p-group.

LEMMA 4.7. Let G ^HUi^/p&quot;&apos; be an abelian p-group, p=£2, and set

e max{aj, s(e) (p - l)pe~\ X, BZ/pa; Y /\UxXt and 7(m):
Af-i ^i2m) with inclusion iY:Y(m)-» Y. Then

(a) ker (iY*) c AT,( Y(m)) is a direct summand and

(b) vC 1 on K()(Y(m); Q/Z)
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Proof. (a) we use the Kunneth séquence [3] tocompute the AT-theoryof F(m).
From [3] it follows that there exists a natural short exact séquence

with y of degree —1. Moreover, this séquence splits (unnaturally), e.g. see [16].
We now use induction on c. Consider the commutative diagram

0 &gt; Kii^^i))
-*U K^X^AYim)) -^-» K^X^^K^Yim)) &gt; 0

&apos;a-aV
1

(/x.)*(&apos;y)

0 &gt; K{(XaY) - &gt; Kx(X)*Kx{Y{m))

with X BZ/pa and we hâve used K0(X(2m)) 0. The case c 1, 2 are trivially
true since iY* is injective, starting the induction. By induction assumption the
kernel of iY* splits off, hence the kernel of (ix*) * OV*)- The splitting of the Kunneth

séquence then proves the induction step.
To prove (b) we prove the dual statement and use the following fact, proved

in [16] p. 267

K*(X a Y) is generated by éléments of the form x0 a y0, (ik(xk Ayk)

for *s&gt;l, where xoeK*(X), yoeK*(Y), xkeK*(X;Z/k), yke
K*(Y;Z/k), &lt;4-8&gt;

Pk:K*(X a Y;Z/k)-^K*(X a Y) is the Bockstein map and a, Ak
dénote the product maps for K*( and K*(—;Z/k).

We again use induction on c and the Kunneth séquence. The exact séquence

0^ K*(Ar(2m); Z/p*)-&gt; K*(Xi2m))-^&gt; K*(X(2m))-&gt; K*(X(2m);Z/pk)-&gt;0

shows ^/s(e) l to be true on K*(X(2m);Z/pk) since it is true on K*(X) and
i%: K*(X)-+ K*(Xi2m)) is onto. Let Mr dénote the Moore spectrum for Z/pr.
Then K\X\Zlpr) Kl+l{X a Mr) and K\X a Mk;Z/pr) Kl+1(X AMk AMr).
Since p^2 we hâve a splitting Mk a Mr ^Mt v ZMt where t min (/c, r). This
shows xl&gt;is{e) l on K*(X a Mp;Z/pr). Inductively we get the statement for
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K*(Y(m)) and K*(Y(m); 1lpr) using (4.8) and the facts that pk and a* commute
with y&apos;.

It is now rather clear how (4.6) and (4.7) give an estimate for no(G), G
abelian.

COROLLARY 4.9. G Ilf=iZ/pa&apos;, e max{a,}, b vp(\G\), do

{d\pd&gt;pe -c(e + b + l + d)}, n1(G):^pe • c(e + 6 + 1+ d0)- Then, for n
&quot;i(G), /^^^(BG)-* Ad2,t_1 (BG) is onto.

Proof. Let x e R(G) be given. Then x/pe+v&quot;(n) cornes from the 2m-skeleton
with m &lt; (/? - l)/?*-1^ + vp(«) + b + 1) by (2.12). We hâve

^ (/p) BG(2mc).
1 1

By (4.6) t(jc) e im (hA) provided m • cp ^ (p — l)n. As in the proof for (4.3) we
find that this is the case for n ^ nx with nx as above.

Remark. (4.8) gives only a rough estimate for no(G). It can be improved
using splittings of BG and the better estimâtes (2.13).

EXAMPLES 4.10. (a) As first example we treat G Z/p xZ/p, p an odd

prime. Recall the description of Ad*(BG) from (3.10b). For G Z/pxZ/p,
n #0, Ad2n_! (BG) ©f=0Z/p1+v^(n) is generated by

\/=0

and

i*ypw)9 ,-=o,...,p-i,

7=0

We need to know the skeletal filtration on Ad2n_i (BG), which we abreviate by
SF. Observe first that if we know SF^^)) we know SF(xn(t/,)) for z

1,...,/?-1. The reason is that the map induced by multiplication by î in the
second factor maps xn(vi) to xn(vt). Therefore if xn(vi) is in im(hA), then hA is

onto. Of course, for a given n, appropriate linear combinations of jcn(v,)&apos;s hâve a

smaller skeletal filtration and may be in im (hA) whereas xn(yi) may not.
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We use (2.10) to estimate SF (xn(Vi)). Let C dénote a cyclic subgroup of G and ic

the inclusion. Then

xc := a(6c) H tc(xn(vx))/p2 e K0(#C+; Q/Z)

has order at most p3+vp(n). In the case C Z/p the skeletal filtration of an
élément of order p&apos; does not exceed 2(p - 1) • L Since SF (0C) 2(p - 1) (for

we find SF(jcc)&lt;2(/? - 1)(2 + vp(n)) and thus SF (x) &lt; 2(p - 1)(2 +
P())

Also, Ko(£G(2m+1);Q/Z)-^/Co(fîG;Q/Z) is injective on im (K0(BGi2m);
Q/Z)-&gt;/C0(BG(2m+1);Q/Z) or simpler Kx{BG{2m))-^ KX{BG) is injective in this
spécial case. By (4.2) we know x e im (hA) provided n ^p(2 + vp{n)). This is the
case for n ^ 2p + 1 if p ^ 5(n ^ 3p -f 1 if /? 3). On the other hand, since

hA:nsk(S\p)-*Ak(S0) in bijective for k&lt;2(p2-p-l), we hâve

hA: jts2n-i(BG)-^ A2n-i(BG) is onto for n &lt;p2-p. For /? &gt;5 ail dimensions are
covered; for p 3 one needs an extra check by hand for n 3p, which is not
covered by (4.2). We hâve proved:

PROPOSITION 4.11. Let p be an odd prime and G^Z/px Z/p. Then for
n&gt;2pim (hK : Jt^-^BG)-» K^BG)) is isomorphic to Ad^-i (BG) ker (t// -
1). For n^2pim (hK) is isomorphic to d(A2n-i(BG)).

(b) Since the range where hA: Jïsn(X)(p)-* An(X) is bijective dépends on p,
the argument above easily extends to G (2/p)b, b&lt;p-l. Only the case

n -p2, b =p -1, is not covered by (3.2) and has to be handled by a différent
method.

PROPOSITION 4.12. Let p&gt;3 be a prime and G (Z/p)h, 6&lt;(p-l).
Then for n &gt;p2 — 2p im (hK : jïs2n-i(BG)-* Kt(BG)) is isomorphic to

Ad^.j (BG) and for n &lt;p2 - 2p to diA^^BG)).
(c) Note that the évaluation of (H- If&quot;1® (H- If~l on jcn(u0 (for

vp(w) 0, n^O(p-l)) shows SF(jcM(i;1)&gt;2(p -1) • 2 (in Ad2n(B(Z/px
Z/p); Q/Z), if n 2(p-l) the skeletal filtration of Pxn(vx) e Ad2w_! (fi(Z/p x
Z/p)) may be smaller). This shows that d(A2n^(BG)) and Ad2n_! (BG) actually
may differ in low dimensions.

EXAMPLE. p 3, G Z/3xZ/3, coker(rf:^2n_1(BG)-^Ad2n_1 (BG))
Z/3 0Z/3 for n 1, 3 and Z/3 for n 2.
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The skeletal filtration of the élément

in Ad2w-i {B{Z/p)b) increases with b; for example

SF {xn{V{b&gt;)) 2 ¦ b{p - 1) (n 0(/&gt; - 1), vp(n) Q,n*b{p- 1)).

So to cover the dimension range left open by (4.4) for b&gt;p requires more
sophisticated arguments than the simple one used above.

(d) To treat a non-abelian example, we consider the extra spécial /?-group

Q {Zip x Zip) xiZ/p {A, B,C\AP Bp Cp

Since Q has Hev(BQ;Z) generated by Chern classes there is no problem with
(2.15), see (4.5). We may proceed exactly as in the case G Z/p xZIp. The
skeletal filtration in Ad2n_, (BQ) ©f=,2Z/p1+v&quot;(rt) is bounded by 2(p - 1)(3 +
vp(n)). Therefore Ad2n_1 {BQ) im {hA) if n &gt; 3p by (4.2). If n &lt; 3p we use the
fact that hA :ns2n~\{BQ)-^ A2n-\{BQ) is onto for n &lt; {p - l)p. Hence if p &gt; 5 ail
dimensions are covered and we hâve

PROPOSITION 4.13. Letp&gt;5bea prime and Q {Zip x Zip) xiZ/p. T/ien

Remark 4.14. Theorem 4.4 is also true at p 2. Only the technical détails are

more involved. The Hurewicz map hK for complex K-theory factors through the
KO-Hurewicz map hKO:Jîs2n-\{BG){2)-*KO2n-\ {BG){2)- Since hKO détermines

hK we consider hKO. Then the 2-primary version of (4.4) is

Theorem 4.15. Let G be a finite group. Then there exists no{G) such that for
n ^ nQ{G) the image of the Hurewicz map

n-i {BG){2)

is the subgroup ker (^3 - 1).
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We indicate only the main changes in the proof: Dénote by Ad* the fibre

theory belonging to t/;3-l:KOHc( )(2)-»KO:!e( )(2) and by A* the homology
theory fitting into the exact séquence

-!£^&gt; kspin,

where ko* is (-l)-connected KO-theory and kspin* its 2-connected cover. There
is a /-map jA : A°(X)^&gt; n%X)(2) such that the composition of jA with the Hurewicz

map 7ï%X)(2)—&gt;A°(X) is a bijection. If X is simply connected, then A°(X)
Ad0^) (e.g. see [4]). Hence we hâve a statement corresponding to (4.2) for
/? 2: If the skeletal filtration of x e Ad2n_i (X) is small enough it will be in
im (hA).

Next one has to compute KO*(Z?G)(2). This may be done as in the complex
case. One finds that KO*(BG)(2) consists of finitely many summands Q/Z(2) and
Z/2Z depending on the congruence class of n mod4.

Eléments of order 2 in ker (xp3 - 1) not divisible by 2 are most easily handled

using Adams periodicity operators, e.g. see [4]. If x e ker (V&gt;3 - 1) is divisible by 2

then y: c(jc/2)eKU2n_i(BG) is an élément with r(y) x where c:KO-*KU
and r : KU—&gt; KO are the canonical maps. Since 2 • y is in ker (t/;3 - 1), the exponent
of 2 in the order of y is of the form a + v2(n). Arguing as for p ^ 2 we find that
for n large enough y cornes from KU2n_i (BGi2m)) and (V3~-1)00 fr°m
KU2n_!(BG(2rf)) with m sufficiently small and d depending only on G. Then the

same is true for x z=r(y). Using the statement analogous to (2.15) the proof is

finished as in the odd primary case.

§5. Im (hK) for cyclic groups in low dimensions

Let C be the cyclic group of order pcy pi^l. For the image of
ha - ttS2n-i(BC)—* Ki(BC) there are two ranges for the values of n and c where we
can find some sort of stability. The case of c fixed and n large is the one discussed

above. The other extrême case is where c is large and n is fixed. In this case

BZ/pc approximates the complex projective space PJC. For the rest of this
section we fix the notation § Hpl where H is the universal Une bundle over PJC.

Then the sphère bundle S(£) is a model for BZ/pc and the cofibre séquence

+-&gt; (5.1)

relates BI/pc to PJC.
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We recall the following facts about A*(PX) from [13]: i42/t(PX)
Ad^ (PX) Z(p) is generated by b&quot; e K0(PxC){p) where {bj \j &gt; 1} is the usual
basis of KO(PJC) dual to the powers of (H - 1) and b\ is the n-th power of bx with
respect to the Pontrajagin product. The index of the canonical map
T:A2n(PaoC)-»H2n(PX\P) is the p-part of ni Write n t(p-l) + s with
0&lt;s &lt;(/?-!) andlet

t (1 + vp(0) - v&gt;!), r [log (^)/log (p)]•m

Then A2n_i(PX) is a group of order pm with r cyclic summands. The kernel of
the Bockstein map f3:A2n(P*£&gt;;Q/Z)~&gt;A2n-i(P°cC) is given by the multiples
offcï.

The long exact séquence in A-theory induced by (5.1) reduces to a six term

séquence

^O. (5.2)

The description of Ad» (BC) was given in (3.10) and the relation between

Adt(BC) and A*(BC) is as follows. First of ail, the exact séquence of
(BC(2&quot;\ BC(2n-l)) shows

Since 5C, BC/BC(2m) and BC(2m) hâve only non-zero homology in odd

degrees, we find Ko(BC) 0, K0(BC/BC(2m)) 0 and K0(BC{2m)) 0. This

implies that the maps i^.K^BC^^K^BC), D.A^^^BQ^K^BC)
and D:Ad2n_1(BC(2m))-*/C,(SC(2m)) are ail injective. Therefore

/. : Ad2n_,(fiC(2n))^ Ad2n_i (BC) and thus d:A2n-l(BC)-^&gt; Ad2n_j (BC) is injective.

We shall describe éléments in A2n-i(BC) by their images in Ad2n_!(BC).
The first step in an investigation of (5.2) is the détermination of ker (^*).

LEMMA 5.3. ker (tt») Z/Jpc+V&quot;(&quot;) c ^2n_,(BC) is generated by

z xn(v0) + pn~lxn(vx) + p2n&apos;2xn{v2) + ¦¦¦
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Proof. The commutative diagram

A2n_l(BC) -^» A2n.x{PX)

¦î&apos; \&gt;

A2n(BC;Q/l) -^&gt; A2n(PX;

0 —&gt; K2n(BC; Q/Z(p)) ^-
shows that ker (n*\A2n-i(BC)^A2n-\(PJC)) in contained in ker()3)

(p) • 6?. The équation

is proved by evaluating Hk - 1 e K°(PXC), k &gt; 1, on both sides.

To see that ker(;rt) is always in im^*) we use the transfer map
t:A2n^2(PX+)-^A2n^(BC+). Dénote by aejts2(PX+) a generator with
hK(o) b1. Then an~l générâtes Jzs2n-2(PxC*)/tov and hA(an~l) générâtes
A2n-2(PX+).

LEMMA 5.4.

Proof. We prove hère only hAt(an~l) A • z with A ^ 0(p).

Since ^^ ° f 0 we hâve im (t) a ker (^r*), so it is enough to compute the order
of im (t). For this we use that the transfer map t appears as boundary map in the
cofibre séquence

Hence the order of im (t) is given by the degree of the map

J*&apos;.A2n-2(PmC-t)-+A2n-2(PmC+), m&gt;n.

Claim. The index of T:A2n.2(PmC~^)^H2n^2{Pm£-^\Z{p)) is the p-part of
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ni (independently of c, except for p 2, c 1). Then by comparing the degree of
/„ in yl-theory with the degree of /* in homology gives: deg(/*) n - pc in
A-theory. This shows im(f) ker^*) in A^-iiBC) since both subgroups hâve
the same order.

To prove the claim let UK(E) be the standard Thom class of a complex vector
bundle E in #-theory with the conventions ch (UK(E)) Todd (E) U UH(E) and

Todd(L) (exp(cl(L))-l)/c1(L) for a Une bundle L. Let Bh(£)
ch^CToddC^e/^C^Q) and 4&gt;K\KJJC¥)-*K*(XE) be the Thom iso-

morphism associated with UK(E). It is an easy exercise to show that w
^x^ftîHBhC-^eKzn-aCPnC&apos;^iQ) is a p-integral class which is not divisible
by any positive power of p. Since the Chern character of this class has only
components in H2n-2{PnC&apos;ï\ Q) it must be in ker (t/&gt;2/t-2 - !)• Now ker (^L-2 - 1)

Ad2n.2(PnC~*)=A2n-2(PnC-*) is a direct summand in K2n.2(PnC&apos;%y

Hence w is a generator of ker (t^2w_2-1). It&apos;s image in H2n^2(PnC~*;Zip))
H2n-2(PnC; Z(p)) is easily seen to be ni times a generator.

Remarks, (i) A more direct compilation of t:A2n-2{PJC+)-*A2n
may be given as follows. It is proved in [12] that the composition

*-&gt; KX{BC) *4- K0(BC; Q/Z) -^&gt; /C0(FX; Q/Z)

is given by )&gt;-*)&gt; H e(^)&quot;1 where e(%) //p&lt; — 1 is the K-theory Euler class of £.

(For y e ^o(^cC), the cap product y De(^)~x in #0(PX; Q) makes sensé, since

y=y&apos;n(H-l) and e(?)/(//-l) is invertible in K°(PXC;Q)). The équation
hA(t(an~1)) z then follows by evaluating Hk-\, /c&gt;l, on both sides. This
résolves the factor À.

(ii) For p =£2 (5.3) and (5.4) reprove:

im (hK:Jïs2n^(BZ/p)-&gt; Kt(B/Z/p)) Z/pl+y»in) is generated by MKa&quot;-1)).

The séquence (5.2) can now be written as

(5.5)

Fix now n. If c is large enough, the map /* must be the zéro map in /l^-theory as

well as in stable homotopy. This may be seen as follows. We can write j as a
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composition of maps PXCHP -* PXCHP of Adams filtration &gt;0. By increasing c we

can increase the Adams filtration of y. If the Adams filtration of y is large enough,

y* is the zéro map. Or: for c large the bundle %~+PnC is stably fibre homotopy
trivial at (p). So £ is orientable for jï*( )ip) and A* and (5.5) becomes the usual

Gysin séquence of the Une bundle §. Then y * is given by the cap-product with the
Euler class of §. If c is large enough y* must be zéro since e(%) is divisible by a

large power of p. We hâve proved

PROPOSITION 5.6. For nfixed c large enough we hâve

A2n,l{BZIpc) s A2n.l(PX) © Z/p^(«)

and cok (hA) in A2n-\(BZ/pc) is isomorphic to cok (hA) in A2n-x(PxC).

Notice that this means that A2n-\(BZ/pc)/im(ô) is independent of c for c

large.
Some éléments in cok (hA:jï2n_l(PocC)-&gt;A2n_l(PocC)) are determined for

example in [13]. Except for very low values of n, hA is never onto and cok(^)
becomes arbitrary large for increasing n, see [13] or [14].

The lowest dimensional example where hA\ns2n_x{BZIpc)-^ A2n_x(BZIpc) is

not onto is the following

EXAMPLE 5.7. Let n p2 - 1, p ± 2, then

A2rt_1(FX) s Zip2 generated by n*(xn(vx)), im (hA) s Zip

z/p3 e z/p2 e z/p

im (/i^) Z/p3 © Z/p generated by Jcrt(u0) and p •

If ^r,H(jcn(i;1)) is not stably spherical, then the same must be true for x,,(t&gt;i). To
show that n^XiiVi)) is not stably spherical is particularly easy. The following
method usually detects few éléments in cok (hA) but works in this case.

Let chm dénote the m-th term of the Chern character, q 2p - 2 and k
connected p-local J^-theory. Then it is well known that pm • ch^m is intégral at p
and gives a class in Hq m(k; Z(p)). This class defines natural transformations

^-m,(*;Z&lt;p)) and Qm:kl(X;Q/Z)-&gt;Hl-mq(X;Q/Z{p)).
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The composition

A^(X; Q/Z) -Z-» k2n(X; Q/Z)-^ H2n.qm(X; Q/Z(p))

clearly vanishes on stably spherical classes (m &gt; 0). For m p it can be used to
show n*{xn{vx)) $ im (hA), n =/?2 - 1. We omit the easy calculation; see e.g. [14].

Notice also that this case is already stable in the sensé of (5.6). For n p2 - 1

and ail c &gt; 3 we hâve A^-iiBZ/p*) l/pc © Zip2 and im (hA) Z/pc © Z/p by
the same argument as above. For c l we hâve Ad^-i (BZ/p) A2n-\(BZ/p)
for ail n &gt;2 and hA is onto by (5.4). The case c 2 is also exceptional. It turns
out that the bound no(Z/p2) beyond which hA is onto by (4.4) is small enough to
allow a direct computation for the rest of the dimensions.

PROPOSITION 5.8. Let p be an odd prime, then

hA:7is2n-1(BZIp2)-»A2n-.l{BZIp2) is onto.

Proof. We only sketch the argument. Only the éléments xn{vx) of order
pi+vp(n) kave to 5e considered. In the first step one works out that the skeletal
filtration of JCn(u0 is less than 2(p - l)p(2 + vp(n)) by (2.14). Except for p 3

this implies: if vp(n)&gt;3 then x^v^ eim (hA) for ail n and if vp(n)^2 then
xn(vl)eim(hA)ifn&gt;3p2.

The remaining cases are checked by hand. Only for «&gt;:(/? — \)p there is

something to show; for smaller values of n hA\7f2n-i{X)-*A2n-i{X) is bijective
since cok(/) 0. Next one works out which multiple ps - xn(v{) is in
^2n-i(BZ/p2). The éléments in ^^(BZ/p2) needed to generate im (hA) are first
of ail constructed in jr^-^PX) using the transfer map t:ji2n^2(PO0CAPocC)-^&gt;

^m-iiPoJC) (see e.g. [13], [14]) and then by considering the exact séquence in
stable homotopy induced by (5.1). To see that the éléments in question indeed

corne from n^^BZIp2) one shows that they map to zéro in ns2n..l{PS&gt;HP This
is done by proving that in those dimension hA is injective, allowing to do the
calculation in &gt;l-theory. Adams periodicity (e.g. see [4]) reduces the number of
cases where one has to construct an élément mapping to

xn(vx) or p-Ji^i).

EXAMPLE 5.9. Let p 3. A2n^(BZI9) is cyclic for « 1,2,3,4,6, the
index of A^^BZ/9) in Ad2n^(BZ/9) is 3 for n 12, 18 and 9 for n 9. In the
other dimensions we hâve A2n^.l(BZ/9) Ad2rt_i(5Z/9).
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